©゙" doubtnut

India's Number 1 Education App

MATHS

NCERT - NCERT

MATHEMATICS(HINGLISH)

POLYNOMIALS

Exercise 21

1. The graphs of $y=p(x)$ are given in Figure below, for some polynomials $p(x)$. Find the
number of zeroes of $p(x)$, in each case.

(Watch Video Solution

Exercise 23

1. Divide the polynomial $p(x)$ by the polynomial $\mathrm{g}(\mathrm{x})$ and find the quotient and remainder in each of the following

$$
p(x)=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2
$$

2. Divide the polynomial $p(x)$ by the polynomial $\mathrm{g}(\mathrm{x})$ and find the quotient and remainder in each of the following
$p(x)=x^{4}-3 x^{2}+4 x+5, g(x)=x^{2}+1-x$

- Watch Video Solution

3. Divide the polynomial $p(x)$ by the polynomial $\mathrm{g}(\mathrm{x})$ and find the quotient and remainder in each of the following : $p(x)=x^{4}-5 x+6$,

$$
g(x)=2-x^{2}
$$

4. On dividing $x^{3}-3 x^{2}+x+2 \mathrm{by}$ a polynomial the quotient and remainder were $x-2$ and $-2 x+4$, respectively. Find $\mathrm{g}(\mathrm{x})$.

- Watch Video Solution

5. Give examples of polynomials $p(x), g(x), g(x)$
and $r(x)$, which satisfy the division algorithm
and
(i) $\operatorname{deg} p(x)=\operatorname{deg} q(x)$
(ii) $\operatorname{deg} q(x)=\operatorname{deg} r(x)$
(iii) $\operatorname{deg} r(x)=0$

D Watch Video Solution

6. Obtain all other zeroes of
$3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its
zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

- Watch Video Solution

7. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial : $t^{2}-3,2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$

D Watch Video Solution

8. Check whether the first polynomial is a
factor of the second polynomial by dividing
the second polynomial by the first polynomial :
$x^{3}-3 x+1, x^{5}-4 x^{3}+x^{2}+3 x+1$
9. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial $x^{2}+3 x+1,3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$

- Watch Video Solution

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
$t^{2}-15$

D Watch Video Solution

2. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
$4 u^{2}+8 u$
3. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients $3 x^{2}-x-4$

D Watch Video Solution
4. Find the zeroes of the following quadratic polynomials and verify the relationship
between the zeroes and the coefficients $x^{2}-2 x-8$

D Watch Video Solution

5. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients $6 x^{2}-3-7 x$
6. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients $4 s^{2}-4 s+1$

D Watch Video Solution

7. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. -
(i) $x^{2}-2 x-8$
(ii) $4 s^{2}-4 s+1$
(iii) $6 x^{2}-3-7 x$
(iv) $4 u^{2}+8 u$
(v) $t^{2}-15$
(vi) $3 x^{2}-x-4$

D Watch Video Solution

8. Find a quadratic polynomial each with the given numbers as the sum and product of its
zeroes respectively.
(i) 1,1
(ii) $-\frac{1}{4}, \frac{1}{4}$
(iiii) 4,1

D Watch Video Solution

9. Find a quadratic polynomial each with the given numbers as the sum and product of its
zeroes respectively.
(i) $\frac{1}{4},-1$
(ii) $\sqrt{2}, \frac{1}{3}$
(iii) $0, \sqrt{5}$
(iv) 1,1
(v) $-\frac{1}{4}, \frac{1}{4}$
(vi) 4,1

D Watch Video Solution

Solved Examples

1. Divide $3 x^{3}+x^{2}+2 x+5$ by $1+2 x+x^{2}$.
(Watch Video Solution
2. Verify that $3,1,-\frac{1}{3}$ are the zeroes of the cubic polynomial
$p(x)=3 x^{3}-5 x^{2}-11 x-3$, and then verify the relationship between the zeroes and the coefficients.

D Watch Video Solution

3. Find a quadratic polynomial, the sum and product of whose zeroes are -3 and 2 , respectively.
4. Find the zeroes of the polynomial $x^{2}-3$ and verify the relationship between the zeroes and the coefficients.

- Watch Video Solution

5. Find the zeroes of the quadratic polynomial
$x^{2}+7 x+10$, and verify the relationship between the zeroes and the coefficients.
6. Look at the graphs in Figure given below.

Each is the graph of $y=p(x)$, where $\mathrm{p}(\mathrm{x})$ is a polynomial. For each of the graphs, find the number of zeroes of $p(x)$.

7. Find all the zeroes of
 $2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$, if you know that

two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.

D Watch Video Solution

8. Divide $3 x^{2}-x^{3}-3 x+5$ by $x-1-x^{2}$, and verify the division algorithm.
9. Divide $2 x^{2}+3 x+1$ by $x+2$

D Watch Video Solution

Exercise 24

1. If $\begin{gathered}\text { the }\end{gathered}$ polynomial
$x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by
another polynomial $x^{2}-2 x+k$, the
remainder copies out to be $x+a$. Find k and
a.

Watch Video Solution

2. If two zeroes of the polynomial
$x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $\quad 2 \pm \sqrt{3}$,
find other zeroes.

- Watch Video Solution

3. If the zeroes of the polynomial
$x^{3}-3 x^{2}+x+1$ are $a-b, a, a+b$, find a and b.
4. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as $2,7,14$ respectively.

D Watch Video Solution

5. Verify that the numbers given alongside of
the cubic polynomials below are their zeroes.

Also verify the relationship between the
zeroes and the coefficients in each case:(i)
$2 x^{3}+x^{2}-5 x+2 ; \frac{1}{2}, 1,-2$
$x^{3}-4 x^{2}+5 x-2 ; 2,1,1$

D Watch Video Solution

