© ${ }^{\text {T doubtnut }}$

MATHS

NCERT - NCERT MATHEMATICS(HINGLISH)

TRIANGLES

Exercise 65

1. ABC is an isosceles triangle with $\mathrm{AC}=\mathrm{BC}$. If $A B^{2}=2 A C^{2}$, prove that $A B C$ is a right triangle.

D Watch Video Solution

2. D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angled at C. Prove that

$$
A E^{2}+B D^{2}=A B^{2}+D E^{2}
$$

- Watch Video Solution

3. Tick the correct answer and justify: $\operatorname{In} \Delta A B C \cdot \mathrm{AB}=6 \sqrt{3} \mathrm{~cm} . \mathrm{AC}=$ 12 cm and $B C=6 \mathrm{~cm}$. The angle B is:
(A) 120
(B) 60 (C) 90 (D) 45

- Watch Video Solution

4. $P Q R$ is a triangle right-angled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that $P M^{2}=Q M . M R$.

- Watch Video Solution

5. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

D Watch Video Solution

6. In Figure, ABD is a triangle right-angled at A and $A C \perp B D$.

Show that
(i) $A B^{2}=B C \cdot B D$
(ii) $A C^{2}=B C \cdot D C$
(iii) $A D^{2}=B D \cdot C D$

- Watch Video Solution

7. The perpendicular from A on side $B C$ of a $A B C$ intersects $B C$ at D such that $\mathrm{DB}=3 \mathrm{CD}$. Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$.

- Watch Video Solution

8. $A B C$ is an isosceles triangle right-angled at C. Prove that $A B^{2}=2 A C^{2}$.

D Watch Video Solution

9. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m , find the distance between their tops.

- Watch Video Solution

10. A ladder 10m long reaches a window 8 m above the ground.

Find the distance of the foot of the ladder from base of the wall.

- Watch Video Solution

11. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.

D Watch Video Solution

12. In figure, O is a point in the interior of a triangle $A B C$, $O D \perp B C, O E \perp A C$ and $O F \perp A B$. Show that
(i)
$O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$
(ii) $A F^{2}+B D^{2}+C E^{2}=A W^{2}+C D^{2}+B F^{2}$

13. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

- Watch Video Solution

14. An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same tune, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. |How far apart will be the two planes after $1^{1} 1 / 2$

- Watch Video Solution

15. Sides of triangles are given below. Determine which of them right triangles are. In case of a right triangle, write the length of its hypotenuse.
(i) 7 cm 24 cm 25 cm
(ii) 3 cm .8 cm 6 cm
(iii) $50 \mathrm{~cm}, 80 \mathrm{~cm} 100 \mathrm{~cm}$
(iv) 13 cm 12 cm 5 cm

- Watch Video Solution

16. $A B C$ is an equilateral triangle of side $2 a$. Find each of its altitudes.
A. $a \sqrt{3}$
B. $a \sqrt{2}$
C. $2 a \sqrt{3}$
D. None

Answer: A
17. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

- Watch Video Solution

Exercise 64

1. Tick the correct answer and justify:ABC and BDE are two equilateral triangles such that D is the mid point of $B C$ Sides of two similar triangles are in the ratio 4 : 9. Areas of these triangles are in the ratio
(A) $2: 3$
(B) $4: 9$
(C) 81:16
(D) 16:81

- Watch Video Solution

2. Tick the correct answer and justify:ABC and BDE are two equilateral triangles such that D is the mid-point of $B C$. Ratio of the areas of triangles $A B C$ and $B D E$ is
(A) 2:1 (B) 1:2
(C) $4: 1$
(D) 1:4

- Watch Video Solution

3. In figure $A B C$ and $D B C$ are two triangles on the same base $B C$. If

AD intersects BC at O , show that $\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(D B C)}=\frac{A O}{D O}$.

- Watch Video Solution

4. Diagonals of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. If $A B=2 C D$, find the ratio of the areas of triangles $A O B$ and COD.

- Watch Video Solution

5. If $\triangle A B C \sim \Delta D E F$ and their areas be, respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4 \mathrm{~cm}$. find BC .

- Watch Video Solution

6. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.
7. D, E and F are respectively the mid-points of sides $A B . B C$ and $C A$ of $\triangle A B C$. Find the ratio of the areas of $\triangle D E F$ and $\triangle A B C$.

- Watch Video Solution

8. If the areas of two similar triangles are equal, prove that they are congruent.

- Watch Video Solution

9. The areas of the two similar triangles are in the ratio of the square of the corresponding medians.

- Watch Video Solution

1. Fill in the blanks using the correct word given in bracket:(i)

All circles are \qquad (congruent, similar)
(ii) All squares are____. (similar, congruent)
(iii) All_____triangles are similar, (isosceles, equilateral)
(iv) Two polygons of the same number of sides are similar, if
(a) their- corresponding angles are ___ and
(b) their- corresponding sides are__(equal, proportional)

D Watch Video Solution

2. Give two different examples of pair of
(i) similar figures.
(ii) non-similar figures.
3. State whether the following quadrilaterals are similar or not:

- Watch Video Solution

Exercise 62

1. The diagonals of a quadrilateral $A B C D$ intersect each other at the point O such that $\frac{A O}{B O}=\frac{C O}{D O}$. Show that ABCD is a trapezium.

