

MATHS

NCERT - NCERT MATHEMATICS(HINGLISH)

RELATIONS AND FUNCTIONS

Miscellaneous Exercise

1. Given a non-empty set X, consider the binary operation $*: P(X) \times P(X) \rightarrow P(X)$ given by $A * B = A \cap B, \forall A, B \in P(X)$ is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation *

2. Given a non-empty set X, consider P(X) which is the set of all subjects of X. Define a relation in P(X) as follows: For subjects A, B in P(X), A R B if $A \subset B$. Is R an equivalence relation on P(X)? Justify your answer.

Watch Video Solution

3. Given examples of two functions $f \colon N o N$ $ext{ and } g \colon N o N$ such that

gof is onto but f is not onto. (Hint: Consider f(x)=x+1 and g(x)=|x|).

Watch Video Solution

4. Give examples of two functions $f\colon N o Z$ and $g\colon Z o Z$ such that gof is injective but g is not injective. (Hint: Consider f(x)=x and g(x)=|x|) 5. Show that function $f \colon R o \{x \in R \colon -1 < x < 1\}$ defined by

 $f(x)=rac{x}{1+|x|}, x\in R$ is one one and onto function

Watch Video Solution

6. If $f \colon R o R$ is defined by $f(x) = x^2 - 3x + 2$, find f(f(x)).

Watch Video Solution

7. Let $f: W \to W$ be defined as f(n) = n - 1, if n is odd and f(n) = n + 1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.

Watch Video Solution

8. Let f: R o R be defined as f(x) = 10x + 7. Find the function

$$g {:} R o R$$
such that $g o f = f o g = I_R$

9. Let $f: R \to R$ be the Signum Function defined as $f(x) = \{1, x > 0; 0, x = 0; -1, x < 1 \text{ and } g: R \to R \text{ be the Greatest}$ Integer Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then does fog and gof coincide in (0,1]

10. Show that the function $f\!:\!R o R$ given by $f(x)=x^3$ is injective.

Watch Video Solution

11. Let $A = \{1, 2, 3\}$ Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is

A. 1

B. 2

C. 3

D. 4

Answer: A

12. Find the number of all onto functions from the set $A = \{1, 2, 3, , n\}$ to itself.

Watch Video Solution

13. Let $S = \{a, b, c\}$ and $T = \{1, 2, 3\}$. Find F^{-1} of the following functions F from S to T, if it exists. (i) $F = \{(a, 3), (b, 2), (c, 1)\}$ (ii) $F = \{(a, 2), (b, 1), (c, 1)\}$ **14.** Consider the binary operations $\cdot : R \times R \to R$ and $o: R \times R \to R$ defined as $a \cdot b = |a - b|$ and $aob = a, \forall a, b \in R$. Show that * is commutative but not associative, o is associative but not commutative.

Further, show that $\forall a, b, \in R, a \cdot (boc) = (a \cdot b)o(a \cdot c).$

Watch Video Solution

15. Given a non -empty set X, let $*: P(X) \times P(X) \to P(X)$ be defined as $A * B = (A - B) \cup (B - A), \forall A, B \in P(X)$. Show that the empty set ϕ is the identity for the operation * and all the elements A of P(A) are invertible with $A^{-1} = A$.

Watch Video Solution

16. Define a binary operation * on the set $\{0, 1, 2, 3, 4, 5\}$ as

$$a*b=egin{cases} a+b & ext{if} \;\; a+b<6; \ a+b-6 & ext{if} \;\; a+b\geq6 \end{cases}.$$

Show that zero is the identity for this operation and each element $a \neq 0$ of the set is invertible with 6-a being the inverse of a

Watch Video Solution

17. Let
$$A = \{-1, 0, 1, 2\}, \ B = \{-4, -2, 0, 2\}$$
and $f, g: A o B$ be

functions defined by $f(x)=x^2-x, x\in A$ and $g(x)=2\Big|x-rac{1}{2}\Big|-1, x\in A.$ Are f and g equal? Justify your answer.

