

MATHS

NCERT - NCERT MATHEMATICS(HINGLISH)

PRINCIPLE OF MATHEMATICAL INDUCTION

Solved Examples

1. Prove the rule of exponents $(ab)^n = a^n b^n$ by using principle of mathematical induction for every natural number.

Watch Video Solution

2. Prove that
$$1^2+2^2+\ +\ n^2>rac{n^3}{3}, n\in N$$

4. Prove that $(1+x)^n \ge (1+nx)$, for all natural number n, where

 $x \succ 1$.

5. For every positive integer n, prove that $7^n - 3^n$ is divisible by 4.

7. Prove that $2^n > n$ for all positive integers n.

1. Prove the following by using the principle of mathematical induction

for all $n \in N$: $\left(1+rac{3}{1}
ight)\left(1+rac{5}{4}
ight)\left(1+rac{7}{9}
ight)...\left(1+rac{(2n+1)}{n^2}
ight)=(n+1)^2$

for all
$$n\in N{:}a+ar+ar^2+...+ar^{n-1}=rac{a(r^n-1)}{r-1}$$
 .

Watch Video Solution

3. Prove the following by using the principle of mathematical induction

for all
$$n \in N$$
:
 $\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$
Watch Video Solution

4. Prove the following by using the principle of mathematical induction

for all
$$n \in N$$
:
 $rac{1}{2.5} + rac{1}{5.8} + rac{1}{8.11} + ... + rac{1}{(3n-1)(3n+2)} = rac{n}{(6n+4)}$

for
$$all$$
 $n \in N$:
 $\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + ... + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}.$
Watch Video Solution

6. Prove the following by using the principle of mathematical induction

for
$$all$$
 $n \in N$:
 $\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + ... + \frac{1}{(3n-1)(3n+1)} = \frac{n}{(3n+1)}.$
Vatch Video Solution

7. Prove the following by using the principle of mathematical induction

for all
$$n \in N$$
: $1^2 + 3^2 + 5^2 + ... + (2n-1)^2 = rac{n(2n-1)(2n+1)}{3}$

8. Prove the following by using the principle of mathematical induction for all $n \in N$: $\left(1 + \frac{1}{1}\right)\left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{3}\right)...\left(1 + \frac{1}{n}\right) = (n+1)$

Watch Video Solution

9. Prove the following by using the principle of mathematical induction

for all $n \in N:n(n+1)(n+5)$ is a multiple of 3.

Watch Video Solution

10. Prove the following by using the principle of mathematical induction

for all
$$n \in N$$
: $1+2+3+...+n < rac{1}{8}(2n+1)^2.$

Watch Video Solution

11. Prove the following by using the principle of mathematical induction

for all
$$n\in N{:}(2n+7)<(n+3)^2.$$

for all $n \in N$: $3^{2n+2} - 8n - 9$ is divisible by 8.

Watch Video Solution

13. Prove the following by using the principle of mathematical induction

for all $n \in N$: $41^n - 14^n$ is a multiple of 27.

14. Prove the following by using the principle of mathematical induction

for all $n \in N$: $10^{2n-1} + 1$ is divisible by 11.

for all $n \in N$: $x^{2n} - y^{2n}$ is divisible by x + y.

Watch Video Solution

16. Prove the following by using the principle of mathematical induction

for all $n \in N$: $1 + 3 + 3^2 + ... + 3^{n-1} = rac{(3^n-1)}{2}$

Watch Video Solution

17. Prove the following by using the principle of mathematical induction

for all
$$n \in N$$
: $1^3 + 2^3 + 3^3 + ... + n^3 = \left(rac{n(n+1)}{2}
ight)^2$

Watch Video Solution

18. Prove the following by using the principle of mathematical induction

$$1 + \frac{1}{(1+2)} \frac{1}{(1+2+3)} + \dots + \frac{1}{(1+2+3+\dots n)} = \frac{2n}{(n+1)}$$
Watch Video Solution

 for
 all
 $n \in N$:

 1. 2. 3 + 2. 3. 4 + . . . + $n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$

 M Watch Video Solution

20. Prove the following by using the principle of mathematical induction

for all
$$n \in N$$
:1. $3+2$. 3^2+3 . $3^3+...+n.3^n=rac{(2n-1)3^{n+1}+3}{4}$

Watch Video Solution

21. Prove the following by using the principle of mathematical induction

for

 $n\in N$:

$$1.\ 2+2.\ 3+3.\ 4+...+n(n+1)=\left[rac{n(n+1)(n+2)}{3}
ight]$$

Watch Video Solution

22. Prove the following by using the principle of mathematical induction

for all
$$n \in N$$
:
 $1.3 + 3.5 + 5.7 + ... + (2n1)(2n + 1) = \frac{n(4n^2 + 6n - 1)}{3}$
Watch Video Solution

23. Prove the following by using the principle of mathematical induction

for all $n \in N$:1. 2+2. 2^2+3 . $2^2+...+n$. $2^n=(n-1)2^{n+1}+2$

Watch Video Solution

24. Prove the following by using the principle of mathematical induction for all $n \in N$: $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ... + \frac{1}{2^n} = 1 - \frac{1}{2^n}$

