©゙" doubtnut

India's Number 1 Education App

PHYSICS

NCERT - NCERT PHYSICS(HINGLISH)

RAY OPTICS AND OPTICAL

INSTRUMENTS

Solved Examples

1. Suppose that the lower half of a concave mirror's reflecting surface is covered with an
opaque non-reflecting material. What effect will this have on the image of an object placed in front of the mirror ?

D Watch Video Solution

2. A mobile phone lies along the principal axis
of a concave mirror as shown in Fig. Show by
suitable diagram, the formation of its image.
Explain why the magnification is not uniform,
and distortion will occur depending on the
location of the mobile with respect to the
mirror.

- Watch Video Solution

3. An object is placed (i) 10 cm (ii) 5 cm in front of a convex mirror of radius of curvature 15 cm
. Find the position, nature and magnification of the image in each case.
4. Suppose while sitting in a parked car, you notice a jogger approaching towards you in the rear view mirror of $R=2 m$. If the jogger is running at a speed of $5 \mathrm{~ms}^{-1}$, how fast is the image of the jogger moving, when the jogger is
(a) 39 m
(b) 29 m

19 m and
(d) 9 m . away ?

- Watch Video Solution

5. The earth takes 24 hours to rotate once about its axis. How much time (in min) does
the sun take to shift by 1° when viewed from
the earth?
A. 2 min
B. 4 min
C. 6 min
D. 8 min

Answer: B

- Watch Video Solution

6. Light from a point source in air falls on a spherical glass surface. If $\mu=1.5$, and radius of curvature $=20 \mathrm{~cm}$, the distance of light source from the glass surface is 100 cm , at what position will the image be formed ?
(NCERT Solved Example)
7. A magician during a show makes a glass lens
$\mu=1.5$ disappear in a through of liquid.
What is the refractive index of the liquid ? Is the liquid water?

- Watch Video Solution

8. (i) If $f=+0.5 m$, what is the power of the lens?
(ii) The radii of curvature of the faces of a double convex lens are 9 cm and 15 cm . Its
focal length is 12 cm . What is the refractive index of glass ?
(iii) A convex lens has 20 cm focal length in air.

What is the focal length in water ? (Refractive index of air-water $=1.33$, refractive index of air-glass $=1.5$).

- Watch Video Solution

9. Find the position of the image formed by
the lens combination given in Fig.

D Watch Video Solution

Exercise

1. A small candle 2.5 cm in size is placed 27 cm in front of a concave mirror of radius of curvature 36 cm . At what distance from the mirror should a screen be placed in order to
receive a sharp image ? Describe the nature and size of the image. If the candle is moved closer to the mirror, how would the screen have to be moved?

D Watch Video Solution

2. A 4.5 cm needle is placed 12 cm away from a convex mirror of focal length 15 cm . Give the location of the image and the magnification.

Describe what happens as the needle is moved
farther from the mirror.
3. A tank is filled with water to a height of
12.5 cm . The apparent depth of a needle lying
at the bottom of the tank is measured by a microscope to be 9.4 cm . What is the refractive index of water ? If water is replaced by a liquid of refractive index 1.63 upto the same height, by what distance would the microscope have to be moved to focus on the needle again ?
4. Fig. (a) and (b) show refraction of an incident ray in air at 60° with the normal to a glass-air and water-air interface respectively. Predict the angle of refraction of an incident ray in water at 45° with the normal to a water glass interface. Take . ${ }^{a} \mu_{g}=1.32$.

- Watch Video Solution

5. A small bulb (assumed to be a point source)
is placed at the bottom of a tank containing water to a depth of 80 cm . Find out the area of the surface of water through which light from
the bulb can emerge. Take the value of refractive index of water to be $4 / 3$.

- Watch Video Solution

6. A prism is made of glass of unknown refractive index. A parallel beam of light is
incident on a face of the prism. By rotating the prism, the minimum angle of deviation is measured to be 40°. What is the refractive index of the prism ? If the prism is placed in
water $(\mu=1.33)$, predict the new angle of minimum deviation of the parallel beam. The refracting angle of prism is 60°.