- Watch Video Solution

2. Using Theorem 6.2, prove that the line joining the mid-point of any two sides of a triangle is parallel to the third side. (Recall that you have done it in class IX).

- Watch Video Solution

3. Using Theorem 6.1, prove that a line drawn through the midpoint of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX).

- Watch Video Solution

4. In figure A, B and C are points on $O P, O Q$ and $O R$ respectively such that $A B|\mid P Q$ and $A C| \mid P R$. Show that $B C|\mid Q R$.

- Watch Video Solution

5. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and its diagonals intersect each other at the point O. Show that $\frac{A O}{B O}=\frac{C O}{D O}$.
6. In figure DE || OQ and DF || OR. Show that EF||QR.

- Watch Video Solution

7. In figure, $\mathrm{DE} \| \mathrm{AC}$ and $\mathrm{DF} \| \mathrm{AE}$. Prove that $\frac{B F}{F E}=\frac{B E}{E C}$.

8. In Figure (i) and (ii), DE||BC. Find EC in (i) and AD in (ii).

(i)

Watch Video Solution
9. In figure, If $\mathrm{LM}\left|\mid \mathrm{CB}\right.$ and $\mathrm{LN} \| \mathrm{CD}$, prove that $\frac{A M}{A B}=\frac{A N}{A D}$.

10. E and F are points on the sides $P Q$ and $P R$ respectively of $\Delta P Q R$. For each of the following cases, state whether EF || QR:
(i) $\mathrm{PE}=3.9 \mathrm{~cm}$. $\mathrm{EQ}=3 \mathrm{~cm} . \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4$
(ii) $\mathrm{PE}=4 \mathrm{~cm} . \mathrm{QE}=4.5 \mathrm{~cm}$. $\mathrm{PF}=\mathrm{Scm}$ and $\mathrm{RF}=9 \mathrm{~cm}$
(iii) $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.36 \mathrm{~cm}$

- Watch Video Solution

Exercise 66

1. In figure PS is the bisector of $\angle Q P R$ of $\triangle P Q R$. Prove that
$\frac{Q S}{S R}=\frac{P Q}{P R}$.

- Watch Video Solution

2. In figure, ABC is triangle in which $\angle A B C=90^{\circ}$ and $A D \perp C B$ produced. Prove that $A C^{2}=A B^{2}+B C^{2}-2 B C . B D$.

3. In fig., D is a point on hypotenuse AC of $\triangle A B C, D M \perp B C$ and $D N \perp A B$. Prove that
(i) $D M^{2}=D N \cdot M C$
(ii) $D N^{2}=D M \cdot A N$

- Watch Video Solution

4. In figure, AD is a median of a triangle ABC and $A M \perp B C$. Prove that:
(i) $A C^{2}=A D^{2}+B C \cdot D M+\left(\frac{B C}{2}\right)^{2}$
(ii) $A B^{2}=A D^{2}-B C \dot{D} M+\left(\frac{B C}{2}\right)^{2}$
(iii) $A C^{2}+A B^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$

- Watch Video Solution

5. In figure, ABC is a triangle in which $\angle A B C=90^{\circ}$ and $A D \perp B C$. Prove that $A C^{2}=A B^{2}+B C^{2}-2 B C . B D$.

- Watch Video Solution

6. Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

- Watch Video Solution

7. In Figure, two chords $A B$ and $C D$ intersect each other at the point P. Prove that:
(i) $\triangle A P C \sim \Delta D P B$
(ii) $A P \cdot P B=C P \cdot D P$

- Watch Video Solution

8. In figure D is a point on side BC of a $\triangle A B C$ such that $\frac{B D}{C D}=\frac{A B}{A C}$. Prove that AD is the bisector of $\angle B A C$.

- Watch Video Solution

9. In Figure two chords $A B$ and $C D$ of a circle intersect each other at the point P (when produced) outside the circle. Prove that
(i) $\triangle P A C \sim \triangle P D B$
(ii) $P A \dot{P} B=P C \dot{P} D$

- Watch Video Solution

10. Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out? If she pulls in the string at the rate of 5 cm per second,
what will be the horizontal distance of the fly from her after 12 seconds?

- Watch Video Solution

Exercise 63

1. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and BE intersects CD at F . Show that $\triangle A B E \sim \triangle C F B$.

- Watch Video Solution

2. In figure $A B C$ and $A M P$ are two right triangles, right angles at B and M respectively. Prove that(i) $\triangle A B C \sim \Delta A M P$ $\frac{C A}{P A}=\frac{B C}{M P}$

- Watch Video Solution

3. In figure, $\triangle O D C \triangle O B A, \angle B O C=125^{\circ}$ and $\angle C D O=70^{\circ}$.

Find $\angle D O C, \angle D C O$ and $\angle O A B$.

