©゙" doubtnut

India's Number 1 Education App

MATHS

NCERT - NCERT

MATHEMATICS(ENGLISH)

APPLICATION OF DERIVATIVES

Solved Examples

1. Use differential to approximate $\sqrt{36.6}$
2. Find the equation of tangent to the curve given by $x=a \sin ^{3} t, y=b \cos ^{3} t$... (1)at a point where $t=\frac{\pi}{2}$.

- Watch Video Solution

3. Find the approximate value of $f(3.02)$,
where $f(x)=3 x^{2}+5 x+3$.
A. 45.46
B. 37.46
C. 27.56
D. 39.40

Answer: A

D Watch Video Solution

4. The line $y=m x+1$ is a tangent to the curve
$y^{2}=4 x$ if the value of m is(A) 1 (B) 2(C) 3(D)

1/2.

D Watch Video Solution
5. If the radius of a sphere is measured as 9 cm with an error of 0.03 cm , then find the approximate error in calculating its volume.

D Watch Video Solution

6. Find the approximate change in the volume
V of a cube of side x meters caused by increasing the side by 2%.
7. Find the maximum and minimum values of f,
if any, of the function given by
$f(x)=|x|, x \in R$.

D Watch Video Solution

8. Find the maximum and the minimum values,
if any, of the function f given by
$f(x)=x^{2}, x \in R$.

D Watch Video Solution

9. Find all points of local maxima and local minima of the function f given by $f(x)=x^{3}-3 x+3$.

D Watch Video Solution

10. Find the maximum and the minimum
values, if any, of the function given by
$f(x)=x, x \in(0,1)$
11. Let $f(x)=3 x^{4}+4 x^{3}-12 x^{2}+12$. Find local maximum and minimum value of the $f(x)$?

- Watch Video Solution

12. Find all the points of local maxima and
local minima of the function f given by
$f(x)=2 x^{3}-6 x^{2}+6 x+5$.
13. Find all the points of local maxima and local minima of the function f given by $f(x)=2 x^{3}-6 x^{2}+6 x+5$.

D Watch Video Solution

14. Find local minimum value of the function f given by $f(x)=3+|x|, x \in R$.
15. Let $A B$ and $C D$ be two vertical poles at point
A and B, respectively, If $A B=16 \mathrm{~m}, C D=22 \mathrm{~m}$
and distance between these two poles AC is

20 m , then find the distance of a point R on $A C$ such that $B R^{2}+D R^{2}$ is minimum.

D Watch Video Solution

16. If the length of three sides of a trapezium
other than the base is 10 cm each, find the area of the trapezium, when it is maximum.
17. Find two positive numbers whose sum is 15 and the sum of whose squares is minimum.

D Watch Video Solution

18. Find the shortest distance of the point

$$
\begin{aligned}
& (0, c) \text { from the parabola } \\
& y=x^{2}, \text { where } 0 \leq c \leq 5
\end{aligned}
$$

19. Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone.

- Watch Video Solution

20. Find the absolute maximum and minimum
values of a function f given by
$f(x)=2 x^{3}-15 x^{2}+36 x+1$ on the interval
$[1,5]$.
21. Show that the function $f(x)=\cos x$
(i) is strictly decreasing function in $] 0, \pi[$.
(ii) is neither increasing nor decreasing in
$] 0,2 \pi[$.
(iii) is neither increasing nor decreasing in
] $0,2 \pi[$.
(D) Watch Video Solution
22. Prove that the function f given by $f(x)=x^{3}-3 x^{2}+4 x$ is strictly increasing on R.

- Watch Video Solution

23. Show that the function given by
$f(x)=7 x-3$ is strictly increasing on R.

D Watch Video Solution
24. The total revenue received from the sale of units of a product is given by. Find the marginal revenue when .

D Watch Video Solution

25. The total cost $C(x)$ in Rupees, associated with the production of x units of an item is given by
$C(x)=0.005 x^{3}-0.02 x^{2}+30 x+5000$
Find the marginal cost when 3 units are
produced, where by marginal cost we mean the instantaneous rate of change

D Watch Video Solution

26. The length x of a rectangle is decreasing at
the rate of $3 \mathrm{~cm} /$ minute and the width y is
increasing at the rate of $2 \mathrm{~cm} /$ minute. When
$x=10 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$, find the rates of
change of (a) the perimeter and (b) the area of
the rectangle.

- Watch Video Solution

27. A stone is dropped into a quiet lake and waves move in a circle at a speed of $3.5 \mathrm{~cm} / \mathrm{sec}$.

At the instant when the radius of the circular
wave is 7.5 cm , how fast is the enclosed area increasing?

