# © ${ }^{\prime}$ doubtnut 

India's Number 1 Education App

## MATHS

## NCERT - NCERT MATHEMATICS(HINGLISH)

## THREE DIMENSIONAL GEOMETRY

## Exercise 111

1. Find the direction cosines of a line which makes equal angles with the coordinate axes.

- 

Watch Video Solution
2. Show that the points $(2,3,4),(1,2,1),(5,8,7)$ are collinear.

## D Watch Video Solution

3. Find the direction cosines of the sides of the triangle whose vertices are $(3,5,4),(1,1,2)$ and $(5,5,2)$.

## - Watch Video Solution

4. If a line makes angles $90^{\circ}, 135^{\circ}, 45^{\circ}$ with the x , y and z -axes respectively, find its direction cosines.
5. If a line has the direction ratios $18,12,4$, then what are its direction cosines?

## D Watch Video Solution

Exercise 112

1. Show that the three lines with direction cosines
$\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}, \frac{4}{13}, \frac{12}{13}, \frac{3}{13}, \frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$ are mutually perpendicular.
2. Show that the line through the points $(4,7,8),(2,3,4)$ is parallel to the line through the points (1, 2, 1),(1, 2, 5).

## D Watch Video Solution

3. Show that the line through the points
$(1,1,2),(3,4,2)$ is perpendicular to the line through the points $(0,3,2)$ and $(3,5,6)$.
4. Find the equation of the line in vector and in
cartesian form that passes through the point with position vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and is in the direction $\hat{i}+2 \hat{j}-\hat{k}$.

## D Watch Video Solution

5. Find the equation of the line which passes through the point $(1,2,3)$ and is parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$.

D Watch Video Solution
6. The cartesian equation of $a$ line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$. Write its vector form.

## D Watch Video Solution

7. Find the cartesian equation of the line which passes through the point $(2,4,5)$ and parallel to the line given by $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$.

## - Watch Video Solution

8. Find the vector and the cartesian equations of the line that passes through the points $(3,2,5),(3,2,6)$.
9. Find the vector and the cartesian equations of the lines that passes through the origin and $(5,-2,3)$.

## D Watch Video Solution

10. Find the values of $p$ so that the lines $\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and
$\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.
(D) Watch Video Solution
11. Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other.

## - Watch Video Solution

12. Find the angle between the following pairs of
lines:(i) $\quad \vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k})$ and
$\vec{r}=7 \hat{i}-6 \hat{k}+\mu(\hat{i}+2 \hat{j}+2 \hat{k})$ (ii)
$\vec{r}=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}-2 \hat{k})$ and ${ }^{\prime}-$
13. Find the angle between the following pair of lines:
(i)

$$
\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3} \text { and }
$$

$\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$ (ii) $\quad \frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and
$\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$

## (D) Watch Video Solution

14. Find the shortest distance between the lines

$$
\begin{aligned}
& \text { whose vector } \begin{array}{l}
\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}) \text { and } \\
\vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k})
\end{array}
\end{aligned}
$$

are
15. Find the shortest distance between the lines whose

$$
\begin{aligned}
& \vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k} \\
& \vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k}
\end{aligned}
$$

## D Watch Video Solution

16. Find the shortest distance between the lines

$$
\begin{aligned}
& \vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \text { and } \\
& \vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
\end{aligned}
$$

17. Find the shortest distance between the lines

$$
\begin{aligned}
& \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \text { and } \\
& \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}
\end{aligned}
$$

## - Watch Video Solution

## Miscellaneous Exercise

1. Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes $\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$.
2. Find the distance of the point $(1,5,10)$ from the point of intersection of the line $\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.

## - Watch Video Solution

3. Find the equation of the plane passing through the line of intersection of the planes
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1$ and
$\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and parallel to x -axis.
4. If the points $(1,1, p) \operatorname{and}(3,0,1)$ be equidistant from the plane $\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$, then find the value of $p$.

## - Watch Video Solution

5. Find the equation of the plane which contains the
line of intersection of the planes
$\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0, \vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0$
and which is perpendicular to the plane
$\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$

## - Watch Video Solution

6. If $O$ be the origin and the coordinates of $P$ be
$(1,2,-3)$, then find the equation of the plane passing through $P$ and perpendicular to $O P$.

## - Watch Video Solution

7. Find the coordinates of the point where the line through $(5,1,6)$ and $(3,4,1)$ crosses the ZX -plane.

## - Watch Video Solution

8. Find the coordinates of the point where the line through $(5,1,6)$ and $(3,4,1)$ crosses the YZ-plane.

## - Watch Video Solution

9. Find the equation of the plane passing through the point (1, 3, 2) and perpendicular to each of the planes $x+2 y+3 z=5$ and $3 x+3 y+z=0$.

