©゙"doubtnut

CHEMISTRY

NCERT - NCERT CHEMISTRY(HINGLISH)

EQUILIBRIUM

Solved Example

1. The following concentrations were obtained for the formation of NH_{3} from N_{2} and H_{2} at equilibrium at 500 K .
$\left[N_{2}\right]=1.5 \times 10^{-2} M,\left[H_{2}\right]=3.0 \times 10^{-2} M$, and
$\left[\mathrm{NH}_{3}\right]=1.2 \times 10^{-2} \mathrm{M}$. Calculate the equilibrium constant.
2. At equilibrium, the concentrations of
$N_{2}=3.0 \times 10^{-3} M, O_{2}=4.2 \times 10^{-3} M$,
$N O=2.8 \times 10^{-3} M$ in a sealed vessel at $800 K$. What will be K_{c}
for the reaction
$N_{2}(g)+O_{2}(g) N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g) 2 N O(g)$

- Watch Video Solution

3. $P C l_{5}, P C l_{3}$ and $C l_{2}$ are at equilibrium at 500 K and having concentration $1.59 \mathrm{MPCl}_{3}, 1.59 \mathrm{MCl}_{2}$ and $1.41 \mathrm{MPCl}_{5}$. Calculate K_{c} for the reaction,
$P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$
4. The value of $K_{c}=4.24$ at 800 K for the reaction
$\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)$
Calculate equlibrium concentrations of $\mathrm{CO}_{2} \mathrm{H}_{2}, \mathrm{CO}$ and $\mathrm{H}_{2} \mathrm{O}$ at 800 K , if only CO and $\mathrm{H}_{2} \mathrm{O}$ are present initially at concentration of 0.10 M each?

- Watch Video Solution

5. For the equilibrium
$2 \mathrm{NOCl}(g) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g)$
the value of the equilibrium constant, K_{c} is 3.75×10^{-6} at $1069 K$.
Calcualate the K_{p} for the reaction at this temperature?
6. The value of K_{p} for the reaction
$\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 \mathrm{CO}(g)$
is 3.0 bar at 1000 K . If initially $P_{\mathrm{CO}_{2}}=0.48 \mathrm{bar}, P_{\mathrm{CO}}=0 \mathrm{bar}$ and pure graphite is present then determine equilibrium partial pressue of CO and CO_{2}.

- Watch Video Solution

7. The value of K_{c} for the reaction $2 A \Leftrightarrow B+C$ is 2.0×10^{-3}. At a given time, the composition of reaction mixture is $[A]=[B]=[C]=3 \times 10^{-4} M$. In which direction the reaction will proceed?
8. 13.8 g of $\mathrm{N}_{2} \mathrm{O}_{4}$ was placed in a $1 L$ reaction vessel at 400 K and allowed to attain equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$
The total pressuers at equilibrium was found to be 9.15 bar.

Calculate K_{c}, K_{p} and partial pressure at equilibrium.

- Watch Video Solution

9. 3.00 mol of PCl_{5} kept in 1 L closed reaction vessel was allowed to attain equilibrium at 3.80 K . Calculate composition of the mixture at equilibrium $K_{c}=1.80$

- Watch Video Solution

10. The value of ΔG^{\ominus} for the phosphorylation of glycose in glycolysis is $13.8 \mathrm{kJmol}^{-1}$. Find the value of K_{c} at 298 K

- Watch Video Solution

11. Hydrolysis of sucrose gives

Sucrose $+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow$ Glucose + Fructose
Equilibrium constant K_{c} for the reaction is 2×10^{13} at $300 K$.
Calculate ΔG^{\ominus} at $300 K$.

