

MATHS

NCERT - NCERT MATHEMATICS(HINGLISH)

CONTINUITY AND DIFFERENTIABILITY

Miscellaneous Exercise

1. Differentiate w.r.t. x the function $\sin^3 x + \cos^6 x$

2. Differentiate w.r.t. x the function
$$\frac{\cos^{-1}\left(\frac{x}{2}\right)}{\sqrt{2x+7}}$$
 ,

-2 < x < 2

Watch Video Solution

3. Differentiate w.r.t. x the function $\sin^{-1}(x\sqrt{x}), 0 \le x \le 1$

4. If $f(x) = |x|^3$, show that f''(x) exists for all real x and find it.

5. Using mathematical induction prove that $rac{d}{dx}(x^n)=nx^{n-1}$ for all positive integers n.

6. Does there exist a function which is continuous everywhere but not differentiable at exactly two points? Justify your answer.

7. Using the fact that $\sin(A+B)=\sin A\cos B+\cos A\sin B$ and the differentiation, obtain the sum formula for cosines.

Watch Video Solution

8. If $y=e^{a\cos^{-1}x},\ -1\leq x\leq 1,$ show that $\left(1-x^2\right)rac{d^2y}{dx^2}-xrac{dy}{dx}-a^2y=0.$

9. If
$$y=egin{array}{c|ccc} f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c \\ \hline dy & = egin{array}{c|ccc} f'(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \\ \hline \end{array}$$
 , prove that

- **10.** Differentiate w.r.t. x the function $\cos(a\cos x + b\sin x)$, for some constant a and b.
 - **Watch Video Solution**

11. Differentiate w.r.t. x the function. $\left(3x^2-9x+5\right)^9$

12. Differentiate w.r.t. x the function $(\log x)^{\log x}, x > 1$

13. Differentiate w.r.t. x the function

$$\cot^{-1}\left(rac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}
ight), 0< x<rac{\pi}{2}$$

14. Differentiate w.r.t. x the function $(5x)^{3\cos 2x}$.

15. If
$$x\sqrt{1+y}+y\sqrt{1+x}=0$$
, for, $-1 < x < 1$, prove that $\dfrac{dy}{dx}=-\dfrac{1}{\left(1+x\right)^2}.$

16. If
$$(x-a)^2+(y-b)^2=c^2$$
, for some $c>0$, prove

that
$$\frac{\left[1+\left(rac{dy}{dx}
ight)^2
ight]^{rac{3}{2}}}{rac{d^2y}{dx^2}}$$
 is a constant independent of a

and b.

17. If
$$\cos y=x\cos(a+y)$$
, with $\cos a
eq \pm 1$, prove that $\dfrac{dy}{dx}=\left(\dfrac{\cos^2(a+y)}{\sin a}\right)$.

18. If $x=a(\cos t+t\sin t)$ and $y=a(\sin t-t\cos t)$, find $\frac{d^2y}{dx^2}$.

19. Differentiate w.r.t. x the function $x^x + x^a + a^x + a^a$, for some fixed a>0 and x>0

20. Differentiate w.r.t.
$$x$$
 the function $x^{x^2-3}+\left(x-3\right)^{x^2}$ for $x>3$.

Find
$$\dfrac{dy}{dx},$$
 if $y=12(1-\cos t),\,x=10(t-\sin t),\,-\dfrac{\pi}{2}< t<\dfrac{\pi}{2}$

