© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

NCERT - NCERT MATHEMATICS(HINGLISH)

VECTOR ALGEBRA

Exercise 104

1. Area of a rectangle having vertices A, B, C and D with position vectors

$$
-\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}-\frac{1}{2} \hat{j}+4 \hat{k} \quad \text { and }
$$

$-\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}$ respectively is
(A) $1 / 2$ (B) 1 (C) 2 (D) 4

- Watch Video Solution

2. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between \vec{a} and \vec{b}
(A) $\pi / 6$
(B) $\pi / 4$
(C) $\pi / 3$
(D) $\pi / 2$

- Watch Video Solution

3. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$.

(D) Watch Video Solution

4. If either $\vec{a}=0$ and $\vec{b}=0$ then $\vec{a} \times \vec{b}=0$. Is Is the converse true? Justify your answer with an example.
5. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$

(D) Watch Video Solution

6. Find λ and μ if $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\overrightarrow{0}$.

- Watch Video Solution

7. Given that $\vec{a} \vec{b}=0$ and $\vec{a} \times \vec{b}=0$. What can you conclude about the vectors \vec{a} and \vec{b}.

(D) Watch Video Solution

8. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ be given as
$a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}, c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. Then show that
$\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

- Watch Video Solution

9. Find a unit vector perpendicular to each of the vector $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ where $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$

D Watch Video Solution

10. Find the area of the triangle with vertices $\mathrm{A}(1,1,2), \mathrm{B}(2,3,5)$ and $\mathrm{C}(1$,

5, 5).

(D) Watch Video Solution

1. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=i$ and $\vec{c}=c_{1} \hat{i}+\hat{c}_{2} j+c_{3} \hat{k}$ Then(a) if $c_{1}=1$ and $c_{2}=2$, find c_{3} which makes $\vec{a}, \vec{b}, \vec{c}$ coplanar(b) if $c_{2}=-1$ and $c_{3}=1$, show that no value of c_{3} can makes $\vec{a}, \vec{b}, \vec{c}$ coplanar.

- Watch Video Solution

2. Show
that
the
vectors
$\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=-2 \hat{i}+3 \hat{j}-4 \hat{k} a n d \vec{c}=\hat{i}-3 \hat{j}+5 \hat{k}$ are coplanar.

D Watch Video Solution

3.

Find
$\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$ if
$\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 i-3 j+k, \vec{c}=3 \hat{i}+\hat{j}-2 \hat{k}$
4. Find λ if the vectors $\hat{i}-\hat{j}+\hat{k}, 3 \hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+\lambda \hat{j}+\hat{3} k$ are coplanar

- Watch Video Solution

5. Find x such that the four points $A(3,2,1), B(4, x, 5), C(4,2,2)$ and $D(6,5,1)$ are coplanar

(D) Watch Video Solution

6. Show that the vectors $\rightarrow a, \rightarrow b$ and $\rightarrow c$ coplanar if $\rightarrow a+\rightarrow b, \rightarrow b+\rightarrow$ cand $\rightarrow c+\rightarrow a$ are coplanar

- Watch Video Solution

7. Show that the four points with position vectors
$4 \hat{i}+8 \hat{j}+12 \hat{k}, 2 \hat{i}+4 \hat{j}+6 \hat{k}, 3 \hat{i}+5 \hat{j}+4 \hat{k}$ and $5 \hat{i}+8 \hat{j}+5 \hat{k}$ are

coplanar.

(D) Watch Video Solution

Solved Examples

1. For any two vectors $\rightarrow a$ and $\rightarrow b$ we always have
$|\rightarrow a \longrightarrow b| \leq|\rightarrow a||\rightarrow b|$ (Cauchy-Schwartz inequality).

Watch Video Solution
2. If \vec{a} is a unit vector and $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$, then find $|\vec{x}|$

- Watch Video Solution

3. Find $|\vec{a}-\vec{b}|$, if two vector \vec{a} and \vec{b} are such that $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=4$.
A. $\sqrt{5}$
B. 5
C. 2
D. $\sqrt{2}$

Answer: A

- Watch Video Solution

4. Find the projection of the $\vec{a}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ on the $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$.

