

CHEMISTRY

NCERT - NCERT CHEMISTRY(HINGLISH)

CHEMICAL KINETICS

Solved Examples

1. From the concentrations of C_4H_9Cl (butyl chloride) at different times

given below, calculate the average rate of the reaction:

 $C_4H_9Cl+H_2O
ightarrow C_4H_9OH+HCl$

during different intervals of time.

t/s = 0 50 100 150 200 300 400 $[C_4H_9Cl]/{
m mol}^{-1}$ 0.100 0.0905 0.0820 0.0741 0.0671 0.0549 0.0439

> Watch Video Solution

2. The decomposition of N_2O_5 in CCl_4 solution at 318K has been studied by monitoring the concentration of N_2O_5 in the solution. Initially, the concentration of N_2O is 2.33M and after 184 min, it is reduced to 2.08M. The reaction takes place according to the equation:

 $2N_2O_5
ightarrow 4NO_2 + O_2$

Calculate the average rate of this reaction in terms of hours, minutes, and seconds. What is the rate of Production of NO_2 during this period?

Watch Video Solution

3. Calculate the overall order of a reaction which has the rate expresison.

(a) Rate
$$= k[A]^{rac{1}{2}}[B]^{rac{3}{2}}$$
 , (b) Rate $= k[A]^{rac{3}{2}}[B]^{-1}$

Watch Video Solution

4. Identify the reaction order from each of the following rate constants.

(i) k
$$= 2.3 \times 10^{-5} Lmol^{-1} s^{-1}$$

(ii) k
$$= 3 imes 10^{-4} s^{-1}$$

5. The initial concentration of N_2O_5 in the following first order reaction: $N_2O_5(g) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$ was $1.24 \times 10^{-2} mol L^{-1}$ at 318K. The concentration of N_2O_5 after 60 min was $0.20 \times 10^{-2} mol L^{-1}$. Calculate the rate constant of the reaction at 318K.

Watch Video Solution

6. The following data were obtained during the first thermal decomposition of $N_2O_5(g)$ at constant volume.

 $egin{aligned} &2N_2O_5(g) o 2N_2O_4(g) + O_2(g) \ &igsquare ext{S.No. Time (s) Total pressure (atm)} \ &i. & 0 & 0.5 \ &ii. & 100 & 0.512 \end{aligned}$

Calculate the rate constant.

Watch Video Solution

7. A first order reaction is found to have a rate constant $k=5.5 imes10^{-14}s^{-1}.$ Find half-life of the reaction.

8. When reaction is completed 99.9%,[R] $_n = \left[R
ight]_0 - 0.999 [R]_0$

Watch Video Solution

9. The rate constant of a reaction at 500K and 700K are $0.02s^{-1}$, respectively. Calculate the values of E_a and A at 500K.

10. The first order rate constant for the decomposition of C_2H_5I by the reaction.

 $C_2H_5I(g)
ightarrow C_2H_4(g) + HI(g)$

11. In a reaction, $2A \rightarrow$ Products the concentration of A decreases from 0.5 mol $litre^{-1}$ to 0.4 mol $litre^{-1}$ in 10 minutes. Calculate rate during this interval.

Watch Video Solution

12. For a reaction, A+B o Product, the rate law is given by $r=k[A]^{rac{1}{2}}[B]^2.$ What is the order of the reaction ?

Watch Video Solution

13. The conversion of molecules X to Y follows second order kinetics. If the concentration of X is increased to three times, how will it affect the

60min. If the decomposition is a first order reaction, calculate the rate

constant of the reaction.

Watch Video Solution

16. What will be effect of temperature on rate constant ?

Watch Video Solution

17. The rate of the chemical reaction doubles for an increase of 10K in absolute temperature from 298K. Calculate Ea.

18. The activation energy for the reaction :

 $2HI(g)
ightarrow H_2(g) + I_2(g)$

is $209.5 k Jmol^{-1}$ at 581 K. Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy?