Watch Video Solution

18. Number of binary operations on the set {a, b} are

- (A) 10
- (B) 16
- (C) 20
- (D) 8

A. 10

B. 16

C. 20

D. 8

Answer: B

19. Let $A=\{1,2,3\}$. Then number of equivalence relations containing (1,
2) is
(A) 1
(B) 2
(C) 3
(D) 4
Watch Video Solution

1. Show that if $f\colon A o B$ and $g\colon B o C$ are onto, then $gof\colon A o C$ is

also onto.

2. Show that if $f\colon A o B$ and $g\colon B o C$ are one-one, then $gof\colon A o C$ is also one-one.

Watch Video Solution

3. Let $f: \{2, 3, 4, 5\} \rightarrow \{3, 4, 5, 9\}$ and $g: \{3, 4, 5, 9\} \rightarrow \{7, 11, 15\}$ be functions defined as f(2) = 3, f(3) = 4, f(4) = f(5) = 5 and g(3) = g(4) = 7 and g(5)

Watch Video Solution

4. Show that a one-one function $f \colon \{1,2,3\} o \{1,2,3\}$ must be onto.

5. Show that if $f: R - \left\{\frac{7}{5}\right\} \to R - \left\{\frac{3}{5}\right\}$ is defined by $f(x) = \frac{3x+4}{5x-7}$ and $g: R - \left\{\frac{3}{5}\right\} \to R - \left\{\frac{7}{5}\right\}$ is define by $g(x) = \frac{7x+4}{5x-3}$, then $fog = I_A$ and $gof = I_B$, where $A = R - \left\{\frac{3}{5}\right\}, B = R - \left\{\frac{7}{5}\right\}; I_A(x) = x, \forall x \in A, I_B(x) = x, \forall x \in I$ are called ideal

Watch Video Solution

6. Find gof and fog, if $f\colon R o R$ and $g\colon R o R$ are given by $f(x)=\cos x$ and $g(x)=3x^2.$ Show that gof
eq fog.

Watch Video Solution

7. Show that the function $f\!:\!R o R$, defined as $f(x)=x^2$, is neither one-one nor onto.

8. Show that the function f:N o N given by f(1) = f(2) = 1 and

f(x)=x-1 for every $x\geq 2$, is onto but not one-one.

Watch Video Solution

9. Show that an onto function $f \colon \{1,2,3\} o \{1,2,3\}$ is always one-one.

Watch Video Solution

10. Show that $f\colon N o N$ given by

 $f(x) = egin{cases} x+1 & ext{if x is odd} \ x-1 & ext{if x is even} \end{cases}$

is both one-one and onto.

11. Show that the function $f\colon N o N$, given by f(x)=2x , is one-one

but not onto.

12. Prove that the function $f\colon R o R$, given by f(x)=2x, is one-one and onto.

Watch Video Solution

13. Let *R* be the relation defined on the set $A = \{1, 2, 3, 4, 5, 6, 7\}$ by $R = \{(a, b): both a and b are either odd or even\}$. Show that *R* is an equivalence relation. Further, show that all the elements of the subset $\{1, 3, 5, 7\}$ are related to each other and all the elements of the subset $\{2, 4, 6\}$ are related to each other, but no element of the subset $\{1, 3, 5, 7\}$ is related to any element of the subset $\{2, 4, 6\}$.

14. Let A be the set of all 50 students of class XII in a central school. Let $f: A \to N$ be a function defined by f(x) = Roll number of student xShow that f is one-one but not onto.

symmetric nor transitive.

Watch Video Solution

16. Show that the relation R on the set Z of integers, given by $R = \{(a, b): 2 \text{ divides } a - b\}$, is an equivalence relation.

17. Let ${\rm T}$ be the set of all triangles in a plane with ${\rm R}$ as relation in ${\rm T}$ given

by

 $\mathbf{R} = \left\{ (\mathbf{T}_1, \mathbf{T}_2) : (\mathbf{T})_1 \text{congruent to} \mathbf{T}_2 \right\}$

. Show that ${\bf R}$ is an equivalence relation.

Watch Video Solution

18. Let L be the set of all lines in a plane and R be the relation in L defined as $R = \{(L_1, L_2) : L_1$ is perpendicular to $L_2\}$ Show that R is symmetric but neither reflexive nor transitive.