- Watch Video Solution

28. The volume of a cube is increasing at the rate of $9 \mathrm{~cm}^{3} / \mathrm{sec}$. How fast is the surface area
increasing when the length of an edge is 10 cm ?

D Watch Video Solution

29. Find the rate of change of the area of a circle with respect to its radius r when $r=5 \mathrm{~cm}$.

D Watch Video Solution
30. Find the equation of the tangent to the
curve $y=\frac{x-7}{(x-2)(x-3)}$ at the point where it cuts the x-axis.

D Watch Video Solution

31. Find the equations of the tangent and the normal to the curve $x^{2 / 3}+y^{2 / 3}=2$ at $(1,1)$ at indicated points.

D Watch Video Solution

32. Find the intervals in which the function f given by $f(x)=x^{2}-4 x+6$ is (a) strictly increasing (b) strictly decreasing

Watch Video Solution

33. Find the intervals in which the function f
given by $f(x)=4 x^{3}-6 x^{2}-72 x+30$ is
strictly increasing (b) strictly decreasing

D Watch Video Solution

34.) Find the intervals in which the function
$\sin 3 x, x \in\left[0, \frac{\pi}{2}\right]$, is (a) increasing decreasing

- View Text Solution

35. Find the intervals in which the function f
given $f(x)=s \in x+\cos x, 0 \leq x \leq 2 \pi$,
is strictly increasing or strictly decreasing.

- Watch Video Solution

36. Find the slope of the tangent to the curve $y=x^{3}-x a t x=2$.

D Watch Video Solution

37. Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is $4 r / 3$. Also,
find maximum volume in terms of volume of the sphere.
38. Find the equation of all lines having slope

2 and being tangent to the curve
$y+\frac{2}{x-3}=0$.

D Watch Video Solution

39. Find the points on the curve $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ at which the tangents are parallel to the x-axis and y-axis.
40. A circular disc of radius 3 cm is being heated. Due to expansion, its radius increases at the rate of $0.05 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which its area is increasing when radius is 3.2 cm.

D Watch Video Solution

41. Show that the function f given by
$f(x)=\tan ^{-1}(\sin x+\cos x), x>0$ is
always an strictly increasing function in $\left(0, \frac{\pi}{4}\right)$.

D Watch Video Solution

42. A water tank has the shape of an inverted right circular cone with its axis vertical and vertex lowermost. Its semi-vertical angle is $\tan ^{-1}(0.5)$. Water is poured into it at a constant rate of 5 cubic metre per hour. Find the rate at which the level of the water is
rising at the instant when the depth of water in the tank is 4 m .

D Watch Video Solution

43. A car starts from a point at time second and stops at point. The distance, in metres, covered by it, in seconds is given by. Find the time taken by it to reach at and also find distance between and .

D Watch Video Solution

44. An Apache helicopter of enemy is flying along the curve given by $y=x^{2}+7$. A soldier, placed at (3, 7), wants to shoot down the helicopter when it is nearest to him. Find the nearest distance.

D Watch Video Solution

45. Find absolute maximum and minimum
values of a function f given by
$f(x)=12 x^{4 / 3}-6 x^{1 / 3}, x \in[-1,1]$.
46. Find intervals in which the function given
by $f(x)=\frac{3}{10} x^{4}-\frac{4}{5} x^{3}-3 x^{2}+\frac{36}{5} x+11$
is (a) strictly increasing (b) strictly decreasing.

D Watch Video Solution

47. Find the equation of tangents to the curve
$y=\cos (x+y),-2 \pi \leq x \leq 2 \pi \quad$ that are
parallel to the line $x+2 y=0$.
48. Find the equation of the normal to the curve $x^{2}=4 y$ which passes through the point (1, 2).

D Watch Video Solution

49. A man 2 metres high walks at a uniform speed of $5 \mathrm{~km} / \mathrm{hr}$ away from a lamp-post 6 metres high. Find the rate at which the length of his shadow increases.
50. An open topped box is to be constructed by removing equal squares from each corner of a 3 metre by 8 metre rectangular sheet of aluminium and folding up the sides. Find the volume of the largest such box.
A. $\frac{200}{3} m^{3}$
B. $\frac{250}{3} m^{3}$
C. $\frac{100}{3} m^{3}$
D. $\frac{350}{3} m^{3}$

Answer: A

D Watch Video Solution

51. A manufacturer can sell x items at a price of

Rs. $\left(5-\frac{x}{100}\right)$ each. The cost price of x items
is Rs. $\left(\frac{x}{5}+500\right)$. Find the number of items he should sell to earn maximum profit.
A. $x=140$
B. $x=240$
C. $x=340$