(D) Watch Video Solution

5. If $\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}-5 \hat{k}$ then show that the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular.
6. Find angle θ between the vectors $\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$.
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(-\frac{1}{2}\right)$
C. $\cos ^{-1}\left(-\frac{1}{3}\right)$
D. $\cos ^{-1}\left(\frac{1}{2}\right)$

Answer: C

- Watch Video Solution

7. Find the angle between two vectors \vec{a} and \vec{b} with magnitude 2 and 1 respectively, such that $\vec{a} \cdot \vec{b}=\sqrt{3}$.
8. Show that the points $A(2 \hat{i}-\hat{j}+\hat{k}), B(\hat{i}-3 \hat{j}-5 \hat{k}), C(3 \hat{i}-4 \hat{j}-4 \hat{k})$ are the vertices of a right angled triangle.

(D) Watch Video Solution

9. Consider two points P and Q with position vectors $\overrightarrow{O P}=3 \vec{a}-2 \vec{b}$ and $\overrightarrow{O Q}=\vec{a}+\vec{b}$ Find the position vector of a point R which divides the line joining P and Q in the ratio $2: 1$,
(i) internally, and (ii) externally.

- Watch Video Solution

10. Find the vector joining the points $P(2,3,0)$ and $Q(1,2,4)$ directed from P to Q.

D Watch Video Solution

11. Find the unit vector in the direction of the sum of the vectors, $\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}$.

D Watch Video Solution

12. Write the direction ratios of the vector $\rightarrow a=\hat{i}+\hat{j}-2 \hat{k}$ and hence calculate its direction cosines.

D Watch Video Solution

13. Represent graphically a displacement of 40 km , 30 owest of south.

- Watch Video Solution

14. Classify the following measures as scalars and vectors.(i) 5 seconds
(ii) $1000 \mathrm{~cm}^{3}$
15. In Figure, which of the vectors are: (i) Collinear (ii) Equal (iii) Coinitial

- Watch Video Solution

16. Find the values of x, y and z so that the vectors $\vec{a}=x \hat{i}+2 \hat{j}+z \hat{k}$ and $\vec{b}=2 \hat{i}+y \hat{j}+\hat{k}$ are equal.

- Watch Video Solution

17. Let $\vec{a}=\hat{i}+2 \hat{j}$ and $\vec{b}=2 \hat{i}+\hat{j}$. Is $|\vec{a}|=|\vec{b}|$? Are the vector \vec{a} and \vec{b} equal?

(D) Watch Video Solution

18. Find unit vector in the direction of vector $\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}$.

D Watch Video Solution

19. Find a vector in the direction of vector $\vec{a}=\hat{i}-2 \hat{j}$ that has magnitude 7 units.

- Watch Video Solution

20. If with reference to the right handed system of mutually perpendicular unit vectors \hat{i}, \hat{j} and \hat{k}, $\rightarrow \alpha=3 \hat{i}-\hat{j}, \rightarrow \beta=2 \hat{i}+\hat{j}-3 \hat{k}$, then express $\rightarrow \beta$ in the from $\rightarrow \beta=\rightarrow \beta_{1}+\rightarrow \beta_{2}$, where ${ }^{`}$ -

- Watch Video Solution

21. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$.
22. Find a unit vector perpendicular to each of the vectors $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$, where $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

23. For any two vectors \vec{a} and \vec{b}, we always have $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$

D Watch Video Solution

24. Show that the points $A(-2 \hat{i}+3 \hat{j}+5 \hat{k}), B(\hat{i}+2 \hat{j}+3 \hat{k})$ and $C(7 \hat{i}-3 \hat{k})$ are collinear.
25. Write all the unit vectors in $X Y$ - plane.

- Watch Video Solution

26. If $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{i}-6 \hat{j}-\hat{k}$ are the position vectors of points A, B, C and D respectively, then find the angle between $\overrightarrow{A B}$ and $\overrightarrow{C D}$. Deduce that $\overrightarrow{A B}$ and $\overrightarrow{C D}$

- Watch Video Solution

27. Find the area of a triangle having the points $A(1,1,1), B(1,2,3)$ and $C(2,3,1)$ as its vertices.

(D) Watch Video Solution

28. Find the area of a parallelogram whose adjacent sides are given by the vectors $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$.

