# ©゙doubtnut 

India's Number 1 Education App

## CHEMISTRY

## NCERT - NCERT CHEMISTRY(HINGLISH)

## CHEMICAL KINETICS

## Solved Examples

1. From the concentrations of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ (butyl chloride) at different times
given below, calculate the average rate of the reaction:

$$
\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{HCl}
$$

during different intervals of time.

| $t / s$ | 0 | 50 | 100 | 150 | 200 | 300 | 400 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\left[C_{4} \mathrm{H}_{9} \mathrm{Cl}\right] / \mathrm{mol}^{-1}$ | 0.100 | 0.0905 | 0.0820 | 0.0741 | 0.0671 | 0.0549 | 0.0439 |

- Watch Video Solution

2. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in $\mathrm{CCl}_{4}$ solution at 318 K has been studied by monitoring the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ in the solution. Initially, the concentration of $\mathrm{N}_{2} \mathrm{O}$ is 2.33 M and after 184 min , it is reduced to $2.08 M$. The reaction takes place according to the equation:
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
Calculate the average rate of this reaction in terms of hours, minutes, and seconds. What is the rate of Production of $\mathrm{NO}_{2}$ during this period?

## - Watch Video Solution

3. Calculate the overall order of a reaction which has the rate expresison.
(a) Rate $=k[A]^{\frac{1}{2}}[B]^{\frac{3}{2}}$,
(b) Rate $=k[A]^{\frac{3}{2}}[B]^{-1}$

## - Watch Video Solution

4. Identify the reaction order from each of the following rate constants.
(i) $\mathrm{k}=2.3 \times 10^{-5} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
(ii) $\mathrm{k}=3 \times 10^{-4} s^{-1}$

## - Watch Video Solution

5. The initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ in the following first order reaction:
$\mathrm{N}_{2} \mathrm{O}_{5}(g) \rightarrow 2 \mathrm{NO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)$
was $1.24 \times 10^{-2} \mathrm{molL} L^{-1}$ at 318 K . The concentration of $N_{2} O_{5}$ after 60 min was $0.20 \times 10^{-2} \mathrm{~mol} L^{-1}$. Calculate the rate constant of the reaction at $318 K$.

## ( Watch Video Solution

6. The following data were obtained during the first thermal decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}(g)$ at constant volume.
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{4}(g)+\mathrm{O}_{2}(g)$
$\left|\begin{array}{lll}\text { S.No. } & \text { Time (s) } & \text { Total pressure (atm) } \\ \text { i. } & 0 & 0.5 \\ i i . & 100 & 0.512\end{array}\right|$

Calculate the rate constant.

## - Watch Video Solution

7. A first order reaction is found to have a rate constant $k=5.5 \times 10^{-14} s^{-1}$. Find half-life of the reaction.

## - Watch Video Solution

8. When reaction is completed $99.9 \%,[R]_{n}=[R]_{0}-0.999[R]_{0}$

## - Watch Video Solution

9. The rate constant of a reaction at 500 K and 700 K are $0.02 \mathrm{~s}^{-1}$, respectively. Calculate the values of $E_{a}$ and $A$ at $500 K$.

## - Watch Video Solution

10. The first order rate constant for the decomposition of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$ by the reaction.
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}(\mathrm{g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{HI}(\mathrm{g})$
at $600 \mathrm{Kis}^{2} .60 \times 10^{-5} \mathrm{~s}^{-1}$. Its energy of activation is $209 \mathrm{kJmol}^{-1}$. Calculate the rate constant at 700 K

## - Watch Video Solution

11. In a reaction, $2 A \rightarrow$ Products the concentration of A decreases from $0.5 \mathrm{~mol}^{\text {litre }}{ }^{-1}$ to $0.4 \mathrm{~mol}_{\text {litre }}{ }^{-1}$ in 10 minutes. Calculate rate during this interval.

## Watch Video Solution

12. For a reaction, $A+B \rightarrow$ Product, the rate law is given by $r=k[A]^{\frac{1}{2}}[B]^{2}$. What is the order of the reaction ?