D. $x=440$

Answer: B

D Watch Video Solution

Exercise 63

1. Find the equations of the tangent and normal to the parabola $y^{2}=4 a x$ at the point
$\left(a t^{2}, 2 a t\right)$.
2. Find the equation of all lines having slope 2 which are tangents to the curve
$y=\frac{1}{x-3}, x \neq 3$

- View Text Solution

3. Find the equation of all lines having slope 1
that are tangents to the curve
$y=\frac{1}{x-1}, x \neq 1$.
4. Find points on the curve $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ at which the tangents are(i) parallel to x-axis (ii) parallel to y-axis.

D Watch Video Solution
5. Find the equations of all lines having slope

0 which are tangent to the curve
$y=\frac{1}{x^{2}-2 x+3}$.

- Watch Video Solution

6. Find the equation of the tangent line to the
curve $y=x^{2}-2 x+7$ which is
(i) parallel to the line $2 x-y+9=0$
(b) perpendicular to the line $5 y-15 x=13$.

D Watch Video Solution

7. Find the equations of the tangent and normal to the given curves at the indicatedpoints:(i)
$y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $\quad(0,5)$ (ii)
$y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $\quad(1,3)$ (iii)
$y=x^{3}$ at $\quad(1,1)$ (iv) $\quad y=x^{2}$ at $\quad(0,0)$ (v)
$x=\cos t, y=\sin t a t t=\frac{\pi}{4}$

- Watch Video Solution

8. Find the points on the curve $y=x^{3}$ at which
the slope of the tangent is equal to the y coordinate of the point.
9. Show that the tangents to the curve $y=7 x^{3}+11$ at the points where $x=2$ and $x=-2$ are parallel.

D Watch Video Solution

10. Find the points on the curve
$x^{2}+y^{2}-2 x-3=0$ at which the tangents
are parallel to the x-axis.

D Watch Video Solution

11. For the curve $y=4 x^{3}-2 x^{5}$, find all the points at which the tangents pass through the origin.

- Watch Video Solution

12. Find the slope of the tangent to the curve
$y=\frac{x-1}{x-2}, x \neq 2$ at $x=10$.

- Watch Video Solution

13. The slope of the tangent to the curve $y=x^{3}-x+1$ at the point whose x coordinate is 2 is

D Watch Video Solution

14. Find the slope of the tangent to the curve
$y=3 x^{4}-4 x$ at $x=4$.

D Watch Video Solution
15. Find the slope of the normal to the curve
$x=1-a \sin \theta, y=b \cos ^{2} \theta$ at $\theta=\frac{\pi}{2}$.

D Watch Video Solution
16. The points at which the tangents to the
curve $y=x^{3}-12 x+18$ are parallel to the Xaxis are

D Watch Video Solution
17. Find the slope of the tangent to the curve $y=x^{3}-3 x+2$ at the point whose x coordinate is 3 .

D Watch Video Solution

18. Find the slope of the normal to the curve
$x=a \cos ^{3} \theta, y=\sin ^{3} \theta$ at $\theta=\frac{\pi}{4}$.

D View Text Solution
19. Find the point on the curve $y=(x-2)^{2}$
at which the tangent is parallel to the chord joining the points $(2,0)$ and $(4,4)$.

- Watch Video Solution

20. Find the point on the curve
$y=x^{3}-11 x+5$ at which the equation of tangent is $y=x-11$.
21. Find the equations of the normal to the curve $y=x^{3}+2 x+6$ which are parallel to the line $x+14 y+4=0$.

- Watch Video Solution

22. Show that the curves $x=y^{2}$ and $x y=k$ cut at right angles, if $8 k^{2}=1$.

D Watch Video Solution

23. Find the equations of the tangent and normal to the hyperbola
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $\left(x_{0}, y_{0}\right)$.

D Watch Video Solution

24. Find the equation of the tangent to the
curve $y=\sqrt{3 x-2}$ which is parallel to the
line $4 x-2 y+5=0$.
25. The slope of the normal to the curve
$y=2 x^{2}+3 \sin \mathrm{x}$ at $x=0 \mathrm{is}(\mathrm{A}) 3$ (B) $\frac{1}{3}$ (C) -3
(D) $-\frac{1}{3}$

D Watch Video Solution
26. The line $y=x+1$ is a tangent to the curve $y^{2}=4 x$ at the $\operatorname{point}(\mathrm{A})(1,2)(\mathrm{B})(2,1)$
(C) $(1,2)(\mathrm{D})(1,2)$
(Watch Video Solution
27. Find the equation of the normal at the point $\left(a m^{2}, a m^{3}\right)$ for the curve $a y^{2}=x^{3}$.

