©゙doubtnut

India's Number 1 Education App

MATHS

NCERT - NCERT Mathematics(HINGLISH)

CONGRUENCE OF TRIANGLES

Exercise 72

1. If $\triangle A B C$ and $\triangle P Q R$ are to be congruent, name one additional pair of corresponding parts. What criterion did you use ?

- Watch Video Solution

2. In $\triangle A B C, \angle A=30^{\circ}, \angle B=40^{\circ}$ and $\angle C=110^{\circ}$

In $\triangle P Q R, \angle P=30^{\circ}, \angle Q=40^{\circ}$ and $\angle R=110^{\circ}$

A student says that $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$ by AAA congruence criterion. Is he justified? Why or why not?

- Watch Video Solution

3. In the figure, the two triangles are congruent.The corresponding parts are marked. We can Write $\Delta R A T \cong$?

- Watch Video Solution

4. Complete the congruence statement : $\triangle B C A E$?

- Watch Video Solution

5. In a squared sheet, draw two triangles of equal areas such that(i) the triangles are congruent.(ii) the triangles are not congruent. What can you say about their perimeters?

- Watch Video Solution

6. (a) Given: $\mathrm{AC}=\mathrm{DF}$
$A B=D E$
$B C=E F$
So, $\triangle A B C \cong \triangle D E F$

(b) Given: $\mathrm{ZX}=\mathrm{RP}$
$R Q=Z Y$
$\angle P R Q=\angle X Z Y$

So, $\triangle P Q R \cong \triangle X Y Z$

(c) Given: $\angle M L N=\angle F G H$
$\angle \mathrm{NML}=\angle \mathrm{GFH}$
$M L=F G$

So, $\Delta \mathrm{LMN} \cong \triangle \mathrm{GFH}$

(d) Given: EB = DB
$A E=B C$
$\angle A=\angle C=90^{\circ}$

So, $\triangle \mathrm{ABE} \cong \triangle \mathrm{CDB}$

D Watch Video Solution

7. You want to show that $\triangle A R T \cong \triangle P E N$,
(a) If you to use $S S S$ criterion, then need to show
(i) $A R=$ (ii) $R T=$ (iii) $A T=$
(b) If it is given that $T=N$ and you are to use $S A S$ criterion, you need to have
(i) $R T=$ and (ii) $P N=$
(c) If it is given that $A T=P N$ and you are to use $A S A$ criterion, you need to have
(i) ? (ii) ?

8. You have to show that $\triangle A M P \cong \triangle A M Q$. In the following proof, supply the missing reasons

Steps	Reasons
(i) PM = QM	(i) ...
(ii) \angle PMA $=\angle$ QMA	(ii) \ldots
(iii) $A M=A M$	(iii) \ldots
(iv) $\triangle A M P \cong \triangle A M Q$	(iv) \ldots

- Watch Video Solution

9. Explain, why $\triangle A B C \cong \triangle$ FED

(Watch Video Solution

Exercise 71

1. . Complete the following statements:
(a) Two line segments are congruent if \qquad .
(b) Among two congruent angles, one has a measure of 70°; the measure of the other angle is \qquad .
(c) When we write $\angle \mathrm{A}=\angle \mathrm{B}$, we actually mean \qquad

(Watch Video Solution

2. If $\triangle A B C \cong \triangle F E D$ under the correspondence $A B C \leftrightarrow F E D$, write all the corresponding congruent parts of the triangles

- Watch Video Solution

3. Give any two real-life examples for congruent shapes

(D) Watch Video Solution

4. If $\triangle \mathrm{DEF} \cong \triangle \mathrm{BCA}$, write the part(s) of $\triangle \mathrm{BCA}$ that correspond to
(i) $\angle \mathrm{E}$ (ii) $\overline{E F}$ (iii) $\angle \mathrm{F}$ (iv) $\overline{D F}$

- Watch Video Solution

Solved Examples

1. Given below are measurements of some parts of two triangles.

Examinewhether the two triangles are congruent or not, using RHS congruencerule. In case of congruent triangles, write the result in symbolic form
$\triangle A B C$
$\triangle P Q R$
(i) $\angle B=90^{\circ}, A C=8 \mathrm{~cm}, A B=3 \mathrm{~cm} \quad \angle P=90^{\circ}, P R=3 \mathrm{~cm}$
(ii) $\angle A=90^{\circ}, A C=5 \mathrm{~cm}, B C=9 \mathrm{~cm} \quad \angle Q=90^{\circ}, P R=8 \mathrm{~cm}$

- Watch Video Solution

2. In Fig 7.31, $D A \perp A B, C B \perp A B$ and $A C=B D$. State the three pairs of equal parts in $\triangle A B C$ and $\triangle D A B$. Which of the following statements is meaningful?
(i) $\triangle A B C \cong \triangle B A D$
(ii) $\triangle A B C \cong A B D$

- Watch Video Solution

3. By applying $A S A$ congruence rule, it is to be established that $\triangle A B C \cong \triangle Q R P$ and it is given that $B C=R P$. What additional information is needed to establish the congruence?
4. In the given figure, can you use $A S A$ congruence rule and conclude that $\triangle A O C \cong \triangle B O D$?

- Watch Video Solution

5. Given below are measurements of some parts of two triangles. Examine whether the two triangles are congruent or not, by using $S A S$ congruence rule. If the triangles are congruent, write them in symbolic form.

$$
\begin{array}{l|l}
\triangle A B C & \triangle D E F \\
\hline \text { (a) } A B=7 \mathrm{~cm}, B C=5 \mathrm{~cm}, \angle B=50^{\circ} & D E=5 \mathrm{~cm}, E F=7 \mathrm{c} \mathrm{\imath} \\
\hline \text { (b) } A B=4.5 \mathrm{~cm}, A C=4 \mathrm{~cm}, \angle A=60^{\circ} & D E=4 \mathrm{~cm}, F D=4 . \\
\hline \text { (c) } B C=6 \mathrm{~cm}, A C=4 \mathrm{~cm}, \angle B=35^{\circ} & D F=4 \mathrm{~cm}, E F=6 \mathrm{c}
\end{array}
$$

6. In the given figure, $A B=A C$ and $A D$ is the bisector of ? $B A C$. (i) State three pairs of equal parts in triangles $A D B$ and $A D C$. (ii) Is $\Delta A D B \cong \triangle A D C$? Given reasons. (iii) Is $\angle B=\angle C$? Given reasons

- Watch Video Solution

7.

In
triangles
$A B C$ and $P Q R, A B=3.5 \mathrm{~cm}, B C=7.1 \mathrm{~cm}, A C=5 \mathrm{~cm}, P Q=7.1 \mathrm{~cm}, Q$
Examine whether the two triangles are congruent or not. If yes, write the congruence relation in symbolic form.
8. In the given figure, $A D=C D$ and $A B=C B$. (i) state the three pairs of equal in $\triangle A B D$ and $\Delta C B D$. (iii) Is $\triangle A B D[\equiv \sim ?] \Delta C B D$? Why or why not ? (iii) Does $B D$ bisect ? $A B C$? Given reasons

- Watch Video Solution

9. $\triangle A B C$ and $\triangle P Q R$ are congruent under the correspondence : $A B C \mapsto R Q P$ write the parts of $\triangle A B C$ that correspond to ? (i) $\overline{P Q}$ (ii)
$\angle Q$ (iii) $\overline{R P}$