- Watch Video Solution

12. Write the conjugate bases for the following Brddotonsted acids
(a) $H F$
(b) $\mathrm{H}_{2} \mathrm{SO}_{4}$ (c) $\mathrm{HCO}_{3}^{\Theta}$

- Watch Video Solution

13. Wirte the conjugate acids for the following Brdddotosted bases:
a. $\stackrel{\ominus}{N} H_{2}$ b. $N H_{3}$ c. $H C O O^{\Theta}$

- Watch Video Solution

14. The species: $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{\Theta}, \mathrm{HSO}_{4}^{\Theta}$ and NH_{3} can act both as Bronsted acids and bases. For each case give the corresponding conjugate acid and base.

- Watch Video Solution

15. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid / base:
Θ
a. $O H$, b. $F^{\Theta}, c . H^{\oplus}, d . B C l_{3}$
16. The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} M$. What is its $p H$?

- Watch Video Solution

17. The pH of $10^{-8} \mathrm{M}$ solution of HCl in water is

- Watch Video Solution

18. The ionization constant of $H F$ is 3.2×10^{-4}. Calculate the degree of ionization of HF in its $0.02 M$ solution. Calculate the concentration of all species present in the solution and its $p H$.
19. The $p H$ of $0.1 M$ monobasic acid is 4.50 . Calculate the concentration of species, H^{\oplus}, A^{Θ}, and $H A$ at equilibrium. Also determine the value of K_{a} and $p K_{a}$ of the monobasic acid.

- Watch Video Solution

20. Calculate the $p H$ of 0.08 solution of $H O C I$ (hydrochlorous acid). The ionisation constant of the acid is 2.5×10^{-5}. Determine the percent dissociation of $H O C I$.

- Watch Video Solution

21. The pH of 0.004 M hydrazine $\left(\mathrm{NH}_{2} . \mathrm{NH}_{2}\right)$ solution is 9.7 .

Calculate its ionisation constant K_{b} and $p K_{b}$.
22. Calculate the pH of the solution in which $0.2 \mathrm{MNH}_{4} \mathrm{Cl}$ and $0.1 \mathrm{MNH}_{3}$ are present. The $p K_{b}$ of ammonia solution is 4.75 .

- Watch Video Solution

23. Determine the degree if ionization and pH of $0.05 M$ of ammonia solution. The ionization constant of ammonia can be taken from Table 7.7. Also calculate the ionization constant of the conjugate acid of ammonia.

- Watch Video Solution

24. 50.0 mL of 0.10 M ammonia solution is treated with 25.0 mL of
0.10 MHCI . If $K_{b}\left(\mathrm{NH}_{3}\right)=1.77 \times 10^{-5}$, the pH of the resulting solution will be
25. The $p K_{a}$ of acetic acid and $p K_{b}$ of ammonium hydroxide are 4.76 and 4.75 respectively. Calculate the pH of ammonium acetate solution.

- Watch Video Solution

26. Calcualte the solubility of $M_{2} X_{3}$ in pure water, assuming that neither kind of ion reacts with $\mathrm{H}_{2} \mathrm{O}$. The solubility product of $M_{2} X_{3}, K_{s p}=1.1 \times 10^{-23}$.

- Watch Video Solution

27. The values of $K_{s p}$ of two sparingly solubles salts, $\mathrm{Ni}(\mathrm{OH})_{2}$ and $A g C N$ are 2.0×10^{-15} and 6×10^{-7} respectively, which salt is more soluble? Explain

D Watch Video Solution

28. The solubility product of $\mathrm{Ni}(\mathrm{OH})_{2}$ is 2.0×10^{-15}. The molar solubility of $\mathrm{Ni}(\mathrm{OH})_{2}$ in 0.1 MNaOH solution is

- Watch Video Solution

Exercise

1. A liquid is in equilibrium with its vapour in a sealed container at
a fixed temperature. The volume of the container is suddenly increased.
a. what is the initial effect of the change on vapour pressure?
b. How do rates of evaporation and condensation change initially?
c. What happens when equilibrium is restored finally and what will be the final vapour pressure?