Watch Video Solution

19. Let A be the set of all students of a boys school. Show that the relation R in A given by $R = \{(a, b) : a \text{ is sister of } b\}$ is the empty relation and $R' = \{(a, b) : the difference between heights of a and b is less than 3 meters} is the universal relation.$

20. Show that – a is the inverse of a for the addition operation '+' on R and $\frac{1}{a}$ is the inverse of $a \neq 0$ for the multiplication operation X on R.

21. Show that zero is the identity for addition on R and 1 is the identity for multiplication on R. But there is no identity element for the operations $-: R \times R \rightarrow R$ and $\div : R. \times R. \rightarrow R.$

22. Show that the $\vee: R \to R$ given by $(a,b) \to max\{a,b\}$ and the

 $\wedge: R o R$ given by $(a, b) o \min \{a, b)$ are binary operations.

23. Let P be the set of all subsets of a given set X. Show that $\cup : P \times P \rightarrow P$ given by $(A, B) \rightarrow A \cup B$ and $\cap : P \times P \rightarrow P$ given by $(A, B) \rightarrow A \cap B$ are binary operations on the set P.

operation.

Watch Video Solution

25. Show that subtraction and division are not binary operations on N.

26. Show that $\cdot: R imes R o R$ given by $a \cdot b = a + 2b$ is not associative.

27. Show that addition and multiplication are associative binary operation on R. But subtraction is not associative on R. Division is not associative on R*.

29. Show that $+: R \times R \to R$ and $\times : R \times R \to R$ are commutative binary operations, but $: R \times R \to R$ and $\div : R_{\cdot} \times R_{\cdot} \to R_{\cdot}$ are not commutative.

30. Let $Y = \left\{n^2 \colon n \in N
ight\} \in N$. Consider $f \colon N o Y$ as $f(n) = n^2$. Show

that f is invertible. Find the inverse of f.

31. Let f:N o R be a function defined as $f(x)=4x^2+12x+15$. Show that f:N o S, where, S is the range of f, is invertible. Find the inverse of f.

Watch Video Solution

32. Consider $f\colon N o N,\,g\colon N o N$ and $h\colon N o R$ defined asf(x)=2x,

g(y) = 3y + 4and $h(z) = s \in z$, orall x, y and z in N. Show that ho(gof) = (hog) of.

33. Consider $f: \{1, 2, 3\} \rightarrow \{a, b, c\}$ and $g: \{a, b, c\} \rightarrow \{apple, ball, cat\}$ defined as f(1) = a, f(2) = b, f(3) = c, g(a) = apple, g(b) = ball and g(c) = cat. Show that f, g and gof are invertible .Find out f^{-1}, g^{-1} and $(gof)^{-1}$ and show that $(gof)^{-1} = f^{-1}og^{-1}$

Watch Video Solution

34. Consider functions f and g such that composite gof is defined and is

one-one.Are f and g both necessarily one-one.

D Watch Video Solution

35. Are f and g both necessarily onto, if *gof* is onto?

36. Let $f: \{1, 2, 3\} \rightarrow \{a, b, c\}$ be one-one and onto function given by f(1) = a, f(2) = b and f(3) = c. Show that there exists a function $g: \{a, b, c\} \rightarrow \{1, 2, 3\}$ such that $gof = I_x$ and `fog=

Watch Video Solution

37. Let $f:N\overrightarrow{Y}$ be a function defined as f(x)=4x+3 , where $Y=\{y\in N\colon y=4x+3 ext{ for some } x\in N\}$. Show that f is invertible and

its inverse is

(1)
$$g(y) = \frac{3y+4}{3}$$

(2) $g(y) = 4 + \frac{y+3}{4}$
(3) $g(y) = \frac{y+3}{4}$
(4) $g(y) = \frac{y-3}{4}$

Watch Video Solution

38. Let $S = \{1, 2, 3\}$. Determine whether the functions $f: S \to S$ defined

as below have inverses. Find f^{-1} , if it exists

.(a) $f = \{(1, 1), (2, 2), (3, 3)\}$ (b) $f = \{(1, 2), (2, 1), (3, 1)\}$ (C) $f = \{(1, 3), (3, 2), (2, 1)\}$

Watch Video Solution

39. Show that addition, subtraction and multiplication are binary operations on R, but division is not a binary operation on R. Further, show that division is a binary operation on the set R of nonzero real numbers.