$$\frac{dy}{dx}$$
,

dx $y = \sin^{-1} x + \sin^{-1} \sqrt{1 - x^2}, -1 \le x \le 1.$

Watch Video Solution

23. Differentiate w.r.t. x the function $(\sin x - \cos x)^{(\sin x - \cos x)}, \frac{\pi}{4} < x < \frac{3\pi}{4}$

Watch Video Solution

Solved Examples

1. Is it true that $x=e^{\log x}$ for all real

2. Differentiate the following w.r.t. x:(i) e^{-x} (ii) $\sin(\log x), \, x>0$ (iii) $\cos^{-1}(e^x)$ (iv) $e^{\cos x}$

3. Show that the function f defined by f(x) = |1-x+x|, where x is any real number, is a continuous function.

4. Find the derivative of the function given $byf(x) = \sin(x^2)$.

5. Find the derivative of tan (2x + 3).

6. Differentiate $\sin(\cos(x^2))$ with respect to x.

7. Find $\frac{dy}{dx}$ if $x-y=\pi$

8. Find $\frac{dy}{dx}$, if $y+\sin y=\cos x$

9. Find the derivative of f given by $f(x) = \sin^{-1} x$ assuming it exists.

10. Find the derivative of / given by $f(x) = \tan^{-1} x$ assuming it exists.

Watch Video Solution

11. Find df/dx if f(x) = $(\sin x)^{\sin x}$ for all $o < x < \pi$.

Watch Video Solution

12. Differentiate $\sin^2 x$ w.r.t $e^{\cos x}$.

13. Differentiate the following w.r.t x.(i)

$$\sqrt{3x+2}+\left(rac{1}{\sqrt{2x^2+4}}
ight)$$
 (ii) $e^{\sec^2(x)}+3\cos^{-1}(x)$ (iii) $\log_7(\log x)$

14. Find f'(x) if $f(x) = (\sin x)^{\sin x}$ for all $0 < x < \pi$

15. Verify Rolles theorem for the function $y=x^2+2,\,a=-2$ and b=2.

16. Verify the Mean Value Theorm for $f(x)=x^2$ in the interval [2,4].

17. If
$$y=3e^{2x}+2e^{3x}.$$
 Prove that $rac{d^2y}{dx^2}-5rac{dy}{dx}+6y=0.$

18. If
$$y=\sin^{-1}x$$
, show that $\left(1-x^2\right)\frac{d^2y}{dx^2}-x\frac{dy}{dx}=0.$

19. Find all the points of discontinuity of the function

 $f(x) = \{x+2, \quad {
m if} \ \ x < 10 \ \ {
m if} \ \ x = 1x-2 \ \ {
m if} \ \ x > 1$

20. Discuss the continuity of the function f defined by

$$f(x) = \left\{egin{array}{ll} x+2 & ext{if} & x<1 \ x-2 & ext{if} & x>1 \end{array}
ight.$$

21. Discuss the continuity of the function f given by

$$f(x)=ig\{x, \quad ext{if} \quad x\geq 0x^2, \quad ext{if} \quad x<0ig\}$$

Watch Video Solution

22. Discuss the continuity of the function defined by

$$f(x) = \{x + 2, \text{ if } x < 0 - x + 2, \text{ if } x > 0\}$$

23. Find all the points of discontinuity of the greatest integer function defined by f(x) = [x], where [x] denotes the greatest integer less than or equal to x.

