

MATHS

NCERT - NCERT MATHEMATICS(HINGLISH)

LIMITS AND DERIVATIVES

Exercise 13 1

1. Suppose $f(x)=[a+bx,\,x<1;4,\,x=1;b-ax,\,x>1$

2. Let a_1, a_2, \ldots, a_n be fixed real numbers and define a function

$$f(x) = (x-a_1)(x-a_2)....(x-a_n).$$

What is $\lim_{x o x_1} f(x)$? For some $a
eq a_1, a_2, ..., a_n$, compute $\lim_{x o a} f(x)$

3.
$$(\lim_{x \to \frac{\pi}{2}} \frac{\tan 2x}{x - \frac{\pi}{2}}$$

Watch Video Solution

4.
$$(\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}a, b, a + b \neq 0$$

Watch Video Solution

5. Find
$$(\lim_{x
ightarrow 0} f(x),$$
 where $f(x) = \left[rac{x}{|x|}, x
eq 00, x = 0
ight.$

6. Find $(\ \lim \)_{x \,
ightarrow \, 5} f(x)$, where f(x) = |x| - 5

Watch Video Solution

7. Find
$$(\lim_{x o 1} f(x))$$
 ,where $f(x) = egin{cases} x^2 - 1 & x \leq 1 \ -x^2 - 1 & x > 1 \end{cases}$

8. Evaluate
$$(\lim_{x \to 0} f(x))$$
, where $f(x) = \left[\frac{|x|}{x}, x \neq 0, 0, x = 0\right]$

9. If the function f(x) satisfies $(\lim)_{x
ightarrow 1}rac{f(x)-2}{x^2-1}=\pi,$ evaluate $(\lim)_{x
ightarrow 1}f(x)$

Watch Video Solution

10. If
$$f(x) = [|x|+1, x < 00, x = 0|x|-1, x > 0$$

Watch Video Solution

11. lf
$$f(x) = egin{cases} mx^2 + n & x < 0 \ nx + m & 0 \le x \le 1 \ nx^3 + m & x > 1 \end{cases}$$

For what integers m and n does both $\lim_{x o 0} \, f(x)$ and $\lim_{x o 1} \, f(x)$ exist?

Find

$$\lim_{x o 0} \ f(x) and (\ \lim \)_{x o 1} f(x), where f(x) = egin{cases} 2x+3 & x \leq 0 \ 3(x+1) & x > 0 \end{cases}$$

13.
$$(\lim_{x \to 0})_{x \to 0}(\cos ecx - \cot x)$$

Watch Video Solution

14.
$$\lim_{x \to 3} \frac{x^4 - 81}{2x^2 - 5x - 3}$$

Watch Video Solution

15.
$$\lim_{x \to 0} \frac{ax+b}{cx+1}$$

16.
$$\lim_{x \to 4} \frac{4x+3}{x-2}$$

17.
$$\lim_{x \to -1} \frac{x^{10} + x^5 + 1}{x - 1}$$

Watch Video Solution

18.
$$\lim_{x \to 0} \frac{(x+1)^5 - 1}{x}$$

19.
$$\lim_{x \to 2} \frac{3x^2 - x - 10}{x^2 - 4}$$

20.
$$\lim_{x \to 3} x + 3$$

21.
$$\lim_{x \to \pi} \left(x - \frac{22}{7}\right)$$

22.
$$\lim_{r
ightarrow 1}\,\pi r^2$$

23. FIND
$$\lim_{x o 0} x \sec x$$

24. Find $\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}$

25. Find
$$\lim_{x o 0} rac{\cos 2x - 1}{\cos x - 1}$$

26.
$$\lim_{x o 0} \frac{\cos x}{\pi - x}$$

27.
$$\lim_{x
ightarrow\pi} rac{\sin(\pi-x)}{\pi(\pi-x)}$$

28.
$$(\lim_{x\to 0} \frac{sinax}{\sin bx}a, b, \neq 0$$

29.
$$\lim_{x \to 0} \frac{\sin ax}{bx}$$

Watch Video Solution

30.
$$\lim_{x \to -2} \frac{\frac{1}{x} + \frac{1}{2}}{x+2}$$

31.
$$\lim_{x \to 1} \frac{ax^2 + bx + c}{cx^2 + bx + a}, a + b + c \neq 0$$

32.
$$\lim_{z \to 1} \frac{z^{\frac{1}{3}} - 1}{z^{\frac{1}{6}} - 1}$$

Watch Video Solution

Solved Examples

1. Find the derivative of f(x) from the first principles, where f(x)

is (i) $\sin x + \cos x$

2. Find the derivative of(i) $rac{x^5 - \cos x}{\sin x}$ (ii) $rac{x + \cos x}{\tan x}$

Watch Video Solution

3. Compute derivative of

(i) $f(x) = \sin 2x$ (ii) $g(x) = \cot x$

Watch Video Solution

4. Find the derivative of $f(x) = x^2$

5. Find the derivative of the constant function f(x) = a for a fixed real number a.

13. Find the derivative of f from the first principles, where f is

given by(i)
$$f(x)=rac{2x+3}{x-2}$$
 (ii) $f(x)=rac{1}{x}$

Watch Video Solution

14. Evaluate(i)
$$(\ \lim \)_{x
ightarrow 1}rac{x^{15}-1}{x^{10}-1}$$
 (ii) $(\ \lim \)_{x
ightarrow 0}rac{\sqrt{1+x}-1}{x}$