Watch Video Solution

40. Consider the identity function $I_N\colon N o N$ defined as, $I_N(x)=x$ for all $x\in N$. Show that although I_N is onto but $I_N+I_N\colon N o N$ defined as $(I_N+I_N)(x)=I_N(x)+I_N(x)=x+x=2x$ is not onto.

41. Let R be a relation on the set A of ordered pairs of positive integers defined by (x, y)R(u, v) if and only if xv = yu. Show that R is an equivalence relation.

Watch Video Solution

42. Let $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Let R be a relation in X given by $R_1 = \{(x, y) : x - y \text{ is divisible by 3}\}$ and R_2 another on X given by $R = \{(x, y) : (x, y) \cup \{1, 4, 7\}\}$ or $\{x, y\} \cup \{2, 5, 8\}$ or $\{x, y\} \cup \{3, 6, 9\}\}$ Show that $R_1 = R_2$.

Watch Video Solution

43. Show that -a is not the inverse of $a \in N$ for the addition operation + on N and $\frac{1}{a}$ is not the inverse of $a \in N$ for multiplication operation \times on N, for $a \neq 1$.

44. If R_1 and R_2 are equivalence relations in a set A, show that $R_1 \cap R_2$

is also an equivalence relation.

45. Find the number of all one-one functions from set $A = \{1, 2, 3\}$ to itself.

Watch Video Solution

46. Let $A = \{1, 2, 3\}$. Then, show that the number of relations containing (1, 2) and (2, 3) which are reflexive and transitive but not symmetric is three.

47. Let $f: X \to Y$ be a function. Define a relation R in X given by $R = \{(a, b): f(a) = f(b)\}.$ Examine if R is an equivalence relation.

Watch Video Solution

48. Determine which of the following binary operations on the set N are associative and which are commutative.

$$egin{aligned} (a)a \cdot b &= 1 \, orall a, b \in N \ (b)a \cdot b &= \left(rac{a+b}{2}
ight) orall a, b \in N \end{aligned}$$

Watch Video Solution

49. Show that the number of equivalence relation in the set $\{1, 2, 3\}$ containing (1, 2) and (2, 1) is two.

50. Show that the number of binary operations on $\{1, 2\}$ having 1 as identity and having 2 as the inverse of 2 is exactly one.

1. Let A = N×N and \cdot be the binary operation on A defined by(a, b) *(c, d) =

(a + c, b + d). Show that \cdot is commutative and associative. Find the identity element for \cdot on A, if any.

Watch Video Solution

aeo Solution

2. Show that none of the operations given below has identity.(i)

$$a * b = a - b$$
 (ii) $a * b = a^2 + b^2$ (iii) $a * b = a + ab$ (iv)
 $a * b = (a - b)^2$ (v) $a * b = \frac{ab}{4}$ (vi) $a * b = ab^2$

3. Consider a binary operation. on N defined $a * b = a^3 + b^3$. Choose the correct answer.

A. (A) Is * both associative and commutative?

B. (B) Is * commutative but not associative?

C. (C) Is * associative but not commutative?

D. (D) Is * neither commutative nor associative?

Answer: (B) Is * commutative but not associative?

4. State whether the following statements are true or false. Justify.

(i) For an arbitrary binary operation * on a set N, $a*a = a \, orall a \in N$.

(ii) If * is a commutative binary operation on N, then a * (b * c) = (c * b) * a

5. Let * be the binary operation on N given by a * b = LCM of a and b. Find

(i) 5 * 7, 20 * 16

(ii) Is · commutative?

(iii) Is * associative?

(iv) Find the identity of * in N

(v) Which elements of N are invert

Watch Video Solution

6. Is * defined on the set $\{1, 2, 3, 4, 5\}$ by a * b = LCM of a and b , a

binary operation? Justify your answer.

7. Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table Compute (2*3) *4 and 2* (3*4) Is *

commutative? (iii) Compute (2*3)*(4*5)

8. Let * 'be the binary operation on the set $\{1, 2, 3, 4, 5\}$ defined by a * 'b = HCF of a and b. Is the operation * 'same as the operation * defined Justify your answer.

9. For each binary operation * defined below, determine whether * is commutative or associative. (i) On Z, define a * b = a - b

- (ii) On Q, define a * b = ab + 1
- (iii) On Q, define $a * b = \frac{ab}{2}$
- (iv) On $Z^{\,+}$, define $a \ast b = 2^{ab}$
- (v) On $Z^{\,+}$, define $a st b = a^b$

(vi) On
$$R ext{-}\{-1\}$$
, define $a*b=\displaystylerac{a}{b+1}$

10. Consider the binary operation \land on the set $\{1, 2, 3, 4, 5\}$ defined by

 $a \wedge b = \min \{a, b\}$. Write the operation table of the operation \wedge .

Watch Video Solution

11. Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

(i) On Z^+ , define ***** by a * b = a - b

- (ii) On Z^+ , define st by a st b = ab
- (iii) On R, define * by $a * b = ab^2$
- (iv) On Z^+ , define st by a st b = |a b|
- (v) On Z^+ , define st by a st b = a

12. Let * be the binary operation on N defined by $a * b = H\dot{C}\dot{F}$ of a and b. Is * commutative? Is * associative? Does there exist identity for this binary operation on N?

Watch Video Solution

13. Let * be a binary operation on the set Q of rational numbers as follows: (i) a * b = a - b (ii) $a * b = a^2 + b^2$ (iii) a * b = a + ab (iv) $a * b = (a - b)^2$ (v) $a * b = \frac{ab}{4}$ (vi) $a * b = ab^2$

Find which of the binary operations are commutative and which are associative

Watch Video Solution

Exercise 12

1. Let A and B be two sets. Show that $f\colon A imes B o B imes A$ defined by $f(a,\ b)=(b,\ a)$ is a bijection.

Watch Video Solution

2. Let $f: N \to N$ be defined by $f(n) = \begin{cases} rac{n+1}{2} & ext{if n is odd} \\ rac{n}{2} & ext{if n is even} \end{cases}$ for all

 $n \in N$. State whether the function f is bijective. Justify your answer.

Watch Video Solution

3. Show that the Modulus Function $f : R \rightarrow R$, given by f(x) = |x|, is neither oneone nor onto, where |x| is x, if x is positive or 0 and |x| is – x, if x is negative.

5. In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

- (i) $f\!:\!R o R,$ defined by f(x)=3-4x
- (ii) $f\!:\!R o R,$ defined by $f(x)=1+x^2$

Watch Video Solution

6. Show that the functions $f: R_{\cdot} \to R_{\cdot}$ defined by $f(x) = \frac{1}{x}$ is one-one and onto. where R^{*} is the set of all non-zero real numbers. Is the result true, if the domain R^{*} is replaced by N with co-domain being same as R^{*}.

7. Check the injectivity and surjectivity of the following functions:

- (i) $f\!:\!N o N$ given by $f(x)=x^2$
- (ii) $f\colon\! Z o Z$ given by $f(x)=x^2$
- (iii) $f{:}R o R$ given by $f(x) = x^2$
- (iv) $f\!:\!N o N$ given by $f(x)=x^3$
- (v) $f\!:\!Z o Z$ given by $f(x)=x^3$

Watch Video Solution

8. Prove that the Greatest Integer Function $f: R \to R$, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.

Watch Video Solution

9. Let $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be

a function from A to B. Show that f is one-one.

10. Let $f \colon R o R$ be defined as f(x) = 3x. Choose the correct answer.

(A) f is one-one onto

(B) f is many-one onto

(C) f is one-one but not onto

(D) f is neither one-one nor onto.