Watch Video Solution

19. From the rate expression for the following reactions, determine their order of reaction and dimensions of the rate constants.

$$egin{array}{lll} a.\ 3NO(g) & o N_2O(g), \ {\sf Rate} = k[NO]^2 \ b.\ H_2O_2(aq) + 3I^-(aq) + 2H^\oplus o 2H_2O(l) + I_3^-, \ & ext{Rate} \ &= k[H_2O_2]ig[I^-ig] \end{array}$$

 $c. \ CH_3 CHO(g)
ightarrow CH_4(g) + CO(g), \ {\sf Rate} = k [CH_3 CHO]^{3/2}$

 $d. \ C_2 H_5 Cl(g)
ightarrow C_2 H_4(g) + H Cl(g), \;$ Rate $k[C_2 H_5 Cl]$

Watch Video Solution

20. For the reaction :

 $2A + B
ightarrow A_2B$

the rate $= k[A][B]^2$ with $k = 2.0 \times 10^{-6} mol^{-2}L^2s^{-1}$. Calculate the initial rate of the reaction when $[A] = 0.1 molL^{-}$, $[B] = 0.2 molL^{-1}$. Calculate the rate of reaction after [A] is reduced to $0.06 molL^{-1}$.

Watch Video Solution

21. The rate of decomposition of NH_3 on platinum surface is zero order.

What are rate of production of N_2 and H_2 if $k=2.5 imes 10^{-4}Ms^-$?

Watch Video Solution

22. The decomposition of dimethyl ether leads to the formation of CH_4, H_2 , and CO and the reaction rate is given by Rate $= k [CH_3OCH_3]^{3/2}$

The rate of reaction is followed by increase in the pressure in a closed vessel , so the rate can also be expressed in terms of the partial pressure of dimethyl either, i. e.,

 $\mathsf{Rate}~=k[p_{CH_3OCH_3}]^{3\,/\,2}$

If the pressure is measured in bar and time in minutes, then what are the

units of rate and rate constant ?

23. Mention the factors that affect the rate of a chemical reaction.

24. A reaction is second order with respect to a reaction. How is the rate

of reaction affected if the

Watch Video Solution

25. What is the effect of temperature on the rate constant of a reaction ? How can this temperature effect on rate constant be represented quantitatively ?

Watch Video Solution

26. In a pseudo first order hydrolysis of ester in water the following results were obtained:

t/s 0 30 60 90 [Ester] 0.55 0.31 0.17 0.085

(i) Calculate the average rate of reaction between the time interval 30 to

60 seconds.

(ii) Calculate the pseudo first order rate constant for the hydrolysis of

ester.

27. A reaction is first order in A secod order in B:

(i) write differential rate equation.

(ii) How is the rate affected when the concentration of B is tripled ?

(iii) How is the rate affected when the concentration of both A and B is doubled?

Watch Video Solution

28. In a reaction between A and B, the initial rate of reaction was measured for different initial concentration of A and B as given below:

 $egin{array}{ccccccccc} A/M & 0.20 & 0.20 & 0.40 \ B/M & 0.30 & 0.10 & 0.05 & ext{Calculate} & ext{the} \ r_0/Ms^{-1} & 5.07 imes10^{-5} & 5.07 imes10^{-5} & 7.6 imes10^{-5} \end{array}$

order of reaction w.rt. A and B.

Watch Video Solution

29. The following rate data were obtained at 303K for the following

reaction:

2A + B
ightarrow C + D

 $2\mathbf{A} + \mathbf{B} \longrightarrow \mathbf{C} + \mathbf{D}$

Exp	[A] (mol L ⁻¹)	[B] (mol L ⁻¹)	Initial rate of formation of D
Ι	0.1	0.1	$6.0 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ min}^{-1}$
II	0.3	0.2	$7.2 \times 10^{-2} \text{ mol } \text{L}^{-1} \text{ min}^{-1}$
III	0.3	0.4	$2.88 \times 10^{-1} \text{ mol } \text{L}^{-1} \text{ min}^{-1}$
IV	0.4	0.1	$2.4 \times 10^{-2} \text{ mol } \text{L}^{-1} \text{ min}^{-1}$

What is the rate law? What is the order with respect to each reactant and

the overall order? Also calculate the rate constant and write its units.

Watch Video Solution

30. The reaction between A and B is first order with respect to A and zero order with respect to B. Fill in the blanks in the following table:

Experiment	A/ mol L ⁻¹	B/ mol L ⁻¹	Initial rate/mol L ⁻¹ min ⁻¹
Ι	0.1	0.1	2.0×10^{-2}
п		0.2	4.0×10^{-2}
III	0.4	0.4	
IV		0.2	2.0×10^{-2}

Watch Video Solution

31. Calculate the half life of a first order reaction from their rate constants

given below :

```
a.\ 200 s^{-1},b.\ 2min^{-1},c.4 years^{-1}
```

Watch Video Solution

32. The half life for radioactive decay of $.^{14}C$ is 5730 years. An archaeological artifact containing wood had only 80 % of the $.^{14}C$ found in a living tree. Estimate the age of the sample.