D Watch Video Solution

7. A double convex lens is made of glass of refractive index 1.55 with both faces of same
radius of curvature. Find the radius of curvature required, if focal length is 20 cm .
A. 22 cm
B. 44 cm
C. 11 cm
D. 33 cm

Answer: A
(Watch Video Solution
8. A beam of light converges to a point P. A
lens is placed in the path of the convergent beam 12 cm from P. At what point does the beam converge if the lens is
(a) a convex lens of focal length 20 cm . (b) a concave lens of focal length 16 cm ?

D Watch Video Solution

9. An object of size 3.0 cm is placed 14 cm in
front of a concave lens of focal length 21 cm .

Describe the image produced by the lens.

What happens if the object is moved further from the lens?

D Watch Video Solution

10. What is the focal length of a convex lens of
focal length 30 cm in contact with a concave
lens of focal length 20 cm . Is the system a
converging or a diverging lens ? Ignore thickness of the lenses.
A. 30 cm
B. 60 cm
C. -30 cm
D. -60 cm

Answer: D

D Watch Video Solution

11. A compound microscope consists of an objects lens of focal length 2.0 cm and an eyepiece of focal length 20 cm ? If the system a
converging or a diverging lens? Ignore thickness of the lenses.

D Watch Video Solution

12. A person with a normal near point $(25 \mathrm{~cm})$
using a compound microscope with an
objective of focal length 8.0 mm and eye piece
of focal length 2.5 cm can bring an object
placed 9.0 cm from the objective in sharp
focus. What is the separation between the two
lenses ? Calculate the magnifying power of the

microscope?

D Watch Video Solution

13. A small telescope has an objective lens of
focal length 144 cm and an eye-piece of focal
length 6.0 cm . What is the magnifying power of the telescope ? What is the separation between the objective and the eye-piece?
14. (i) A giant refracting telescope at an observatory has an objective lens of focal length 15 m . If an eyepiece of focal length 1.0 cm is used, what is angular magnification of the telescope?
(ii) If this telescope is used to view the moon, what is the diameter of the image of the moon
formed by the objective lens ? the diameter of the moon is $3.48 \times 10^{6} \mathrm{~m}$, and the radius of lunar orbit is $3.8 \times 10^{8} \mathrm{~m}$.

D Watch Video Solution

15. Use the mirror equation to deduct that :
(a) an object between f and $2 f$ of a concave mirror produces a real image beyond $2 f$.
(b) a convax mirror always produces a virtual image independent of the location of the object.
(c) the virtual image produced by a convex mirror is always diminished in size and is located between the focus and the pole.
(d) an object placed between the pole and focus of a concave mirror produces a virtual and enlarged image.

- Watch Video Solution

16. A small pin fixed on a table top is viewed
from above from a distance of 50 cm . By what distance would the pin appear to be raised, if it be viewed from the same point through a 15 cm . Thick glass slab held parallel to the table ? μ of glass 1.5 Does the answer depend on location of the slab?
17. (a) Fig. shows a cross-section of a 'light pipe' made of a glass fiber of refractive index 1.68. The outer covering of the pipe is made of a material of refractive index 1.44 . What is the axis of the pipe for which total reflection inside the pipe take place as shown.
(b) What is the answer if there is no outer covering if the pipe ?

- Watch Video Solution

18. Answer the following questions:
(a) You have learnt that plane and convex mirrors produce virtual images of objects. Can
they produce real images under some circumstances? Explain.
(b) A virtual image, we always say, cannot be
caught on a screen. Yet when we 'see' a virtual
image, we are obviously bringing it on to the
'screen' (i.e., the retina) of our eye. Is there a contradiction?
(c) A diver under water, looks obliquely at a fisherman standing on the bank of a lake.

Would the fisherman look taller or shorter to the diver than what he actually is?
(d) Does the apparent depth of a tank of water change if viewed obliquely? If so, does the apparent depth increase or decrease?
(e) The refractive index of diamond is much greater than that of ordinary glass. Is this fact of some use to a diamond cutter?

Watch Video Solution

19. The image of a small electric bulb fixed on
the wall of a room is to be obtained on the opposite wall $3 m$ away by means of a large convex lens. What is the maximum possible focal length of the lens required for the purpose?

- Watch Video Solution

20. A screen is placed 90 cm from an object.

The image of the object on the screen is
formed by a convex lens at two different location separated by 20 cm . Determine the focal length of the lens.