24. Show that every polynomial function is continuous.

25. Discuss the continuity of sine function.

26. Prove that every rational function is continuous.

27. Show that the function defined by $f(x) = \sin \left(x^2 \right)$ is a continuous function.

Watch Video Solution

28. Prove that the function defined by f(x) = tanx is a continuous function.

29. Examine whether the function f given by $f(x) = x^2$ is continuous at x = 0.

Watch Video Solution

30. Discuss the continuity of the function f given by f(x) = |x| at x = 0.

31. Check the continuity of the function f given by f(x) = 2x + 3 at x = 1.

32. Prove that the identity function on real numbers given by f(x)=x is continuous at every real number.

Watch Video Solution

33. Is the function defined by f(x) = |x|, a continuous function?

34. Show that the function f given by $f(x)=\left\{x^3+3 \text{ if } x\neq 0; 1 \text{ if } x=0 \text{ is not } \right.$

Watch Video Solution

35. Check the points where the constant function f(x)=k is continuous.

36. Discuss the continuity of the function/given by $f(x) = x^3 + x^2 - 1$.

37. Discuss the continuity of the function f defined by $f(x)=rac{1}{x}, x
eq 0.$

38. If $y = A \sin x + B \cos x$, then prove that

$$\frac{d^2y}{dx^2} + y = 0.$$

39. Find $\frac{d^2y}{dx^2}$, if $y=x^3+\tan x$.

40. Find $\frac{dy}{dx}$, if $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$.

41. Find $\frac{dy}{dx}$, if $x=a(\theta+\sin\theta), y=a(1-\cos\theta)$.

42. Find $\frac{dy}{dx}$, if $x = at^2$, y = 2at.

Watch Video Solution

43. Find $\frac{dy}{dx}$, if $x=a\cos\theta, y=a\sin\theta$.

44. Find $\frac{dy}{dx}$, if $y^x + x^y + x^x = a^b$.

45. Differentiate $x^{\sin x}$, x > 0w.r.t. x.

Watch Video Solution

46. Differentiate a^x w.r.t. x, where a is a positive constant.

Watch Video Solution

47. Differentiate $\sqrt{rac{(x-3)(x^2+4)}{3x^2+4x+5}}$ w.r.t x.

1. If x and y are connected parametrically by the equations given, without eliminating the parameter, $\text{Find } \frac{dy}{dx}.$

$$x = a igg(\cos t + \log an igg(rac{t}{2}igg)igg), y = a \sin t$$

Watch Video Solution

2. If x and y are connected parametrically by the equations given, without eliminating the parameter, Find $\frac{dy}{dx}$.

$$x = a \sec \theta, y = b \tan \theta$$

3. If x and y are connected parametrically by the equations given, without eliminating the parameter, Find $\frac{dy}{dx}$.

$$x = 4t, y = \frac{4}{t}$$

4. If x and y are connected parametrically by the equations given, without eliminating the parameter, Find $\frac{dy}{dx}$.

$$x = \cos \theta - \cos 2\theta, y = \sin \theta - \sin 2\theta$$

5. If x and y are connected parametrically by the equations given, without eliminating the parameter, ${\rm Find} \ \frac{dy}{dx}.$

$$x = a(\theta - \sin \theta), y = a(1 + \cos \theta)$$

6. If x and y are connected parametrically by the equations given, without eliminating the parameter, dy

Find
$$\frac{dy}{dx}$$
.

$$x = \frac{\sin^3 t}{\sqrt{\cos 2t}}, y = \frac{\cos^3 t}{\sqrt{\cos 2t}}$$

7. If x and y are connected parametrically by the equations given, without eliminating the parameter, $\text{Find } \frac{dy}{dx}.$

$$x=2at^2,y=at^4$$

8. If x and y are connected parametrically by the equations given, without eliminating the parameter, Find $\frac{dy}{dx}$.

$$x = a\cos\theta, y = b\cos\theta$$

9. If x and y are connected parametrically by the equations given, without eliminating the parameter, Find $\frac{dy}{dx}$.

 $x = \sin t, y = \cos 2t$

10. If
$$x=\sqrt{a^{\sin^{-1}t}}, y=\sqrt{a^{\cos^{-1}t}}$$
, show that $\frac{dy}{dx}=-\frac{y}{x}$

11. If x and y are connected parametrically by the equations given, without eliminating the parameter, Find $\frac{dy}{dx}$.

$$x = a(\cos \theta + \theta \sin \theta), y = a(\sin \theta - \theta \cos \theta)$$

Exercise 5 2

1. Differentiate the functions with respect to x $\sin(x^2+5)$

2. Differentiate the functions with respect to x, $\cos(\sin x)$

Watch Video Solution

3. Differentiate the functions with respect to x $\sin(ax+b)$ $\overline{\cos(cx+d)}$

Watch Video Solution

4. Differentiate the functions with respect to x $\cos x^3 \cdot \sin^2(x^5)$

5. Differentiate the functions with respect to x

$$2\sqrt{\cot\left(x^2
ight)}$$

Watch Video Solution

6. Prove that the greatest integer function defined by $f(x) = [x], \, 0 < x < 3$ is not differentiable at

$$x = 1$$
 and $x = 2$.

7. Differentiate the functions with respect to x $\cos(\sqrt{x})$

Watch Video Solution

Prove that the function f given by 8. $f(x) = |x-1|, x \in R$ is not differentiable at x=1

9. Differentiate the functions with respect to x $\sin(ax+b)$

10. Differentiate the functions with respect to x $\sec(\tan(\sqrt{x}))$

Watch Video Solution

Exercise 5 1

1. Discuss the continuity of the function f , where f is

defined by

$$f(x) = \left\{ egin{array}{ll} 2x, & ext{if} & x < 0 \ 0, & ext{if} & 0 \leq x \leq 1 \ 4x, & ext{if} & x > 1 \end{array}
ight.$$