## D Watch Video Solution

10. Find the coordinates of the point where the line through $(3,4,5)$ and $(2,3,1)$ crosses the plane $2 x+y+z=7$.
11. The planes: $2 x y+4 z=5 a n d 5 x 2.5 y+10 z=6$ are(A) Perpendicular (B) Parallel(C) intersect y-axis (D)
passes through $\left(0,0, \frac{5}{4}\right)$

## D Watch Video Solution

12. Find the equation of the plane passing through (a,
$\mathrm{b}, \mathrm{c}$ ) and parallel to the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$.

## D Watch Video Solution

13. Find the shortest distance between lines
$\vec{r}=6 \hat{i}+2 \hat{j}+\hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k})$ and

$$
\vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k}) .
$$

## - Watch Video Solution

14. If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular, find the value of $k$.
A. $-\frac{11}{19}$
B. $-\frac{8}{7}$
C. $-\frac{10}{7}$
D. $-\frac{9}{7}$
15. Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0$.

D Watch Video Solution
16. Find the equation of a line parallel to $x$-axis and passing through the origin.
17. If the coordinates of the points $A, B, C, D$ be $(1,2,3),(4,5,7),(4,3,6)$ and $(2,9,2)$ respectively, then find the angle between the lines $A B$ and $C D$.

## D Watch Video Solution

18. If $l_{1}, m_{1}, n_{1}$ and $l_{2}, m_{2}, n_{2}$ are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are $m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}, l_{1} m_{2}-l_{2} m_{1}$.
19. Find the angle between the lines whose direction ratios are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and $b c, c a, a b$.

## - Watch Video Solution

20. Show that the line joining the origin to the point
$(2,1,1)$ is perpendicular to the line determined by the points $(3,5,1),(4,3,1)$.

## D Watch Video Solution

21. Find the vector equation of the line passing through the point $(1,2,-4)$ and perpendicular to
the two lines: $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and

$$
\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}
$$

## (D) Watch Video Solution

22. Prove that if a plane has the intercepts $a, b, c$ and is at a distance of p units from the origin, then
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$.

## - Watch Video Solution

23. Distance between the two planes:
$2 x+3 y+4 z=4$ and $4 x+6 y+8 z=12$ is(A) 2 units
(B) 4 units (C) 8 units (D) $\frac{2}{\sqrt{29}}$ units

## D Watch Video Solution

## Solved Examples

$$
\begin{aligned}
& \text { 1. Show that the lines } \\
& \frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta} \text { and } \\
& \frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma} \text { are coplanar. }
\end{aligned}
$$

2. Find the distance between the point $P(6,5,9)$ and the plane determined by the points $A(3,1,2)$, $B(5,2,4)$ and $C(1,1,6)$.

## D Watch Video Solution

3. Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 x+2 y-11 z=3$.
4. Find the equation of the plane that contains the point $(1,1,2)$ and is perpendicular to each of the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$.

## D Watch Video Solution

5. A line makes angles $\alpha, \beta, \gamma$ and $\delta$ with the diagonals of a cube, prove that
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$
6. Find the coordinates of the point where the line through the points $A(3,4,1)$ and $B(5,1,6)$ crosses the XY-plane.

## D Watch Video Solution

7. Find the vector equation for the line passing through the points $(1,0,2)$ and $(3,4,6)$.

## D Watch Video Solution

8. Find the vector and the Cartesian equations of the
line through the point $(5,2,4)$ and which is parallel
to the vector $3 \hat{i}+2 \hat{j}-8 \hat{k}$.

## (D) Watch Video Solution

9. Show that the points $A(2,3,4), B(1,2,3)$ and $C(3,8,11)$ are collinear.

## (D) Watch Video Solution

10. Find the direction cosines of $x, y$ and $z$-axis.
11. Find the direction cosines of the line passing through the two points $(2,4,5)$ and $(1,2,3)$.

## - Watch Video Solution

12. If a line has direction ratios $2,1,2$.determine its direction cosines.

## - Watch Video Solution

13. If a line makes angle $90^{\circ}, 60^{\circ}$ and $30^{\circ}$ with the positive direction of $x, y$ and $z$-axis respectively, find its direction cosines.

## - Watch Video Solution

14. Find the angle between the pair of lines given by

$$
\begin{aligned}
& \vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k}) \text { and } \\
& \vec{r}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k}) .
\end{aligned}
$$

## - Watch Video Solution

15. The Cartesian equation of a line is $\frac{x+3}{2}=\frac{y-5}{4}=\frac{z+6}{2}$. Find the vector equation for the line.
16. Show that the lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar.

## D Watch Video Solution

17. Find the vector equation of the plane passing through the intersection of the planes $\rightarrow r \hat{i}+\hat{j}+\hat{k}=6$ and $\quad \rightarrow r 2 \hat{i}+3 \hat{j}+4 \hat{k}=-5$ and the point ( $1,1,1$ ).
18. Find the angle between the two planes $3 x-6 y+2 z=7$ and $2 x+2 y-2 z=5$.