- Watch Video Solution

4. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O . Using a similarity criterion for two triangles, show that $\frac{O A}{O C}=\frac{O B}{O D}$

- Watch Video Solution

5. State which pairs of triangles in Figure are similar. Write the similarity criterion used by you for answering the question and
also write the pairs of similar triangles in the symbolic form:

Watch Video Solution
6. In figure, if $\triangle A B E \cong \triangle A C D$, show that $\triangle A D E \sim \triangle A B C$.

- Watch Video Solution

7. In Figure altitudes AD and CE of DABC intersect each other at the point P. Show that:
(i) $\triangle A E P \sim \Delta C D P$
(ii) $\triangle A B D \sim \Delta C B E$
(iii) $\triangle A E P \sim \Delta A D B$
(iv) $\triangle P D C \sim \triangle B E C$

- Watch Video Solution

8. In figure $\frac{Q R}{Q S}=\frac{Q T}{P R}$ and $\angle 1=\angle 2$. Show that $\triangle P Q S \sim \Delta T Q R$

9. S and T are points on sides PR and QR of $\triangle P Q R$ such that $\angle P=\angle R T S$. Show that $\Delta R P Q \sim \Delta R T S$.

- Watch Video Solution

10. If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$, respectively where $\triangle A B C \sim \triangle P Q R$, prove that $\frac{A B}{P Q}=\frac{A D}{P M}$

- Watch Video Solution

11. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long.

Find the height of the tower.
12. Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $P R$ and median $P M$ of another triangle PQR . Show that $\triangle A B C \sim \triangle P Q R$.

- Watch Video Solution

13. In figure E is a point on side CB produced of an isosceles triangle ABC with $\mathrm{AB}=\mathrm{AC}$. If $A D \perp B C$ and $E F \perp A C$, prove that
$\triangle A B D \sim \Delta E C F$.

- Watch Video Solution

14. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and $\triangle E F G$ respectively. If $\triangle A B C \triangle F E G$, show that:
(i) $\frac{C D}{G H}=\frac{A G}{F G}$
(ii) $\triangle D C B \sim \triangle H G E$
(iii) $\triangle D C A \sim \Delta H G F$

- Watch Video Solution

15. D is a point on the side $B C$ of a triangle $A B C$ such that $\angle A D C=\angle B A C$. Show that $C A^{2}=C B . C D$.

- Watch Video Solution

16. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides PQ and QR and median PM of $\triangle P Q R$. Show that $\triangle A B C \sim \triangle P Q R$.

- Watch Video Solution

1. In figure $\angle A C B=90^{\circ}$ and $C D \perp A B$. Prove that $\frac{B C^{2}}{A C^{2}}=\frac{B D}{A D}$.

(Watch Video Solution

2. A ladder is placed against a wall such that its foot is at a distance of 2.5 m from the wall and its top reaches a window 6 m above the ground. Find the length of the ladder.

- Watch Video Solution

3. In fig., if $A D \perp B C$, prove that $A B^{2}+C D^{2}=B D^{2}+A C^{2}$.
4. $B L$ and $C M$ are medians of a triangle $A B C$ right angled at A. Prove that $4\left(B L^{2}+C M^{2}\right)=5 B C^{2}$

D Watch Video Solution

5. O is any point inside a rectangle $A B C D$. Prove that $O B^{2}+O D^{2}=O A^{2}+O C^{2}$.

- Watch Video Solution

6. In Figure $\frac{P S}{S Q}=\frac{P T}{T R}$ and $\angle P S T=\angle P R Q$. Prove that PQR is an isosceles triangle.

- Watch Video Solution

7. $A B C D$ is a trapezium with $A B \| D C$. E and F are points on nonparallel sides $A D$ and $B C$ respectively such that $E F$ is parallel to $A B$. Show that $\frac{A E}{E D}=\frac{B F}{F C}$.

- Watch Video Solution

8. A girl of height 90 cm is walking away from the base of a lamppost at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.

(Watch Video Solution

9. In Figure the line segment XY is parallel to side AC of $\triangle A B C$ and it divides the triangle into two parts of equal areas. Find the
ratio $\frac{A X}{A B}$.

(Watch Video Solution

10. In figure Cm and RN are respectively the medians of $\triangle A B C$ and $\triangle P Q R$. If $\triangle A B C \sim \Delta P Q R$, prove that:
(i) $\triangle A M C \sim \triangle P N R$
(ii) $\frac{C M}{R N}=\frac{A B}{P Q}$
(ii) $\Delta C M B \sim \Delta R N Q$
are

- Watch Video Solution

11. Observe and then find $\angle P$.

- Watch Video Solution

12. If a line intersects sides AB and AC of a $\triangle A B C$ at D and E respectively and is parallel to BC , prove that $\frac{A D}{A B}=\frac{A E}{A C}$

D Watch Video Solution

13. In figure, if $\mathrm{PQ} \| \mathrm{RS}$, prove that $\triangle P O Q \triangle S O R$.

14. In figure $O A * O B=O C * O D$. Show that $\angle A=\angle C$ and $\angle B=\angle D$.

- Watch Video Solution