- Watch Video Solution

2. What is K_{c} for the following equilibrium concentration of each substance is:
$\left[S O_{2}\right]=0.60 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.82 \mathrm{M}$ and $\left[\mathrm{SO}_{3}\right]=1.90 \mathrm{M} ?$
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

- Watch Video Solution

3. At a certain temperature and a total pressure of $10^{5} \mathrm{~Pa}$, iodine vapour contains 40% by volume of Iatoms, Calculate K_{p} for the equilibrium.
$I_{2(g)} \Leftrightarrow 2 I_{(g)}$
4. Write the expression for the equilibrium constant K_{c} for each of the following reactions:
a. $2 \mathrm{NOCl}(g) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g)$
b. $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(s) \Leftrightarrow 2 \mathrm{CuO}(s)+4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
c.
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(a q)+\mathrm{H}_{2} \mathrm{O}(1) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q)$
d. $\mathrm{Fe}^{3+}(a q)+3 O H^{\Theta}(a q) \Leftrightarrow \mathrm{Fe}(\mathrm{OH})_{3}(s)$
e. $I_{2}(s)+5 F_{2} \Leftrightarrow 2 I F_{5}$

- Watch Video Solution

5. Find out the value of K_{c} for each of the following equilibrium from the value of K_{p} :
a. $2 \mathrm{NOCl}(g) \Leftrightarrow 2 \mathrm{NO}(g)+C l_{2}(g), K_{p}=1.8 \times 10^{-2}$ at $500 K$
b. $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g), K_{p}=167$ at 1073 K
6. For the following equilibrium, $K_{c}=6.3 \times 10^{14} a t 1000 K$
$N O(g)+O_{3}(g) \Leftrightarrow \mathrm{NO}_{2}(g)+O_{2}(g)$
Both the forward and reverse reactions in the equilibrium are elementary bimolecular reactions. What is K_{c}, for the reverse reaction?

- Watch Video Solution

7. Explain why pure liquids and solids can ignored while writing the equilibrium constant expression?

- Watch Video Solution

8. Reaction between nitrogen and oxygen takes place as following:
$2 N_{2(g)}+O_{2} \Leftrightarrow 2 N_{2} O_{(g)}$
If a mixture of $0.482 \mathrm{~mole} N_{2}$ and 0.933 mole of O_{2} is placed in a
reaction vessel of volume 10litre and allowed to form $\mathrm{N}_{2} \mathrm{O}$ at a temperature for which $K_{c}=2.0 \times 10^{-37}$ litremol $^{-1}$. Determine the composition of equilibrium mixture.

- Watch Video Solution

9. Nitric oxide reacts with bromine and gives nitrosyl-bromide as per reaction given below:
$2 N O_{(g)}+B r_{2(g)} \Leftrightarrow 2 \operatorname{NOBr}_{(g)}$.
When 0.087 mole of $N O$ and 0.0437 mole of $B r_{2}$ are mixed in a closed container at constant temperature, 0.0518 mole of NOBr is obtained at equilibrium. Calculate equilibrium amount of nitric oxide and bromine.

- Watch Video Solution

10. At $450 K, K_{p}=2.0 \times 10^{10} /$ bar for the given reaction at equilibrium.
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)$
What is K_{c} at this temperature?

- Watch Video Solution

11. A sample of $H I(g)$ is placed in flask at a pressure of 0.2 atm . At equilibrium. The partial pressure of $H I(g)$ is $0.04 a t m$. What is K_{p} for the given equilibrium?
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$

- Watch Video Solution

12. A mixture of 1.57 mol of $N_{2}, 1.92 \mathrm{~mol}$ of H_{2} and 8.13 mol of
NH_{3} is introduced into a 20 L reaction vessel at 500 K . At this
temperature, the equilibrium constant K_{c} for the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ is 1.7×10^{2}. Is the reaction mixture at equilibrium? If not, what is the direction of the net reaction?

(Watch Video Solution

13. The equilibrium constant expression for a gas reaction is :
$K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}$
Write the balanced chemical equation corresponding to this expression.