## - Watch Video Solution

19. Find the angle between the two planes $2 x+y 2 z=5$ and $3 x 6 y 2 z=7$ using vector method.

## (D) Watch Video Solution

20. Find the distance of a point $(2,5,3)$ from the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})=4$.
21. Find the angle between the pair of lines
$\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$ and
$\frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$.
(D) Watch Video Solution
22. Find the shortest distance between the lines 11
and 12 whose vector equations are
$\rightarrow r=\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k})$
(1)and
$\rightarrow r=2 \hat{i}+\hat{j}-k+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k})$
23. Find the distance between the lines $l_{1}$ and $l_{2}$ given by
$r_{1}=\hat{i}+2 \hat{j}-4 k+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$ and
$r_{2}=3 \hat{i}+3 \hat{j}-5 k+\mu(2 \hat{i}+3 \hat{j}+6 \hat{k})$.

## - Watch Video Solution

24. Find the vector equation of the plane which is at a distance of $\frac{6}{\sqrt{29}}$ from the origin and its normal vector from the origin is $2 \hat{i}-3 \hat{j}+4 \hat{k}$. Also find its cartesian form.
25. Find the direction cosines of the unit vector perpendicular to the plane
$\rightarrow \vec{r} \cdot(6 \hat{i}-3 \hat{j}-2 \hat{k})+1=0$ passing through the origin.

## D Watch Video Solution

26. Find the distance of the plane $2 x 3 y+4 z 6=0$
from the origin.

D Watch Video Solution
27. Find the coordinates of the foot of the perpendicular drawn from the origin to the plane $2 x-3 y+4 z-6=0$.

## D Watch Video Solution

28. Find the vector and cartesian equations of the plane which passes through the point $(5,2,4)$ and perpendicular to the line with direction ratios $(2,3,1)$.
29. Find the vector equations of the plane passing through the points $R(2,5,-3), S(-2,-3,5)$ and $T(5,3,-3)$

D Watch Video Solution
30. Find the equation of the plane with intercepts 2,3 and 4 on the $\mathrm{x}, \mathrm{y}$ and z -axis respectively.

1. Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and
$2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$.

## - Watch Video Solution

2. Find the vector equation of the plane passing through the intersection of the planes

$$
\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=7, \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9
$$

and through the point $(2,1,3)$.
3. In the following cases, determine whether the given
planes are parallel or perpendicular, and in case they are neither, find the angles between them.
(a)
$7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$
(b) $2 x+y+3 z-2=0$ and $x-2 y+5 z=0$
(c) $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$
(d) $2 x-y+3 z-1=0$ and $2 x-y+3 z+3=0$
(e) $4 x+8 y+z-3=0$ and $y+z-4=0$

## D Watch Video Solution

4. Find the angle between the planes whose vector equations are
$\vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$.

## D Watch Video Solution

5. In the following cases, find the distance of each of the given points from the corresponding given plane. Point Plane
(a) $(0,0,0), 3 x+4 y+12 z=3$
(b) $(3,2,1), 2 x+y+2 z+3=0$
(c) $(2,3,-5), x+2 y \pm 2 z=9$
(d) $(6,0,0), 2 x-3 y+6 z-2=0$
6. Find the equation of the plane with intercept 3 on the $y$-axis and parallel to ZOX plane.

## - Watch Video Solution

7. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point $(2,2,1)$.
8. Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector $3 \hat{i}+5 \hat{j}-6 \hat{k}$.
A. $6 \sqrt{70}$
B. $5 \sqrt{70}$
C. $8 \sqrt{70}$
D. $7 \sqrt{70}$

Answer: D
9. Find the Cartesian equation of the following planes: $\quad$ (a) $\quad \vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2$
$\vec{r} \cdot(2 \hat{i}+3 \hat{j}-4 \hat{k})=1$
$-\vec{r}(s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k}=15$

## D Watch Video Solution

10. In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.(a) $z=2$ (b) $x+y+z=1$ (c) $2 x+3 y-z=5$ (d) $5 y+8=0$
11. Find the equations of the planes that passes through three points.(a)(1,1,-1),(6,4,-5),(-4,-2,3)

## - Watch Video Solution

12. Find the intercepts cut off by the plane $2 x+y z=5$.

## - Watch Video Solution

13. In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.(a)

$$
\begin{aligned}
& 2 x+3 y+4 z-12=0 \quad \text { (b) } \quad 3 y+4 z-6=0 \text { (c) } \\
& x+y+z=1 \text { (d) } 5 y+8=0
\end{aligned}
$$

## - Watch Video Solution

14. Find the vector and cartesian equations of the planes
(a) that passes through the point $(1,0,2)$ and the normal to the plane is $\hat{i}+\hat{j}-\hat{k}$
(b) that passes through the point $(1,4,6)$ and the normal vector to the plane is
15. The
vector
makes
angles
$\sin ^{-1}\left(\frac{\sqrt{2146}}{65}\right)$ and $\sin ^{-1}\left(\frac{12}{13}\right)$ with the $X$ and
$Y$ axes. Find the Sin ratio of the angle that is makes with the $Z$-axis.
A. $\frac{3}{5}$
B. $\frac{4}{5}$
C. $\frac{5}{6}$
D. $\frac{7}{8}$

Answer: B