- Watch Video Solution

29. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5$ and each one of them being perpendicular to the sum of the other two, find $|\vec{a}+\vec{b}+\vec{c}|$.
A. $\sqrt{2}$
B. $2 \sqrt{2}$
C. $5 \sqrt{2}$
D. $3 \sqrt{2}$

Answer: C

- Watch Video Solution

30. Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the condition $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$.
$\mu=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$, if $|\vec{a}|=1,|\vec{b}|=4$ and $|\vec{c}|=2$.

(D) Watch Video Solution

31. Find λ if the vectors
$\vec{a}=\hat{i}+3 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}-\hat{k}$ and $\vec{c}=\lambda \hat{i}+7 \hat{j}+3 \hat{k}$ are
coplanar.

D Watch Video Solution

32.

Prove
that
$[\rightarrow a, \rightarrow b, \rightarrow c+\rightarrow d]=[\rightarrow a, \rightarrow b, \rightarrow c]+[\rightarrow a, \rightarrow b, \rightarrow d]$

(D) Watch Video Solution

33. $\begin{aligned} & \text { Show } \\ & \text { that }\end{aligned}$ the
$\rightarrow a=\hat{i}-2 \hat{j}+3 \hat{k}, \rightarrow b=2 \hat{i}+3 j-4 \hat{k}$ and $c=\hat{i}-3 \hat{j}+5 \hat{k}$
are coplanar.

- Watch Video Solution

34. Find $\vec{a} \cdot(\vec{b} \times \vec{c})$, if $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}+\hat{k}$ and $c=3 \hat{i}+\hat{j}+2 \hat{k}$.

D Watch Video Solution

35. Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a}, \vec{b}, \vec{c}]$.

- Watch Video Solution

36. Show that the four points A, B, C and D with position vectors
$4 \hat{i}+5 \hat{j}+\hat{k},-(\hat{j}+\hat{k}), 3 \hat{j}+9 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+4 \hat{j}+4 \hat{k}$,
respectively are coplanar.
37. If \vec{a} and \vec{b} are two collinear vectors, then which of the following are incorrect:(A) $\vec{b}=\lambda \vec{a}$, for some scalar lambda (B) $\vec{a}= \pm \vec{b}$ (C) the respective components of \vec{a} and \vec{b} are proportional (D) both the vectors \vec{a} and \vec{b} have same direction, but different magnitudes.

- Watch Video Solution

2. In triangle $A B C$ (Figure), which of the following is not true: (A)
$\vec{A} B+\vec{B} C+\vec{C} A=\overrightarrow{0}$
(B) $\vec{A} B+\vec{B} C-\vec{A} C=\overrightarrow{0}$
$\vec{A} B+\vec{B} C-\vec{C} A=\overrightarrow{0}$ (D) $\vec{A} B-\vec{C} B+\vec{C} A=\overrightarrow{0}$

- Watch Video Solution

3. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

- Watch Video Solution

4. Find a vector in the direction of vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude 8 units.

- Watch Video Solution

5. Find the direction cosines of the vector joining the points $A(1,2,3)$ and $B(1,2,1)$, directed from A to B .

- Watch Video Solution

6. Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$.
7. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively, in the ratio $2: 1$ (i) internally (ii) externally

- Watch Video Solution

8. Show that the vector $\hat{i}+\hat{j}+\hat{k}$ is equally inclined to the axes OX , OY and OZ .

- Watch Video Solution

9. Show that the points A, B and C with position vectors, $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \quad \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\quad \vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$ respectively form the vertices of a right angled triangle.