Watch Video Solution

15. Find the limits (i)
$$\lim_{x \to 1} \left[\frac{x^2 + 1}{x + 100} \right]$$
 (ii) $\lim_{x \to 2} \left[\frac{x^3 - 4x^2 + 4x}{x^2 - 4} \right]$

17. Find the derivative of sin x at x = 0.

Watch Video Solution

18. Find the derivative of the function $f(x) = 2x^2 + 3x - 5$ at

x = -1. Also prove that f'(0) + 3f'(-1) = 0.

Watch Video Solution

19. Find the derivative at x = 2 of the function f(x) = 3x.

21. Find the derivative of f(x) = 10x.

22. Find the derivative of f(x) = 3 at x = 0 and at x = 3.

23. Evaluate:
$$\lim_{x \to 1} \frac{\log_e x}{x-1}$$

1. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{x}{\sin^n x}$

2. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): (x + a)

3. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(px + q)\left(\frac{r}{x} + s\right)$

4. Find the derivative of the following functions from first principle:

(i) *x*

(ii) $(-x)^{-1}$

(iii) $\sin(x+1)$

5. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{1 + \frac{1}{x}}{1 - \frac{1}{x}}$

6. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{1}{ax^2 + bx + c}$

Watch Video Solution

7. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(ax + b)(cx + d)^2$

Watch Video Solution

8. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{ax + b}{cx + d}$

9. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{ax+b}{px^2+qx+r}$

Watch Video Solution

10. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{px^2 + qx + r}{ax + b}$

11. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\sin^n x$

Watch Video Solution	
12. Find derivative of the following functions: $rac{\sec x - 1}{\sec x + 1}$	
Watch Video Solution	

13. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\cos ecx \cot x$

14. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): sin (x + a)

15. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{\sin x + \cos x}{\sin x - \cos x}$

Watch Video Solution

16. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{\cos x}{1 + \sin x}$

17. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $4\sqrt{x} - 2$

18. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{a}{x^4} - \frac{b}{x^2} + \cos x$

Watch Video Solution

19. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero

constants and m and n are integers): $(ax + b)^n (cx + d)^m$

20. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(ax + b)^n$

Watch Video Solution

21. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(ax^2 + \sin x)(p + q\cos x)$

22. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(x + \cos x)(x - tanx)$

Watch Video Solution

23. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{4x + 5 \sin x}{3x + 7 \cos x}$

Watch Video Solution

24. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero $x^2 \cos\left(rac{\pi}{4}
ight)$

constants and m and n are integers):

$$\sin x$$

25. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{a + b \sin x}{c + d \cos x}$

Watch Video Solution

26. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{\sin(x+a)}{\cos x}$

27. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $x^4(5\sin x - 3\cos x)$

Watch Video Solution

28. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(x^2 + 1)\cos x$

Watch Video Solution

29. Find derivative of the following functions: $\frac{x}{1 + \tan x}$

30. Find derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): (x + secx)(x - tanx)

Exercise 13 2 1. Find the derivative of cos x from first principle.

> Watch Video Solution

2. Find the derivative of the following functions:

(i) $\sin x \cos x$

(ii) $\sec x$

(iii) $5 \sec x + 4 \cos x$

(iv) $\cos ecx$

(v) $3 \cot x + 5 \cos ecx$

(vi) $5\sin x - 6\cos x + 7$

3. Find the derivative of

(i)
$$2x - rac{3}{4}$$

(ii) $(5x^3 + 3x - 1)(x - 1)$
(iii) $x^{-3}(5 + 3x)$

Watch Video Solution

4. Find the derivative of
$$\frac{x^n - a^n}{x - a}$$
 for some constant a.

9. Find the derivative of the following functions from first principle

.(i) $x^3 - 27$

(ii) (x - 1)(x2)

(iii)
$$rac{1}{x^2}$$

(iv) $rac{x+1}{x-1}$

Watch Video Solution

10. For some constants a and b, find the derivative of(i)

$$(x-a)\cdot(x-b)$$
 (ii) $\left(ax^2+b
ight)^2$ (iii) $rac{x-a}{x-b}$