## - Watch Video Solution

13. The conversion of molecules $X$ to $Y$ follows second order kinetics. If the concenration of $X$ is increased to three times, how will it affect the
rate of formation of $Y$ ?

## - Watch Video Solution

14. A first order reaction has a rate constant $1.15 \times 10^{-3} s^{-1}$. How long will $5 g$ of this reactant take to reduce to $3 g^{\prime}$ ?

## - Watch Video Solution

15. Time required to decompose $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ to half of its intial amount is 60 min . If the decomposition is a first order reaction, calculate the rate constant of the reaction.

## - Watch Video Solution

16. What will be effect of temperature on rate constant ?
17. The rate of the chemical reaction doubles for an increase of 10 K in absolute temperature from 298K. Calculate Ea.

## - Watch Video Solution

18. The activation energy for the reaction :
$2 \mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
is $209.5 \mathrm{kJmol}^{-1}$ at 581 K . Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy ?

## - Watch Video Solution

19. From the rate expression for the following reactions, determine their order of reaction and dimensions of the rate constants.
a. $3 \mathrm{NO}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}(g)$, Rate $=k[N O]^{2}$
b. $\mathrm{H}_{2} \mathrm{O}_{2}(a q)+3 \mathrm{I}^{-}(a q)+2 \mathrm{H}^{\oplus} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{I}_{3}^{-}$,

Rate
$=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]$
c. $\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$, Rate $=k\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{3 / 2}$
d. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$, Rate $k\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right]$

## - Watch Video Solution

20. For the reaction :
$2 A+B \rightarrow A_{2} B$ the rate $=k[A][B]^{2}$ with $k=2.0 \times 10^{-6} \mathrm{~mol}^{-2} L^{2} s^{-1}$. Calculate the initial rate of the reaction when $[A]=0.1 \mathrm{~mol}^{-},[B]=0.2 \mathrm{molL}^{-1}$.

Calculate the rate of reaction after $[A]$ is reduced to $0.06 \mathrm{molL}^{-1}$.

## - Watch Video Solution

21. The rate of decomposition of $\mathrm{NH}_{3}$ on platinum surface is zero order. What are rate of production of $N_{2}$ and $H_{2}$ if $k=2.5 \times 10^{-4} \mathrm{Ms}^{-}$?
22. The decomposition of dimethyl ether leads to the formation of $\mathrm{CH}_{4}, \mathrm{H}_{2}$, and CO and the reaction rate is given by Rate $=k\left[\mathrm{CH}_{3} \mathrm{OCH}_{3}\right]^{3 / 2}$

The rate of reaction is followed by increase in the pressure in a closed vessel, so the rate can also be expressed in terms of the partial pressure of dimethyl either, i.e.,

Rate $=k\left[p_{\mathrm{CH}_{3} \mathrm{OCH}_{3}}\right]^{3 / 2}$
If the pressure is measured in bar and time in minutes, then what are the units of rate and rate constant ?

## - Watch Video Solution

23. Mention the factors that affect the rate of a chemical reaction.

## - Watch Video Solution

24. A reaction is second order with respect to a reaction. How is the rate of reaction affected if the
(a) doubled, (b) reduced to $1 / 2$ ?

## - Watch Video Solution

25. What is the effect of temperature on the rate constant of a reaction ? How can this temperature effect on rate constant be represented quantitatively?

## - Watch Video Solution

26. In a pseudo first order hydrolysis of ester in water the following results were obtained:

| $t / s$ | 0 | 30 | 60 | 90 |
| :--- | :--- | :--- | :--- | :--- |
| [Ester] | 0.55 | 0.31 | 0.17 | 0.085 |

(i) Calculate the average rate of reaction between the time interval 30 to 60 seconds.
(ii) Calculate the pseudo first order rate constant for the hydrolysis of ester.
27. A reaction is first order in $A$ secod order in $B$ :
(i) write differential rate equation.
(ii) How is the rate affected when the concentration of $B$ is tripled ?
(iii) How is the rate affected when the concentration of both $A$ and $B$ is doubled?