- Watch Video Solution

14. One mole of $\mathrm{H}_{2} \mathrm{O}$ and one mole of CO are taken in a 10litre
vessel and heated to 725 K . At equilibrium, 40 percent of water (by mass) reacts with carbon monoxide according to the equation,
$\mathrm{H}_{2} \mathrm{O}_{(g)}+C O_{(g)} \Leftrightarrow \mathrm{H}_{2(g)}+\mathrm{CO}_{2(g)}$
Calculate the equilibrium constant for the reaction.

(Watch Video Solution

15. At 700 K equilibrium constant for the reaction, $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$
is 54.8 . If 0.5 mollitre ${ }^{-1}$ of $H I_{(g)}$ is present at equilibrium at 700 K , what are the concentrations of $H_{2(g)}$ and $I_{2(g)}$, assuming that we initially started with $H I_{(g)}$ and allowed it to reach equilibrium at 700 K .

- Watch Video Solution

16. What is the equilibrium concentration of each of the substance in the equilibrium when the initial concentration of $I C l$ was
$0.78 M$?
$2 I C l(g) \Leftrightarrow I_{2}(g)+C l_{2}(g), K_{c}=0.14$

- Watch Video Solution

17. $K_{p}=0.04 a t m$ at $899 K$ for the equilibrium shown below. What is the equilibrium concentration of $C_{2} H_{6}$ when it is placed in a flask at 4.0atm pressure and allowed to come to equilibrium?
$C_{2} H_{6}(g) \Leftrightarrow C_{2} H_{4}(g)+H_{2}(g)$

- Watch Video Solution

18. The ester, ethyl acetate is formed by the reaction of ethanol and acetic acid and the equilibrium is represented as :
$\mathrm{CH}_{3} \mathrm{COOH}(l)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(l)$
(i) Write the concentration ratio (concentration quotient) Q for this reaction. Note that water is not in excess and is not a solvent
in this reaction.
(ii) At 293 K , if one starts with 1.000 mol of acetic acid 0.180 mol of ethanol, there is 0.171 mol of ethyl acetate in the final equilibrium mixture. Calculate the equilibrium constant.
(iii) Starting with 0.50 mol of ethanol and 1.000 mol of acetic acid and maintaining it at $293 \mathrm{~K}, 0.214 \mathrm{~mol}$ of ethyl acetate is found after some time. Has equilibrium been reached?

- Watch Video Solution

19. A sample of pure $P C l_{5}$ was introduced into an evacuted vessel at 473 K . After equilibrium was attained,concentration of $P C l_{5}$ was found to be 0.5×10^{-1} mollitre ${ }^{-1}$. If value of K_{c} is 8.3×10^{-3} mollitre ${ }^{-1}$. What are the concentrations of PCl_{3} and $C l_{2}$ at equilibrium?

- Watch Video Solution

20. One of the reaction that takes plece in producing steel from iron ore is the reduction of iron(II) oxide by carbon monoxide to give iron metal and CO_{2}.
$F e O(s)+C O(g) \Leftrightarrow F e(s)+C O_{2}(g), K_{p}=0.265 \quad$ atm at $1050 K$

What are the equilibrium partial pressure of CO and CO_{2} at $1050 K$ if the partical pressure are: $p_{C O}=1.4 a t m$ and $p_{\mathrm{CO}_{2}}=0.80 \mathrm{~atm} ?$

(Watch Video Solution

21. Equilibrium constant, K_{c} for the reaction,
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$,
at 500 K is 0.061 litre $^{2} \mathrm{~mole}^{-2}$. At a particular time, the analysis shows that composition of the reaction mixture is 3.00 mollitre $^{-1} \mathrm{~N}_{2}, 2.00$ mollitre ${ }^{-1} \mathrm{H}_{2}$, and 0.500 mollitre $^{-1} \mathrm{NH}_{3}$.

Is the reaction at equilibrium? If not, in which direction does the reaction tend to proceed to reach equilibrium?