2. Find all points of discontinuity of f, where f is defined by $f(x) = \left\{egin{array}{ll} x^{10}-1 & ext{ if } & x \leq 1 \ x^2 & ext{ if } & x > 1 \end{array}
ight.$

Watch Video Solution

3. Find all points of discontinuity of f, where f is defined by $f(x) = \left\{ egin{array}{ll} rac{x}{|x|} & ext{if} & x < 0 \ 1 & ext{if} & x \geq 0 \end{array}
ight.$

4. Find all points of discontinuity of f, where f is

defined by
$$f(x) = egin{cases} rac{|x|}{x} & ext{ if } & x
eq 0 \ 0 & ext{ if } & x = 0 \end{cases}$$

5. Is the function f defined by $f(x)=\left\{egin{array}{ll} x & ext{if} & x \leq 1 \ 5 & ext{if} & x>1 \end{array}
ight.$ continuous at

$$x = 0?Atx = 1?Atx = 2?$$

6. Prove that the function $f(x) = x^n$ is continuous at

Watch Video Solution

x=n, where n is a positive integer.

7. Find all points of discontinuity of f, where f is

defined by $f(x) = egin{cases} |x|+3 & ext{ if } & x \leq -3 \ -2x & ext{ if } & -3 < x < 3 \ 6x+2 & ext{ if } & x \geq 3 \end{cases}$

Watch Video Solution

8. Find all points of discontinuity of f, where f is defined by $f(x) = \left\{egin{array}{ll} 2x+3 & ext{ if } & x \leq 2 \ 2x-3 & ext{ if } & x > 2 \end{array}
ight.$

Prove that the function f(x)=5x-3 is continuous at x=0, at x=-3 and at x=5.

Watch Video Solution

10. Examine the following functions for continuity.

(a)
$$f(x) = x - 5$$

(b)
$$f(x)=rac{1}{x-5}$$
 (c) $f(x)=rac{x^2-25}{x+5}$

(c)
$$f(x)=rac{x^2-25}{x+5}$$

$$(\mathsf{d})\,f(x) = |x-5|$$

11. Examine the continuity of the function $f(x) = 2x^2 - 1$ at x = 3.

Watch Video Solution

12. For what value of λ is the function defined by

$$f(x) = egin{cases} \lambdaig(x^2-2xig) & ext{ if } & x \leq 0 \ 4x+1 & ext{ if } & x>0 \end{cases}$$
 continuous at

x=0? What about continuity at x=1?

13. Show that the function defined by g(x)=x-[x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.

Watch Video Solution

14. Discuss the continuity of the function f, where f is

defined by
$$f(x) = egin{cases} -2 & ext{ if } & x \leq -1 \ 2x & ext{ if } & -1 < x \leq 1 \ 2 & ext{ if } & x > 1 \end{cases}$$

15. Find the relationship between a and b so that the

function f defined by
$$f(x) = \left\{ egin{array}{ll} ax+1 & ext{ if } & x \leq 3 \\ bx+3 & ext{ if } & x > 3 \end{array}
ight.$$

is continuous at x=3.

16. Discuss the continuity of the function f, where f is

defined by
$$f(x) = egin{cases} 3 & ext{ if } & 0 \leq x \leq 1 \ 4 & ext{ if } & 1 < x < 3 \ 5 & ext{ if } & 3 \leq x \leq 10 \end{cases}$$

17. Is the function defined by
$$f(x) = \begin{cases} x+5 & \text{if } x \leq 1 \\ x-5 & \text{if } x>1 \end{cases}$$
 a continuous function?

18. Find all points of discontinuity of f, where f is $\mathsf{defined}\;\mathsf{by}f(x)=\left\{\begin{matrix} x+1 & \text{if}\;\;x\geq 1\\ x^2+1 & \text{if}\;\;x<1 \end{matrix}\right.$

19. Find all points of discontinuity of f, where f is $\mathsf{defined}\;\mathsf{by}f(x)=\left\{\begin{matrix} x^3-3 & \text{if}\;\;x\leq 2\\ x^2+1 & \text{if}\;\;x<2 \end{matrix}\right.$