D Watch Video Solution

21. a) Determine the effective focal length of
the combination of the two lenses in Exercise,
if they are placed 8.0 cm apart with their principal axes coincident. Does the answer depend on which side of the combination a beam of paralel light is incident? Is the
notions of effective focal length of this system
useful at all?
b) An object 1.5 cm in size is placed on the side of the convex lens in the arrangement a) above. The distance between the object and the convex lens is 40 cm . Determine the magnification produced by the two-lens system, and the size of the image.

D Watch Video Solution

22. At what angle should a ray of light be incident on the face of a prism of refracting angle 60°, so that it just suffers total internal reflection at the other face ? The refractive index of the prism is 1.524 .

D Watch Video Solution

23. A card sheet divided into squares each of
size $1 m m^{2}$ is being viewed at a distance of

9 cm through a magnifying glass (a converging
lens of focal length 10 cm) held close to the eye.
(a) What is the magnification produced by the lens ? How much is the area of each square to the virtual image ?
(b) What is the angular magnification (magnifying power) of the lens?
(c) Is the magnification in (a) equal to the magnifying power in (b) ? Explain

- Watch Video Solution

24. (i) At what distance should the lens be held
from the card sheet in order to view the squares distinctly with the maximum possible magnifying power?
(ii) What is the magnification in this case ?
(iii) Is the magnification equal to magnifying power in this case ? Explain.

- Watch Video Solution

25. What should be the distance between the object and magnifying glass if the virtual image of each square in the figure is to have an area of $6.25 \mathrm{~mm}^{2}$. Would you be able to see the squares distinctly with your eyes very close to the magnifier ?

- Watch Video Solution

26. a) The anlge subtended at the eye by an object is equal to the angle subtended at the
eye by the virtual image produced by a magnifying glass. In what sense then does a magnifying glass provide angular magnifications?
b) In viewing through a magnifying glass, one usually positions one's eyes very close to the lens. Does angular magnification change if the eye is moved back?
c) Magnifying power of a simple microscopes
is inversely proportional to the focal length of
the lens. What then stops us from using a convex lens of smaller and smaller focal length and achieving greater and greater magnifying
power?
d) Why must both the objective and the eyepiece of a compound microscope have short focal lengths?
e) When viewing through a compound microscope, our eyes should be positioned not
on the eyepiece but a short distance away from it fot best veiwing. Why? How much should be that short distance between the eye and eyepiece?
27. An angular magnification (magnifying power) of $30 X$ is desired using an objective of focal length 1.25 cm and an eye piece of focal length 5 cm . How will you set up the compound microscope?

D Watch Video Solution

28. A small telescope has an objective lens of
focal length 140 cm and an eyepiece of focal
length 5.0 cm . what is the magnifying power of the telescope for viewing distant objects when
(a) the telescope is in normal adjustment (i.e, when the final image is at infinity),
(b) The final image is formed at the least distance of distinct vision (25 cm)

- Watch Video Solution

29. (a) For the telescope described what is the
separation between the objective lens and eye piece?
(b) If this telescope is used to view a 100 m tall tower 3 km away, what is the height of the
image of the tower formed by the objective lens?
(c) What is the height of the final image of the tower if it is formed at $25 \mathrm{~cm}^{`}$?

- Watch Video Solution

30. A Cassegrainian telescope uses two mirrors as shown in Fig. Such a telescope is built with the mirrors 20 mm apart. If the radius of curvature of large mirror is 220 mm
and the small mirror is 40 mm , where will the final image of an object at infinity be ?

D Watch Video Solution

31. Light incident normally on a plane mirror attached to a galvanometer coil retraces backwards a shown in Fig. A current in the coil produces a deflection of 3.5° in the mirror. What is the displacement of the reflected spot
of light on a screen placed $1.5 m$ away?

D Watch Video Solution

32. Fig. shows an equiconvex lens (of refractive index 1.5) in contact with a liquid layer on top of a plane mirror. A small needle with its tip on
the principal axis is moved along the axis until
its inverted image is found at the position of
the needle. The distance of the needle from
the lens is measured to be 45.0 cm . The liquid
is removed and the experiment is repeated.

The new distance is measured to be 30.0 cm .

What is the refractive index of the liquid ?