- Watch Video Solution

22. Bromine monochloride, (BrCl) decomposes into bromine and chlorine and reaches the equilibrium.
$2 B r C l_{(g)} \Leftrightarrow B r_{2(g)}+C l_{2(g)}$
For which $K_{c}=32$ at 500 K . If initially pure BrCl is present at a concentration of 3.30×10^{-3} mollitre $^{-1}$, what is its molar concentration in the mixture at equilibrium?

- Watch Video Solution

23. At 1127 K and 1 atm pressure, a gaseous mixture of $C O$ and CO_{2} in equilibrium with solid carbon has $90.55 \% \mathrm{CO}$ by mass:

$$
C_{(s)}+C O_{2(g)} \Leftrightarrow 2 C O_{(g)}
$$

Calculate K_{c} for the reaction at the above temperature.

- Watch Video Solution

24. Calculate (a) ΔG^{Θ} and (b) the equilibrium constant for the formation of NO and O_{2} at 298 K
$N O(g)+1 / 2 O_{2}(g) \Leftrightarrow N O_{2}(g)$
where
$\Delta_{f} G^{\Theta}\left(N O_{2}\right)=52.0 \mathrm{kJmol}^{-1}$
$\Delta_{f} G^{\Theta}(N O)=87.0 \mathrm{kJmol}^{-1}$
$\Delta_{f} G^{\Theta}\left(O_{2}\right)=0 \mathrm{kJmol}^{-1}$

- Watch Video Solution

25. Does the number of moles of reaction products increase, decrease, or remain same when each of the following equilibrium
is subjected to a decrease in pressure by increasing the volume?
a. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
b. $\mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \Leftrightarrow \mathrm{CaCO}_{3}(s)$
c. $3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(g)$

- Watch Video Solution

26. Which of the following reactions will get affected by increasing the pressure? Also, mention whether change will cause the reaction the reaction to go into forward of backward direction.
a. $\mathrm{COCl}_{2}(g) \Leftrightarrow C O(g)+C l_{2}(g)$
b. $\mathrm{CH}_{4}(g)+2 S_{2}(g) \Leftrightarrow C S_{2}(g)+2 \mathrm{H}_{2} S(g)$
c. $\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 \mathrm{CO}(g)$
d. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)$
e. $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
f. $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \Leftrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

- Watch Video Solution

27. The equilibrium constant for the following reaction is 1.6×10^{5} at $1024 K$
$H_{2}(g)+B r_{2}(g) \Leftrightarrow 2 H B r(g)$
find the equilibrium pressure of all gases if 10.0 bar of HBr is introduced into a sealed container at $1024 K$.

- Watch Video Solution

28. Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction:
$\mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}(g)+3 \mathrm{H}_{2}(g)$
a. Write an expression for $K_{-}(p)$ for the above reaction.
b. How will the value of $K_{-}(p)$ and composition of equilibrium mixture be affected by
i. Increasing the pressure
ii. Increasing the temperature
iii. Using a catalyst?

- Watch Video Solution

29. Decribe the effect of:
a. Addition of H_{2}
b. Addition of $\mathrm{CH}_{3} \mathrm{OH}$
c. Removal of $C O$
d. Removal of $\mathrm{CH}_{3} \mathrm{OH}$
on the equilibrium of the reaction:
$2 \mathrm{H}_{2}(g)+\mathrm{CO}(g) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)$

- Watch Video Solution

30. At $473 K$, equilibrium constant K_{c} for decomposition of phosphorus pentachloride, $P C l_{5}$ is 8.3×10^{-3}. If decomposition
is depicted as,
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g) \Delta_{r} H^{\Theta}=124.0 \mathrm{kJmol}^{-1}$
a. Write an expression for K_{c} for the reaction.
b. What is the value of K_{c} for the reverse reaction at the same temperature?
c. What would be the effect on K_{c} if
i. More $P C l_{5}$ is added
ii. Pressure is increased
iii. The temperature is increased?