20. Find the values of k so that the function f is continuous at the indicated point in $f(x) = \left\{ egin{array}{ll} kx+1 & ext{ if } & x \leq 5 \ 3x-5 & ext{ if } & x > 5 \end{array}
ight.$ at x=5

21. Find the values of k so that the function f is continuous at the indicated point in $f(x) = \left\{egin{array}{ll} kx+1 & ext{ if } & x \leq \pi \ \cos x & ext{ if } & x > \pi \end{array}
ight.$ at $x=\pi$

22. Find all points of discontinuity of f, where

$$f(x) = \left\{ egin{array}{ll} rac{\sin x}{x} & ext{if} & x < 0 \ x + 1 & ext{if} & x \geq 0 \end{array}
ight.$$

Watch Video Solution

23. Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

Watch Video Solution

24. Discuss the continuity of the following functions:

(a)
$$f(x) = \sin x + \cos x$$

(b)
$$f(x) = \sin x - \cos x$$

(c)
$$f(x) = \sin x \cdot \cos x$$

Watch Video Solution

25. Is the function defined by $f(x) = x^2 - \sin x + 5$ continuous at $x=\pi$?

26. Find the values of k so that the function f is continuous at the indicated point in $f(x) = \left\{ egin{array}{ll} kx^2 & ext{ if } & x \leq 2 \ 3 & ext{ if } & x > 2 \end{array}
ight.$ at x = 2.

27. Find the values of k so that the function f is continuous at the indicated point in

$$f(x) = \left\{ egin{array}{ll} rac{k\cos x}{\pi-2x} & ext{ if } & x
eq rac{\pi}{2} \ 3 & ext{ if } & x = rac{\pi}{2} \end{array}
ight.$$
 at $x = rac{\pi}{2}$

28. Examine the continuity of f, where f is defined by

$$f(x) = \left\{ egin{array}{ll} \sin x - \cos x & ext{ if } & x
eq 0 \ -1 & ext{ if } & x = 0 \end{array}
ight.$$

$$\int x^2 \sin^{\left(\frac{1}{2}\right)}$$

$$f(x)=egin{cases} x^2\sin\Bigl(rac{1}{x}\Bigr) & ext{ if } x
eq 0 \ 0 & ext{ if } x=0 \end{cases}$$
 is a continuous

function?

Watch Video Solution

30. Find all the points of discontinuity of f defined by

$$f(x) = |x| - |x + 1|.$$

31. Find the values of a and b such that the function

defined by
$$f(x)= egin{cases} 5 & ext{if} & x \leq 2 \ ax+b & ext{if} & 2 < x < 10 \ ext{is a} \ 21 & ext{if} & x \geq 10 \end{cases}$$
 continuous function.

32. Show that the function defined by $f(x) = \cos \left(x^2 \right)$ is a continuous function.

33. Show that the function defined by $f(x) = |\cos x|$ is a continuous function.

Watch Video Solution

34. The function $f(x) = \sin \lvert x \rvert$ is continuous for all x

Watch Video Solution

Exercise 5 4

1. Differentiate the following w.r.t. x:

$$e^x + e^{x^2} + \dots + e^{x^5}$$

$$\sqrt{e^{\sqrt{x}}}, x>0$$

3. Differentiate the following w.r.t. x:

 $\log(\log x), x > 1$

$$\frac{\cos x}{\log x}, \, x > 0$$

Watch Video Solution

5. Differentiate the following w.r.t. x:

 $\log(\cos e^x)$

Watch Video Solution

6. Differentiate the following w.r.t. x:

 $e^{\sin^{-1}x}$

 e^{x^3}

Watch Video Solution

8. Differentiate the following w.r.t. x:

 $\frac{e^x}{\sin x}$

Watch Video Solution

9. Differentiate the following w.r.t. x:

 $\sin(\tan^{-1}e^{-x})$

$$\cos(\log x + e^x), x > 0$$

Exercise 53

- **1.** Find $\dfrac{dy}{dx}$ in the following: $\sin^2 y + \cos xy = \pi$
 - **Watch Video Solution**