D Watch Video Solution

10. Find the position vector of the mid point of the vector joining the points $\mathrm{P}(2,3,4)$ and $Q(4,1,2)$.

- Watch Video Solution

11. Find the unit vector in the direction of vector $\overrightarrow{P Q}$, where P and Q
are the points $(1,2,3)$ and $(4,5,6)$, respectively.
A. $\frac{\hat{i}}{\sqrt{3}}+\frac{\hat{j}}{\sqrt{2}}+\frac{\hat{k}}{\sqrt{2}}$
B. $\frac{\hat{i}}{\sqrt{2}}+\frac{\hat{j}}{\sqrt{3}}+\frac{\hat{k}}{\sqrt{3}}$
C. $\frac{\hat{i}}{\sqrt{2}}+\frac{\hat{j}}{\sqrt{2}}+\frac{\hat{k}}{\sqrt{2}}$
D. $\frac{\hat{i}}{\sqrt{3}}+\frac{\hat{j}}{\sqrt{3}}+\frac{\hat{k}}{\sqrt{3}}$

Answer: D

12. For given vectors, $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$ find the unit vector in the direction of the vector $\vec{a}+\vec{b}$.

- Watch Video Solution

13. Write two different vectors having same magnitude.

(D) Watch Video Solution

14. Write two different vectors having same direction.

- Watch Video Solution

15. Compute the magnitude of the following vectors: $\vec{a}=\hat{i}+\hat{j}+\hat{k}$;

$$
\vec{b}=2 \hat{i}-7 \hat{j}-3 \hat{k} ; \vec{c}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k}
$$

16. Find the sum of the vectors $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}$, $\vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}$

D Watch Video Solution

17. Find the unit vector in the direction of the vector $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$

D Watch Video Solution

18. Find the values of x and y so that the vectors $2 \hat{i}+3 \hat{j}$ and $x \hat{i}+y \hat{j}$ are equal.

- Watch Video Solution

19. Find the scalar and vector components of the vector with initial point $(2,1)$ and terminal point $(5,7)$.

Miscellaneous Exercise

1. If θ is the angle between any two vectors \vec{a} and \vec{b}, then $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ when θ is equal to(A) O (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) π

- Watch Video Solution

2. The two adjacent sides of a parallelogram are $2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\hat{i}-2 \hat{j}-3 \hat{k}$. Find the unit vector parallel to its diagonal. Also, find its area.

(D) Watch Video Solution

3. Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$.

(Watch Video Solution

4. Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of x-axis.

- Watch Video Solution

5. A girl walks 4 km towards west, then she walks 3 km in a direction
30° east of north and stops. Determine the girls displacement from her initial point of departure.

D Watch Video Solution

6. Find the scalar components and magnitude of the vector joining the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$
7. Find the value of x for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

- Watch Video Solution

8. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and \vec{c}. $\vec{d}=15$.

D Watch Video Solution

9. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vector $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of λ.
10. If θ is the angle between two vectors \vec{a} and \vec{b}, then $\vec{a} \cdot \vec{b} \geq 0$ only when
(A) $0<\theta<\frac{\pi}{2}$
(B) $0 \leq \theta \leq \frac{\pi}{2}$
(C) $0<\theta<\pi$
(D) $0 \leq \theta \leq \pi$

- Watch Video Solution

11. Let $\rightarrow a$ and $\rightarrow b$ be two unit vectors and is the angle between them. Then $\rightarrow a+\rightarrow b$ is a unit vector if(A) $\theta=\frac{\pi}{4}$ (B) $\theta=\frac{\pi}{3}$ (C) $\theta=\frac{\pi}{2}$ (D) $\theta=\frac{2 \pi}{3}$

- Watch Video Solution

12. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to
\vec{a}, \vec{b} and \vec{c}

(Watch Video Solution

13. Prove that $(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{a}|^{2}+|\vec{b}|^{2}$, if and only if \vec{a}, \vec{b} are perpendicular, given $\vec{a} \neq \overrightarrow{0}, \vec{b} \neq \overrightarrow{0}$

D Watch Video Solution

14. The value of $\hat{i} .(\hat{j} \times \hat{k})+\hat{j} .(\hat{i} \times \hat{k})+\hat{k} .(\hat{i} \times \hat{j})$ is(A) 0 (B) 1 (C) 1 (D) 3

- Watch Video Solution

15. State True or False:

If $\vec{a}=\vec{b}+\vec{c}$ then $|\vec{a}|=|\vec{b}|+|\vec{c}|$
16. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $2(\vec{a}+\vec{b})$ and $(\vec{a}-3 \vec{b})$ externally in the ratio $1: 2$. Also, show that P is the mid point of the line segment RQ

- Watch Video Solution

17. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$ find a unit vector parallel to the vector $2 \vec{a}-\vec{b}+3 \vec{c}$.