(Watch Video Solution

31. Dihydrogen gas used in Haber's process is produced by reacting methane from natural gas with high temperature steam. The first stage of the two 2 stage reaction involves the formation of $C O$ and H_{2}. In second stage, $C O$ formed in first stage is reacted with more steam in water gas shift reaction,
$\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)$
If a reaction vessel at $400^{\circ} C$ is charged with an equimolar mixture of $C O$ and steam such that $p_{C O}=p_{\mathrm{H}_{2} \mathrm{O}}=4.0$ bar, what will be the partial pressure of H_{2} at equilibrium? $K_{p}=0.1$ at $400^{\circ} C$.

- Watch Video Solution

32. Predict which of the following reactions will have appreciable concentration of rectants and products:
a. $C l_{2}(g) \Leftrightarrow 2 C l(g), K_{c}=5 \times 10^{-39}$
b. $\mathrm{Cl}_{2}(g)+2 \mathrm{NO}(g) \Leftrightarrow 2 \mathrm{NOCl}(g), K_{c}=3.7 \times 10^{8}$
c. $\mathrm{Cl}_{2}(g)+2 \mathrm{NO}_{2}(g) \Leftrightarrow 2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}), \mathrm{K}_{\mathrm{c}}=1.8$

- Watch Video Solution

33. The value of K_{c} for the reaction $3 O_{2}(g) \Leftrightarrow 2 O_{3}(g)$ is
2.0×10^{-50} at $25^{\circ} \mathrm{C}$. If the equilibrium concentration of O_{2} in air
at $25^{\circ} \mathrm{C}$ is 1.6×10^{-2}, what is the concentration of O_{3} ?

- Watch Video Solution

34. The reaction, $\mathrm{CO}(g)+3 \mathrm{H}_{2}(g) \Leftrightarrow \mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g)$ is at equilibrium at 1300 K in a $1 L$ flask. It also contains 0.30 mol of $\mathrm{CO}, 0.10 \mathrm{~mol}$ of H_{2} and 0.02 mol of $\mathrm{H}_{2} \mathrm{O}$ and an unknown amount of CH_{4} in the flask. Determine the concentration of CH_{4} in the mixture. The equilibrium constant K_{c} for the reaction at the given temperature us 3.90.

(Watch Video Solution

35. What is meant by the conjugate acid-base pair? Find the conjugate acid / base for the following species:
$\mathrm{HNO}_{2}, \mathrm{CN}^{\Theta}, \mathrm{HClO}_{4}, \mathrm{~F}^{\Theta}, \stackrel{\ominus}{\mathrm{O}} \mathrm{H}, \mathrm{CO}_{3}^{2-}$, and S^{2-}
36. Which of the followings are Lewis acids: $\mathrm{H}_{2} \mathrm{O}, B F_{3}, \mathrm{H}^{\oplus}$ and NH_{4} ?

- Watch Video Solution

37. Write the conjugate bases for the following Brddotonsted acids
(a) HF (b) $\mathrm{H}_{2} \mathrm{SO}_{4}$ (c) $\mathrm{HCO}_{3}^{\Theta}$

- Watch Video Solution

38. Wirte the conjugate acids for the following Brdddotosted bases:
a. $\stackrel{\ominus}{N} H_{2}$ b. $N H_{3}$ c. $H C O O^{\Theta}$
39. The species: $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{\Theta}, \mathrm{HSO}_{4}^{\Theta}$ and NH_{3} can act both as Bronsted acids and bases. For each case give the corresponding conjugate acid and base.

- Watch Video Solution

40. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid / base:
a. $\stackrel{\ominus}{O} H, b . F^{\Theta}, c . H^{\oplus}, d . B C l_{3}$

- Watch Video Solution

41. The concentration of hydrogen ion in a sample of soft drink is
$3.8 \times 10^{-3} M$. What is its $p H$?
42. The $p H$ of a sample of vinegar is 3.76 , Calculate the concentration of hydrogen ion in it.