2. Find $\dfrac{dy}{dx}$ in the following: $ax+by^2=\cos y$

3. Find $\frac{dy}{dx}$ in the following: $2x + 3y = \sin y$

4. Find $\frac{dy}{dx}$ in the following: $2x+3y=\sin x$

5. Find $\frac{dy}{dx}$ in the following:

(a)
$$x^3 + x^2y + xy^2 + y^3 = 81$$

$$\text{(b) } xy+y^2=\tan x+y$$

(c)
$$x^2 + xy + y^2 = 100$$

6. Find $\frac{dy}{dx}$ in the following: $x^2 + xy + y^2 = 100$

7. Find $\dfrac{dy}{dx}$ in the following: $xy+y^2=\tan x+y$

Valcii Video Solution

8. Find
$$\frac{dy}{dx}$$
 in the following: $y = \sin^{-1} \left(\frac{2x}{1+x^2} \right)$

A.
$$\frac{2}{1+x^2}$$

$$\mathsf{B.}\,\frac{5}{4+x^2}$$

C.
$$\frac{1}{3+x^2}$$

D.
$$\frac{5}{6 + x^2}$$

Answer: A

10. Find
$$\frac{dy}{dx}$$
 in the following: $y = \tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right), -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$

11. Find
$$\frac{dy}{dx}$$
 in the following: $y=\cos^{-1}\Bigl(rac{1-x^2}{1+x^2}\Bigr),\, 0< x< 1$

12. Find
$$\frac{dy}{dx}$$
 in the following: $y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$, $0 < x < 1$

Watch Video Solution

13. Find
$$\frac{dy}{dx}$$
 in the following: $y=\cos^{-1}\Big(\frac{2x}{1+x^2}\Big), \ -1 < x < 1$

14. Find
$$\frac{dy}{dx}$$
 in the following: $y=\sin^{-1}\Bigl(2x\sqrt{1-x^2}\Bigr),\; -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$

15. Find
$$\dfrac{dy}{dx}$$
 in the following: $y=\sec^{-1}\left(\dfrac{1}{2x^2-1}\right)$

Watch Video Solution

Exercise 5 8

1. Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2.

```
(i) f(x) = [x] for x \in [5, 9]
                                    (ii) f(x) = [x] for x \in [-2, 2]
```

(iii)
$$f(x) = x^2 - 1$$
 for $x \in [1, 2]$

- **2.** Verify Mean Value Theorem, if $f(x) = x^2 4x 3$ in the interval [a, b], where a = 1 and b = 4.
 - Watch Video Solution

- **3.** Verify Mean Value Theorem, if $f(x)=x^3-5x^2-3x$ in the interval [a, b], where a=1 and b=3. Find all $c\in(1,3)$ for which f'(c)=0.
 - **Watch Video Solution**

4. Examine if Rolle's theorem is applicable to any of the following functions. Can you say something about the converse of Rolle's theorem from these example?

(i)
$$f(x) = [x]$$
 for $x \in [5, 9]$

(ii)
$$f(x) = [x]$$
 for $x \in [-2,2]$

(iii)
$$f(x) = x^2 - 1$$
 for $x \in [1,2]$

5. Verify Rolle's theorem for the function $f(x) = x^2 + 2x - 8, x \in [-4,2].$

6. If $f\colon [-5,5] o R$ is a differentiable function and if f'(x) does not vanish anywhere, then prove that f(-5)
eq f(5).

