©゙doubtnut

India's Number 1 Education App

MATHS

NCERT - NCERT MATHEMATICS(HINGLISH)

PRINCIPLE OF MATHEMATICAL INDUCTION

Solved Examples

1. Prove the rule of exponents $(a b)^{n}=a^{n} b^{n}$ by using principle of mathematical induction for every natural number.

-
 Watch Video Solution

2. Prove that $1^{2}+2^{2}+\dot{+} n^{2}>\frac{n^{3}}{3}, n \in N$
3. Prove that $2.7^{n}+3.5^{n}-5$ is divisible by 24 , for all $n \in N$.

- Watch Video Solution

4. Prove that $(1+x)^{n} \geq(1+n x)$, for all natural number n , where $x \succ 1$.

- Watch Video Solution

5. For every positive integer n, prove that $7^{n}-3^{n}$ is divisible by 4 .

- Watch Video Solution

6.

For
all
$n \geq 1$,
prove
that
$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots .+\frac{1}{n(n+1)}=\frac{n}{n+1}$
7. Prove that $2^{n}>n$ for all positive integers n.

- Watch Video Solution

8. For all $n \geq 1$, prove that $1^{2}+2^{2}+3^{2}+4^{2}+\ldots \ldots . .+n^{2}=$ $\frac{n(n+1)(2 n+1)}{6}$

- Watch Video Solution

Exercise 41

1. Prove the following by using the principle of mathematical induction

$$
\begin{array}{ll}
\text { for } & n \in N \text { : } \\
\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 n+1)}{n^{2}}\right)=(n+1)^{2} &
\end{array}
$$

2. Prove the following by using the principle of mathematical induction for all $n \in N: a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$

- Watch Video Solution

3. Prove the following by using the principle of mathematical induction for all $n \in N:$
$\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}$

- Watch Video Solution

4. Prove the following by using the principle of mathematical induction for all $n \in N:$

$$
\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{(6 n+4)}
$$

5. Prove the following by using the principle of mathematical induction for all $n \in N:$

$$
\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)} .
$$

- Watch Video Solution

6. Prove the following by using the principle of mathematical induction for all $n \in N:$
$\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 n-1)(3 n+1)}=\frac{n}{(3 n+1)}$.

- Watch Video Solution

7. Prove the following by using the principle of mathematical induction for all $n \in N: 1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$

- Watch Video Solution

8. Prove the following by using the principle of mathematical induction for all $n \in N:\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{n}\right)=(n+1)$

- Watch Video Solution

9. Prove the following by using the principle of mathematical induction for all $n \in N: n(n+1)(n+5)$ is a multiple of 3 .

- Watch Video Solution

10. Prove the following by using the principle of mathematical induction
for all $n \in N: 1+2+3+\ldots+n<\frac{1}{8}(2 n+1)^{2}$.

- Watch Video Solution

11. Prove the following by using the principle of mathematical induction for all $n \in N:(2 n+7)<(n+3)^{2}$.

- Watch Video Solution

12. Prove the following by using the principle of mathematical induction for all $n \in N: 3^{2 n+2}-8 n-9$ is divisible by 8 .

- Watch Video Solution

13. Prove the following by using the principle of mathematical induction for all $n \in N: 41^{n}-14^{n}$ is a multiple of 27 .

- Watch Video Solution

14. Prove the following by using the principle of mathematical induction for all $n \in N: 10^{2 n-1}+1$ is divisible by 11 .

- Watch Video Solution

15. Prove the following by using the principle of mathematical induction for all $n \in N: x^{2 n}-y^{2 n}$ is divisible by $x+y$.

- Watch Video Solution

16. Prove the following by using the principle of mathematical induction
for all $n \in N: 1+3+3^{2}+\ldots+3^{n-1}=\frac{\left(3^{n}-1\right)}{2}$

- Watch Video Solution

17. Prove the following by using the principle of mathematical induction
for all $n \in N: 1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$

- Watch Video Solution

18. Prove the following by using the principle of mathematical induction
$1+\frac{1}{(1+2)} \frac{1}{(1+2+3)}+\ldots+\frac{1}{(1+2+3+\ldots n)}=\frac{2 n}{(n+1)}$

- Watch Video Solution

19. Prove the following by using the principle of mathematical induction for
20. $2.3+2.3 .4+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$

- Watch Video Solution

20. Prove the following by using the principle of mathematical induction
for all $n \in N: 1.3+2.3^{2}+3.3^{3}+\ldots+n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}$

- Watch Video Solution

21. Prove the following by using the principle of mathematical induction for
22. $2+2.3+3.4+\ldots+n(n+1)=\left[\frac{n(n+1)(n+2)}{3}\right]$

- Watch Video Solution

22. Prove the following by using the principle of mathematical induction

$$
\begin{aligned}
& \text { for } \\
& 1.3+3.5+5.7+\ldots+(2 n 1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}
\end{aligned}
$$

$$
n \in N:
$$

- Watch Video Solution

23. Prove the following by using the principle of mathematical induction for all $n \in N: 1.2+2.2^{2}+3.2^{2}+\ldots+n .2^{n}=(n-1) 2^{n+1}+2$

- Watch Video Solution

24. Prove the following by using the principle of mathematical induction
for all $n \in N: \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$