- Watch Video Solution

43. The ionization constant of $H F, H C O O H$ and $H C N$ at $298 K$ are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and 4.8×10^{-9} respectively. Calculate the ionization constant of the corresponding conjugate base.

- Watch Video Solution

44. The ionization constant of phenol is 1.0×10^{-10}. What is the concentration of phenolate ion in $0.05 M$ solution of phenol?

What will be its degree of ionization if the solution is also $0.01 M$ in sodium phenolate?
45. The first ionization constant of $H_{2} S$ is 9.1×10^{-8}. Calculate the concentration of $H S^{\Theta}$ ion in its $0.1 M$ solution. How will this concentration be affected if the solution is 0.1 M in HCl also? If the second dissociation constant if $H_{2} S$ is 1.2×10^{-13}, calculate the concentration of S^{2-} under both conditions.

- Watch Video Solution

46. The ionization constant of acetic acid 1.74×10^{-5}. Calculate the degree of dissociation of acetic acid in its $0.05 M$ solution.

Calculate the concentration of acetate ion in the solution and its $p H$.
47. It has been found that the $p H$ of a $0.01 M$ solution of an organic acid is 4.15. Calculate the concentration of the anion, the ionization constant of the acid and its $p K_{a}$.

- Watch Video Solution

48. Assuming complete dissociation, calculate the $p H$ of the following solutions,
a. $0.003 \mathrm{MHCl}, \mathrm{b} .0 .005 \mathrm{MNaOH}$,
c. $0.002 M H B r, d .0 .002 M K O H$

- Watch Video Solution

49. Calculate the $p H$ of the following solutions:
a. $2 g$ of TlOH dissolved in water to give 2 litre of solution.
b. $0.3 g$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved in water to give 500 mL of solution.
c. $0.3 g$ of NaOH dissolved in water to give 200 mL of solution.
d. $1 m L$ of 13.6 MHCl is duluted with water to give 1 litre of solution.

- Watch Video Solution

50. The degree of ionization of a 0.1M bromoacetic acid solution is
0.132. Calculate the pH of the solution and the $p K_{a}$ of bromoacetic acid.

- Watch Video Solution

51. The $p H$ of 0.005 M codenine $\left(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}\right)$ solution is 9.95 .

Calculate its ionisation constant and $p K_{b}$.

- Watch Video Solution

52. What is the $p H$ of $0.001 M$ aniline solution? The ionization constant of aniline 4.27×10^{-10}. Calculate the degree of ionization of aniline in the solution. Also calculate the ionization constant of the conjugate acid of aniline.

- Watch Video Solution

53. Calculate the degree of ionisation of $0.05 M$ acetic acid if its
$p K_{a}$ value is 4.74 . How is the degree of dissociation affected when its solution also contains
a. $0.01 M$, b. $0.1 M$ in $H C l$?

- Watch Video Solution

54. The ionisation constant of dimethylamine is 5.4×10^{-4}.

Calculate its degree of ionization in its $0.02 M$ solution. What
percentage of dimethylamine is ionized if the solution is also 0.1 M in NaOH ?

- Watch Video Solution

55. Calculate the hydrogen ion concentration in the following biological fluids whose $p H$ are given below:
a. Human muscle-fluid, 6.83
b. Human stomach fluid, 1.2
c. Human blood, 7.38
d. Human saliva, 6.4.

(Watch Video Solution

56. The $p H$ of milk, black coffee, tomato juice, lemon juice and egg white are $6.8,5.0,4.2,2.2$ and 7.8 respectively. Calculate corresponding hydrogen ion concentration in each.

D Watch Video Solution

57. If 0.561 g of (KOH) is dissolved in water to give. 200 mL of solution at 298 K . Calculate the concentration of potassium, hydrogen and hydroxyl ions. What is its $p H$?