Watch Video Solution

Exercise 5 5

1. Differentiate the functions given w.r.t. x:

 $x^x - 2^{\sin x}$

2. Differentiate the functions given w.r.t. x:

 $\cos x \cos 2x \cos 3x$

Watch Video Solution

3. Differentiate the functions given w.r.t. x:

 $(\log x)^{\cos x}$

Watch Video Solution

4. Differentiate the functions given w.r.t. x:

$$\sqrt{rac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$$

5. Differentiate the functions given w.r.t. x:

$$(x+3)^2$$
. $(x+4)^3$. $(x+5)^4$

Watch Video Solution

6. Differentiate the following w.r.t. x:

$$\left(\log x\right)^x + x^{\log x}$$

7. Differentiate the functions given w.r.t. x:

$$\left(x+rac{1}{x}
ight)^x+x^{\left(1+rac{1}{x}
ight)}$$

Watch Video Solution

8. Differentiate the following w.r.t. x:

$$x^{\sin x} + (\sin x)^{\cos x}$$

Watch Video Solution

9. Differentiate the following w.r.t. x:

$$(\sin x)^x + \sin^{-1} \sqrt{x}$$

10. Find $\frac{dy}{dx}$ of the functions given by $x^y + y^x = 1$

Watch Video Solution

11. Find $\dfrac{dy}{dx}$ of the functions given by $y^x=x^y$

Watch Video Solution

12. Differentiate the following w.r.t. x:

$$x^{x\cos x} + \frac{x^2+1}{x^2-1}$$

$$(x\cos x)^x + (x\sin x)^{\frac{1}{x}}$$

Watch Video Solution

14. Find the derivative of the function given by $f(x)=(1+x)\left(1+x^2
ight)\left(1+x^4
ight)\left(1+x^8
ight)$ and hence find f'(1).

15. Differentiate $(x^2 - 5x + 8)(x^3 + 7x + 9)$ in

three ways mentioned below:

- (i) by using product rule
- (ii) by expanding the product to obtain a single polynomial.

(iii) by logarithmic differentiation.

Do they all give the same answer?

16. Find $\frac{dy}{dx}$ of the functions given by $(\cos x)^y = (\cos y)^x$

17. Find $\frac{dy}{dx}$ of the functions given by $xy = e^{(x-y)}$

Watch Video Solution

18. If u, v and w are functions of x, then show that

$$rac{d}{dx}(u.\,v.\,w)=rac{du}{dx}v.\,w+u.\,rac{dv}{dx}.\,w+u.\,vrac{dw}{dx}$$
 in two ways - first by repeated application of product

rule, second by logarithmic differentiation.

1. Find the second order derivatives of the functions given.

 $\log(\log x)$

Watch Video Solution

2. Find the second order derivatives of the functions given.

 $\tan^{-1}x$.

3. Find the second order derivatives of the functions given.

 $x.\cos x$

Watch Video Solution

4. Find the second order derivatives of the functions given.

 x^{20}

5. Find the second order derivatives of the functions given

$$x^2 + 3x + 2$$

Watch Video Solution

6. Find the second order derivatives of the functions given.

 $e^{6x}\cos 3x$.

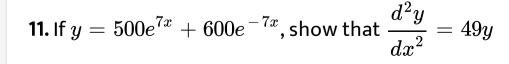
7. Find the second order derivatives of the functions given.

 $e^x \sin 5x$.

Watch Video Solution

8. Find the second order derivatives of the functions given.

 $x^3 \log x$


9. Find the second order derivatives of the functions given.

 $\log x$

10. If
$$y=Ae^{mx}+Be^{nx}$$
, show that $rac{d^2y}{dx^2}-(m+n)rac{dy}{dx}+mny=0$

watch video Solution

12. If
$$e^y(x+1)=1$$
, show that $\dfrac{d^2y}{dx^2}=\left(\dfrac{dy}{dx}\right)^2$.

13. If
$$y=\left(\tan^{-1}x\right)^2$$
, show that $\left(x^2+1\right)^2y_2+2x\left(x^2+1\right)y_1=2$

14. Find the second order derivatives of the functions given.

 $\sin(\log x)$

Watch Video Solution

15. If $y=5\cos x-3\sin x$, prove that $\dfrac{d^2y}{dx^2}+y=0$

Watch Video Solution

16. If $y=\cos^{-1}x$,Find $\dfrac{d^2y}{dx^2}$ in terms of y alone.

17. If $y=3\cos(\log x)+4\sin(\log x)$, show that $x^2y_2+xy_1+y=0$.

Watch Video Solution

Question

1. Find the number of positive integer which have the characteristic 3, when the base of the logarithm is 5

A. 499

B. 501

C. 500

D. None of these

Answer:

Watch Video Solution

2.

lf

$$x = \log_2\!\left(\sqrt{56 + \sqrt{56 + \sqrt{56 + \sqrt{56 + \dots \infty}}}}
ight)$$

then which of the following statement holds good?

A. x < 0

 ${\sf B.}\,0 < x < 2$

C.2 < x < 4

D.
$$3 < x < 4$$

Answer: C

- **3.** If $n \in N$ such that characteristic of n^2 to the base
- 8 is 2, then number of possible values of n is
 - A. 14
 - B. 15
 - C. 448
 - D. infinite

Answer: B