Watch Video Solution

11. Let $f\colon R o R$ be defined as $f(x)=x^4.$ Choose the correct answer.

A. f is one-one onto

B. f is many-one onto

C. f is one-one but not onto

D. f is neither one-one nor onto

Answer: D

12. Let $A=R-\{3\}$ and $B=R-\{1\}.$ Consider the function $f\colon A o B$

defined by $f(x) = \left(rac{x-2}{x-3}
ight).$

Is f is one-one and onto? Justify your answer

Watch Video Solution

Exercise 11

1. Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set $A = \{1, 2, 3, ..., 13, 14\}$ defined as $R = \{(x, y): 3x-y = 0\}$ (ii) Relation R in the set N of natural numbers defined as $R = \{(x, y): y = x + 5 \text{ and } x < 4\}$ (iii) Relation R in the set $A = \{1, 2, 3, 4, 5, 6\}$ as $R = \{(x, y): y \text{ is}$ divisible by $x\}$ (iv) Relation R in the set Z of all integers defined as $R = \{(x, y) : x - y ext{ is }$ an integer}

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) $R = \{(x, y) : x \text{ and } y \text{ work at the same place} \}$

(b) $R = \{(x, y) : x \text{ and } y \text{ live in the same locality} \}$

(c) $R = \{(x, y) : x \text{ is exactly } 7 \text{ cm taller than } y\}$

(d) $R = \{(x, y) : x \text{ is wife of } y\}$

(e) $R = \{(x, y) : x \text{ is father of } y\}$

Watch Video Solution

2. Check whether the relation R defined in the set $\{1, 2, 3, 4, 5, 6\}$ as

 $R = \{(a, b) : b = a + 1\}$ is reflexive, symmetric or transitive.

Watch Video Solution

3. Show that the relation R in the set R of real numbers, defined as $R = \{(a,b): a \le b^2\}$ is neither reflexive nor symmetric nor transitive.

6. Show that the relation R in the set A of all the books in a library of a college, given by $R = \{(x, y) : x \text{ and } y \text{ have same number of pages} \}$ is an equivalence relation.

7. Show that the relation R in the set $\{1,2,3\}$ given by

 $R = \{(1, 2), (2, 1)\}$ is symmetric but neither reflexive nor transitive.

Watch Video Solution

8. Show that each of the relation R in the set $A=\{x\in Z\colon 0\leq x\leq 12\}$, given by

(i) $R = \{(a, b) : |ab| ext{ is a multiple of } 4\}$

(ii) $R = \{(a, b) : a = b\}$ is an equivalence relation. Find the set of all elements related to 1 in each case.

Watch Video Solution

9. Show that the relation R in the set $A = \{1, 2, 3, 4, 5, 6, 7\}$ given by

 $R = \{(a, b) : |a - b| \text{ is even}\}, \text{ is an equivalence relation.}$

10. Show that the relation R defined on the set A of all triangles in a plane as $R = \{(T_1, T_2): T_1 \text{ is similar to } T_2) \text{ is an equivalence relation.}$ Consider three right angle triangle T_1 with sides 3, 4, 5; T_2 with sides 5, 12, 13 and T_3 with sides 6, 8, 10. Which triangles among T_1 , T_2 and T_3 are related?

Watch Video Solution

11. Show that the relation R, defined on the set A of all polygons as $R = \{(P_1, P_2): P_1 \text{ and } P_2 \text{ have same number of sides}\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?

- 12. Give an example of a relation. Which is
- (i) Symmetric but neither reflexive nor transitive.
- (ii) Transitive but neither reflexive nor symmetric.

- (iii) Reflexive and symmetric but not transitive.
- (iv) Reflexive and transitive but not symmetric.
- (v) Symmetric and transitive but not reflexive.

13. Show that the relation R on the set A of points in a plane, given by $R = \{(P, Q): \text{ Distance of the point } P \text{ from the origin is same as the distance of the point <math>Q$ from the origin}, is an equivalence relation. Further show that the set of all points related to a point $P \neq (0, 0)$ is the circle passing through P with origin as centre.

Watch Video Solution

14. Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$. Choose the correct answer. (A) $(2, 4) \in R$ (B) $(3, 8) \in R$ (C) $(6,8)\in R$

(D) $(8,7)\in R$

A. $(2,4)\in R$

 $\mathsf{B.}\,(3,8)\in R$

 $\mathsf{C}.\,(6,8)\in R$

 $\mathsf{D}.\,(8,7)\in R$

Answer: C

Watch Video Solution

15. Let L be the set of all lines in XY = plane and R be the relation in Ldefined as $R = \{(L_1, L_2) : L_1 \text{ is parallel to } L_2\}$. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.

16. Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then,
(a) R is reflexive and symmetric but not transitive
(b) R is reflexive and transitive but not symmetric
(c) R is symmetric and transitive but not reflexive
(d) R is an equivalence relation

Exercise 13

1. Consider $f\!:\!R o [\,-5,\infty)$ given by $f(x)=9x^2+6x-5$. Show that

$$f$$
 is invertible with $f^{-1}(y)=rac{\left(\sqrt{y+6}
ight)-1}{3}$

Watch Video Solution

2. Consider $f\!:\!R_+ o [4,\infty)$ given by $f(x)=x^2+4.$ Show that f is

invertible with the inverse $f^{\,-1}$ of given f by $f^{\,-1}(y) = \sqrt{y-4}$ where R_+

is the set of all non-negative real numbers.

4. Let f, g and h be functions from R to R. Show that (f+g)oh = foh + goh(f, g)oh = (foh). (goh)

Watch Video Solution

5. Let $f: \{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and $g: \{1, 2, 5\} \rightarrow \{1, 3\}$ be given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(1, 3), (2, 3), (5, 1)\}$. Write down qof.

6. Consider $f: R \to R$ given by f(x) = 4x + 3. Show that f is invertible.

Find the inverse of f.

Watch Video Solution

7. Show that $f\colon [-1,1] o R$, given by $f(x)=rac{x}{x+2}$ is one- one . Find the inverse of the function $f\colon [-1,1] o \mathrm{Range} f.$

Watch Video Solution

8. State with reason whether following functions have inverse

(i) $f: \{1, 2, 3, 4\} \rightarrow \{10\}$ with $f = \{(1, 10), (2, 10), (3, 10), (4, 10)\}$ (ii) $g: \{5, 6, 7, 8\} \rightarrow \{1, 2, 3, 4\}$ with $g = \{(5, 4), (6, 3), (7, 4), (8, 2)\}$

(iii)

 $h \colon \{2, 3, 4, 5\} o \{7, 9, 11, 13\} \hspace{0.2cm} ext{with} \hspace{0.2cm} h = \{(2, 7), (3, 9), (4, 11), (5, 13)\}$

9. If
$$f(x)=rac{4x+3}{6x-4},\ x
eq rac{2}{3},\$$
 show that $fof(x)=x$ for all $x
eq rac{2}{3}.$

What is the inverse of f?

Watch Video Solution

10. Let
$$f: R - \left\{-\frac{4}{3}\right\} \to R$$
 be a function as $f(x) = \frac{4x}{3x+4}$. The inverse of f is map, $g:$ Range $f \to R - \left\{-\frac{4}{3}\right\}$ given by.
(a) $g(y) = \frac{3y}{3-4y}$
(b) $g(y) = \frac{4y}{4-3y}$
(c) $g(y) = \frac{4y}{3-4y}$
(d) $g(y) = \frac{3y}{4-3y}$

11. Let $f\colon X o Y$ be an invertible function. Show that f has unique inverse. (Hint : suppose g_1 and g_2 are two inverses of f. Then for all

 $y\in Y,$ $fog_1(y)=I_Y(y)=fog_2(y).$ Use one-one ness of f).

12. Consider
$$f: \{1, 2, 3\} \rightarrow \{a, b, c\}$$
 given by $f(1) = a$, $f(2) = b$ and $f(3) = c$. Find f^{-1} and show that $(f^{-1})^{-1} = f$.

Watch Video Solution

13. Let $f\colon X o Y$ be an invertible function. Show that the inverse of f^{-1} is f, i.e., $\left(f^{-1}
ight)^{-1}=f$.

Watch Video Solution

14. If $f\colon R o R$ be given by $f(x)=\left(3-x^3
ight)^{1/3}$, then fof(x) is (a) $rac{1}{x^3}$ (b) x^3

(c) *x*

(d) $\left(3-x^3
ight)$