## - Watch Video Solution

28. In a reaction between $A$ and $B$, the initial rate of reaction was measured for different initial concentration of A and B as given below:

| $A / M$ | 0.20 | 0.20 | 0.40 |  |
| :--- | :--- | :--- | :--- | :--- |
| $B / M$ | 0.30 | 0.10 | 0.05 | Calculate the |
| $r_{0} / M s^{-1}$ | $5.07 \times 10^{-5}$ | $5.07 \times 10^{-5}$ | $7.6 \times 10^{-5}$ |  | order of reaction w.rt. A and B.

## - Watch Video Solution

29. The following rate data were obtained at $303 K$ for the following reaction:
$2 A+B \rightarrow C+D$

$$
2 \mathbf{A}+\mathbf{B} \longrightarrow \mathbf{C}+\mathbf{D}
$$

| Exp | $[\mathrm{A}]$ <br> $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$ | $[\mathrm{B}]$ <br> $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$ | Initial rate of <br> formation of D |
| :---: | :---: | :---: | :---: |
| I | 0.1 | 0.1 | $6.0 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$ |
| II | 0.3 | 0.2 | $7.2 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$ |
| III | 0.3 | 0.4 | $2.88 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$ |
| IV | 0.4 | 0.1 | $2.4 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$ |

What is the rate law? What is the order with respect to each reactant and the overall order? Also calculate the rate constant and write its units.

## - Watch Video Solution

30. The reaction between $A$ and $B$ is first order with respect to $A$ and zero order with respect to B. Fill in the blanks in the following table:

| Experiment | $\mathrm{A} / \mathrm{mol} \mathrm{L}^{-1}$ | $\mathrm{~B} / \mathrm{mol} \mathrm{L}^{-1}$ | Initial rate/mol L |
| :--- | :--- | :--- | :--- |
| I | 0.1 | 0.1 | $2.0 \times 10^{-2}$ |
| II | -- | 0.2 | $4.0 \times 10^{-2}$ |
| III | 0.4 | 0.4 | -- |
| IV | -- | 0.2 | $2.0 \times 10^{-2}$ |

## - Watch Video Solution

31. Calculate the half life of a first order reaction from their rate constants given below :
a. $200 \mathrm{~s}^{-1}$, b. 2 min $^{-1}$, c.4years ${ }^{-1}$

## - Watch Video Solution

32. The half life for radioactive decay of . ${ }^{14} \mathrm{C}$ is 5730 years. An archaeological artifact containing wood had only $80 \%$ of the ${ }^{14} C$ found in a living tree. Estimate the age of the sample.
33. The rate constant for the first order reaction is $60 s^{-1}$. How much time will it take to reduce the concentration of the reactant to $1 / 16$ th value ?

## - Watch Video Solution

34. During nuclear explosion, one of the products is ${ }^{90} S r$ with half - life of 28.1 years. If $1 \mu g$ of ${ }^{90} S r$ was absorbed in the bones of a newly born baby instead of calcium, how much of its will remain after 10 years and 60 years if it is not lost metabolically.

## - Watch Video Solution

35. For a first order reaction, show that the time required for $99 \%$ completion is twice the time required for the completion of $90 \%$ of reaction.

## - Watch Video Solution

36. A first order reaction takes 40 min for $30 \%$ decomposition. Calculate $t_{1 / 2}$.

## - Watch Video Solution

37. For the decomposition of azoisopropane to hexane and nitrogen at 54 K, the following data are obtained.


Calculate the rare constant.
38. The following data were obtained during the first order thermal decomposition of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ at a constant volume

$$
\begin{aligned}
\mathrm{SO}_{2} \mathrm{Cl}_{2}(g) & \rightarrow \mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g) \\
\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) & \longrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
\end{aligned}
$$

| Experiment | Time/s | Total pressure/atm |
| :--- | :--- | :--- |
| 1 | 0 | 0.5 |
| 2 | 100 | 0.6 |