33. The rate constant for the first order reaction is $60s^{-1}$. How much time will it take to reduce the concentration of the reactant to 1/16th value ?

34. During nuclear explosion, one of the products is ${}^{90}Sr$ with half – life of 28.1 years. If $1\mu g$ of . ${}^{90}Sr$ was absorbed in the bones of a newly born baby instead of calcium, how much of its will remain after 10 years and 60 years if it is not lost metabolically.

Watch Video Solution

35. For a first order reaction, show that the time required for 99% completion is twice the time required for the completion of 90% of reaction.

36. A first order reaction takes 40min for 30~% decomposition. Calculate

 $t_{1/2}$.

37. For the decomposition of azoisopropane to hexane and nitrogen at 54

K, the following data are obtained.

t (sec)	P(mm of Hg)				
0	35.0				
360	54.0				
720	63.0				

Calculate the rare constant.

38. The following data were obtained during the first order thermal

decomposition of SO_2Cl_2 at a constant volume

$$SO_2Cl_2(g) o SO_2(g) + Cl_2(g)$$

 $SO_2Cl_2(g) \longrightarrow SO_2(g) + Cl_2(g)$

Experiment	Time/s ⁻¹	Total pressure/atm			
1	0	0.5			
2	100	0.6			

Calculate the rate of the reaction when total pressure is 0.65 atm

Watch Video Solution

39. The rate constant for the decomposition of N_2O_5 at various temperatures

is given below:

<i>T</i> /°C	0	20	40	60	80	
$10^{5} \times k / s^{-1}$	0.0787	1.70	25.7	178	2140	

Draw a graph between In k and 1/T and calculate the values of A and

 E_a . Predict the rate constant at 30° and $50^\circ C$.

Watch Video Solution

40. The rate constant for the decomposition of hydrocarbons is $2.418 \times 10^{-5} s^{-1}$ at 546K. If the energy of activation is $179.9kJmol^{-1}$, what will be the value of pre – exponential factor?

Watch Video Solution

41. Consider a certain reaction $A \rightarrow$ Products with $k = 2.0 \times 10^{-2} s^{-1}$. Calculate the concentration of A remaining after 100s if the initial concentration of A is $1.0 mol L^{-1}$. **42.** Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with $t_{1/2} = 3.00hr$. What fraction of sample of sucrose remains after 8hr?

44. The rate constant for the first order decomposition of a certain reaction is described by the equation

$$\log kig(s^{-1}ig) = 14.34 - rac{1.25 imes 10^4 K}{T}$$

(a) What is the energy of activation for the reaction?

(b) At what temperature will its half-life period be $256~\mathrm{min}$?

45. The decomposition of A into product has value of k as $4.5 \times 10^3 s^{-1}$ at $10^{\circ}C$ and energy of activation of $60kJmol^{-1}$. At what temperature would k be $1.5 \times 10^4 s^{-1}$?

Watch Video Solution

46. The time required for 10 % completion of a first order reaction at 298K is equal to that required for its 25 % completion at 308K. If the value of A is $4 \times 10^{10} s^{-1}$, calculate k at 318K and E_a .

Watch Video Solution

47. The rate of a reaction quadruples when the temperature changes from 293K to 313K. Calculate the energy of activation of the reaction assuming that it does not change with temperature.

1. The concentration of a reactant changes form 0.03M to 0.02M in 25 min. Calculate the average rate of reaction uisng of time both in minutes and seconds.

Solved Example

1. The experimental data for decomposition of N_2O_5

 $[2N_2O_5 \rightarrow 4NO_2 + O_2]$

in gas phase at 318K are given below:

<i>t</i> (s)	0	400	800	120 0	160 0	200 0	240 0	280 0	320 0
$10^2 \times [N_2O_5] \text{mol } L^{-1}$	1.6 3	1.3 6	1.1 4	0.93	0.78	0.64	0.53	0.43	0.35

- (i) Plot $[N_2O_5]$ against t.
- (ii) Find the half-life period for the reaction.
- (iii) Draw a graph between $\log[N_2O_5]$ and t.
- (iv) What is the rate law ?
- (v) Calculate the rate constant.
- (vi) Calculate the half-life period from k and compare it with (ii).

View Text Solution