(Watch Video Solution

58. The solubility of $\mathrm{Sr}(\mathrm{OH})_{2}$ at 298 K is $19.23 g L^{-1}$ of solution.

Calculate the concentrations of strontium and hydroxyl ions and the $p H$ of the solution.

- Watch Video Solution

59. The ionization constant of propionic acid is 1.32×10^{-5}.

Calculate the degree of ionization of the acid in its 0.05 M solution
and also its pH . What will be its degree of ionization in the solution of 0.01 NHCI ?

- Watch Video Solution

60. The $p H$ of $0.1 M$ solution of cyanic acid $(H C N O)$ is 2.34 .

Calculate the ionization constant of the acid and its degree of ionisation in the solution.

- Watch Video Solution

61. The ionization constant of nitrous acid is 4.5×10^{-4}. Calculate
the $p H$ of $0.04 M$ sodium nitrite solution and also its degree of hydrolysis.

- Watch Video Solution

62. A $0.02 M$ solution of pyridinium hydrochloride has $p H=3.44$.

Calculate the ionization constant of pyridine.

- Watch Video Solution

63. Predict if the solutions of the following salts are neutral, acidic or basic: $\mathrm{NaCl}, \mathrm{KBr}, \mathrm{NaCN}, \mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{NaNO}_{2}$ and KF

- Watch Video Solution

64. The ionization constant of chloroacetic acid is 1.35×10^{-3}.

What will be the $p H$ of $0.1 M$ acid and its $0.1 M$ sodium salt solution?

- Watch Video Solution

65. Ionic product of water at 310 K is 2.7×10^{-14}. What is the $p H$ of netural water at this temperature?

- Watch Video Solution

66. Calculate the pH of the resultant mixture:
a. 10 mL of $0.2 \mathrm{MCa}(\mathrm{OH})_{2}+25 \mathrm{~mL}$ of 0.1 MHCl
b. 10 mL of $0.01 \mathrm{MH}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of $0.01 \mathrm{MCa}(\mathrm{OH})_{2}$.
c. 10 mL of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of 0.1 MKOH .

- Watch Video Solution

67. Determine the solubilities of silver chromate, barium chromate,
ferric hydroxide, lead chloride and mercurous iodide at 298 K from
their solubility product constants given in Table 7.9. Determine also the molarities of individual ions.

D Watch Video Solution

68. The solubility product constant of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ and AgBr are 1.1×10^{-12} and 5.0×10^{-13} respectively. Calculate the ratio of the molarities of their saturated solutions.

- Watch Video Solution

69. Equal volumes of 0.002 M solution of sodium iodate and cupric chlorate are mixed togather. Will it lead to precipitation of copper iodate?
(for cupric iodate $K=7.4 \times 10^{-8}$).

- Watch Video Solution

70. The ionisation constant of benzoic acid (PhCOOH) is 6.46×10^{-5} and $K_{s p}$ for silver benzoate is 2.5×10^{-3}. How many times is silver benzoate more soluble in a buffer of pH 3.19 compared to its solubility is pure water?

- Watch Video Solution

71. What is the maximum concentration of equimolar solutions of ferrous sulphate and sodium sulphide so that when mixed in equal volumes, there is no precipitation of iron sulphide? (For iron sulphide, $\left.K_{s p}=6.3 \times 10^{-18}\right)$.

- Watch Video Solution

72. What is the minimum volume of water required to dissolve $1.0 g$ of calcium sulphate at 298 K ?
(For calcium sulphate , $K_{s p} i s 9.1 \times 10^{-6}$).

- Watch Video Solution

73. The concentration of suphide ion in 0.1 MHCl solution saturated with hydrogen sulphide is $1.0 \times 10^{-19} M$. If 10 mL of this is added to $5 m L$ of $0.04 M$ solution of the following: $\mathrm{FeSO}_{4}, \mathrm{MnCl}_{2}, \mathrm{ZnCl}_{z}$ and CdCl_{2}. In which of these solutions precipitation will take place?