Calculate the rate of the reaction when total pressure is 0.65 atm

## ( Watch Video Solution

39. The rate constant for the decomposition of $N_{2} O_{5}$ at various temperatures
is given below:

| $T /{ }^{\circ} \mathrm{C}$ | 0 | 20 | 40 | 60 | 80 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $10^{5} \times \mathrm{k} / \mathrm{s}^{-1}$ | 0.0787 | 1.70 | 25.7 | 178 | 2140 |

Draw a graph between $\ln k$ and $1 / T$ and calculate the values of $A$ and $E_{a}$. Predict the rate constant at $30^{\circ}$ and $50^{\circ} \mathrm{C}$.

## - Watch Video Solution

40. The rate constant for the decomposition of hydrocarbons is $2.418 \times 10^{-5} \mathrm{~s}^{-1}$ at 546 K . If the energy of activation is $179.9 \mathrm{kJmol}^{-1}$, what will be the value of pre - exponential factor?

## - Watch Video Solution

41. Consider a certain reaction $A \rightarrow$ Products with $k=2.0 \times 10^{-2} s^{-1}$.

Calculate the concentration of $A$ remaining after $100 s$ if the initial concentration of $A$ is $1.0 \mathrm{molL}^{-1}$.
42. Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with $t_{1 / 2}=3.00 \mathrm{hr}$. What fraction of sample of sucrose remains after $8 h r$ ?

## - Watch Video Solution

43. The decomposition of hydrocarbon follows the equation $k=\left(4.5 \times 10^{11} s^{-1}\right) e^{-28000 K / T}$

Calculate $E_{a}$.

## - Watch Video Solution

44. The rate constant for the first order decomposition of a certain reaction is described by the equation
$\log k\left(s^{-1}\right)=14.34-\frac{1.25 \times 10^{4} K}{T}$
(a) What is the energy of activation for the reaction?
(b) At what temperature will its half-life period be 256 min ?

## (D) Watch Video Solution

45. The decomposition of $A$ into product has value of $k$ as $4.5 \times 10^{3} s^{-1}$ at $10^{\circ} \mathrm{C}$ and energy of activation of $60 \mathrm{kJmol}^{-1}$. At what temperature would $k$ be $1.5 \times 10^{4} s^{-1}$ ?

## - Watch Video Solution

46. The time required for $10 \%$ completion of a first order reaction at 298 K is equal to that required for its $25 \%$ completion at 308 K . If the value of $A$ is $4 \times 10^{10} s^{-1}$, calculate $k$ at $318 K$ and $E_{a}$.

## - Watch Video Solution

47. The rate of a reaction quadruples when the temperature changes from 293 K to 313 K . Calculate the energy of activation of the reaction assuming that it does not change with temperature.

## Exercise

1. The concentration of a reactant changes form $0.03 M$ to $0.02 M$ in 25 min . Calculate the average rate of reaction uisng of time both in minutes and seconds.

## - Watch Video Solution

## Solved Example

1. The experimental data for decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$

$$
\left[2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}\right]
$$

in gas phase at 318 K are given below:

| $t(\mathrm{~s})$ | 0 | 400 | 800 | 120 <br> 0 | 160 <br> 0 | 200 <br> 0 | 240 <br> 0 | 280 <br> 0 | 320 <br> 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $10^{2} \times\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] \mathrm{mol} \mathrm{L}^{-1}$ | 1.6 <br> 3 | 1.3 <br> 6 | 1.1 <br> 4 | 0.93 | 0.78 | 0.64 | 0.53 | 0.43 | 0.35 |

(i) Plot $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ against t .
(ii) Find the half-life period for the reaction.
(iii) Draw a graph between $\log \left[N_{2} O_{5}\right]$ and t .
(iv) What is the rate law ?
(v) Calculate the rate constant.
(vi) Calculate the half-life period from k and compare it with (ii).

## - View Text Solution