- Watch Video Solution

18. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$.
19. Show that the points $A(1,2,8), B(5,0,2)$ and $C(11,3,7)$ are collinear, and find the ratio in which B divides $A C$.

- Watch Video Solution

Exercise 103

1. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively having $\vec{a} \cdot \vec{b}=\sqrt{6}$

- Watch Video Solution

2. Find the projection of the vector $\hat{i}-\hat{j}$ on the vector $\hat{i}+\hat{j}$
3. Find the angle between the vectors $\hat{i}-2 \hat{j}+3 k$ and $3 \hat{i}-2 \hat{j}+k$

- Watch Video Solution

4. Show that each of the given three vectors is a unit vector:

$$
\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}), \frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k}), \frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k}) \text { Also, show }
$$

that they are mutually perpendicular to each other.

- Watch Video Solution

5. Find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$

- Watch Video Solution

6. Evaluate the product $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$
7. Find $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a}+\vec{b})(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$

- Watch Video Solution

8. Find $|\vec{x}|$, if for a unit vector $\vec{a},(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=15$.

- Watch Video Solution

9. Find the magnitude of two vectors \vec{a} and \vec{b} having the same magnitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$.

- Watch Video Solution

10. If $\vec{a} \cdot \vec{a}=0$ and $\vec{a} \cdot \vec{b}=0$, then what can be concluded about the vector \vec{b}.

- Watch Video Solution

11. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

- Watch Video Solution

12. If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ are such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}, then find the value of λ.

D Watch Video Solution

13. Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$, for any two nonzero vectors \vec{a} and \vec{b}.

D Watch Video Solution

14. Show that the points $\mathrm{A}(1,2,7), \mathrm{B}(2,6,3)$ and $C(3,10,1)$ are collinear.

- Watch Video Solution

15. Show that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$ form the vertices of a right angled triangle.

- Watch Video Solution

16. If either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$, then $\vec{a} \cdot \vec{b}=0$ But the converse need not be true. Justify your answer with an example.

- Watch Video Solution

17. If the vertices A, B, C of a triangle $A B C$ are $(1,2,3),(1,0,0),(0,1,2)$, respectively, then find $\angle A B C$. [$\angle A B C$ is the angle between the vectors $\overrightarrow{B A}$ and $\overrightarrow{B C}$.

D Watch Video Solution

18. If \vec{a} is a nonzero vector of magnitude a and λ a nonzero scalar, then
$\lambda \vec{a}$ is unit vector if(A) $\lambda=1$ (B) $\lambda=-1$ (C) $a=|\lambda|$ (D) $a=\frac{1}{|\lambda|}$

- Watch Video Solution

Exercise 101

1. Classify the following as scalar and vector quantities. (i) time period
(ii) distance (iii) force (iv) velocity (v) work done
2. Classify the following measures as scalars and vectors.(i) 10 kg (ii) 2 meters north-west (iii) 40° (iv) 40 watt (v) 10^{-19} coulomb (vi) $20 \mathrm{~m} / \mathrm{s}^{2}$

- Watch Video Solution

3. Represent graphically a displacement of $40 \mathrm{~km}, 30^{\circ}$ east of north.

- Watch Video Solution

4. Answer the following as true or false.
(i) \vec{a} and $-\vec{a}$ are collinear.
(ii) Two collinear vectors are always equal in magnitude.
(iii) Two vectors having same magnitude are collinear.
(iv) Two collinear vectors having the same magnitude
5. In Figure (a square), identify the following vectors.
(i) Coinitial
(ii) Equal
(iii) Collinear but not equal

Fig 10.6

Watch Video Solution