- Watch Video Solution

Miscellaneous Exercise

1. Show that the altitude of the right circular
cone of maximum volume that can be inscribed in a sphere of radius r is $4 r / 3$. Also,
find maximum volume in terms of volume of the sphere.

- Watch Video Solution

2. Find the absolute maximum and minimum
values of the function f given by
$f(x)=\cos ^{2} x+\sin x, x \in[0, \pi]$.

- Watch Video Solution

3. Show that the height of the cylinder of maximum volume that can be inscribed in a
sphere of radius R is $\frac{2 R}{\sqrt{3}}$. Also find the maximum volume.

D Watch Video Solution
4. Let f be a function defined on $[a, b]$ such
that $f^{\prime}(x)>0$, for all $x \in(a, b)$. Then prove that f is an increasing function on (a, b).

- Watch Video Solution

5. A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m . Find the dimensions of the window to admit maximum light through the whole opening.

D Watch Video Solution

6. The sum of the perimeter of a circle and square is k, where k is some constant. Prove
that the sum of their areas is least when the
side of square is double the radius of the circle.

D Watch Video Solution

7. Find the points at which the function f given
by $f(x)=(x-2)^{4}(x+1)^{3}$ has
local maxima
(ii)local minima
point of inflection.
8. A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.

Show that the maximum length of the hypotenuse is $\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{3}{2}}$.

- Watch Video Solution

9. A cylindrical tank of radius 10 m is being
filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of (a) $1 \mathrm{~m} / \mathrm{hr}$ (b) $0.1 \mathrm{~m} / \mathrm{hr}$ (c) $1.1 \mathrm{~m} / \mathrm{h}$ (d) $0.5 \mathrm{~m} / \mathrm{hr}$

- Watch Video Solution

10. Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle is one-third that of the cone and the greatest volume of cylinder is $\frac{4}{27} \pi h^{3} \tan ^{2} \alpha$.
11. Find the intervals in which the function f
given by $f(x)=\frac{4 \sin x-2 x-x \cos x}{2+\cos x} i s$ increasing decreasing, $x \in(0,2 \pi)$

D Watch Video Solution

12. Find the intervals in which the function f
given by $f(x)=x^{3}+\frac{1}{x^{3}}, x \neq 0$
increasing and decreasing.
13. Find the equation of the normal to curve $x^{2}=4 y$ which passes through the point $(1,2)$.

- Watch Video Solution

14. Show that the normal at any point θ to the

curve

$x=a \cos \theta+a \theta \sin \theta, y=a \sin \theta-a \theta \cos \theta$
is at a constant distance from the origin.
15. Show that the function given by
$f(x)=\frac{\log x}{x}$ has maximum at $x=e$.

D Watch Video Solution

16. The two equal sides of an isosceles triangle
with fixed base b are decreasing at the rate of
$3 \mathrm{~cm} / \mathrm{s}$. How fast is the area decreasing when
the two equal sides are equal to the base?

D Watch Video Solution

17. Find the area of the greatest isosceles triangle that can be inscribed in the ellipse $\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)=1 \quad$ having \quad its vertex coincident with one extremity of the major axis.

D Watch Video Solution

18. A tank with rectangular base and rectangular sides, open at the top is to be constructed so that its depth is $2 m$ and
volume is $8 \mathrm{~m}^{3}$. If building of tank costs $R s .70$ per sq. metre for the base and $R s .45$ per sq. metre for sides, what is the cost of least expensive tank?

- Watch Video Solution

19. The slope of the tangent to the curve
$x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$ at \quad the
point $(2,-1)$ is(A) $\frac{22}{7}$ (B) $\frac{6}{7}$ (C) $\frac{7}{6}$ (D) $\frac{-6}{7}$

- Watch Video Solution

20. The line $y=m x+1$ is a tangent to the curve $y^{2}=4 x$ if the value of m is
(A) 1
(B) 2
(C) 3
(D) $\frac{1}{2}$

D Watch Video Solution

21. The normal at the point $(1,1)$ on the curve
$2 y+x^{2}=3$ is
(A) $x-y=0$
(B) $x y=0$
(C) $x+y+1=0$
(D) $x y=0$

D Watch Video Solution

22. The normal to the curve $x^{2}=4 y$ passing
$(1,2)$ is
(A) $x+y=3$
(B) $x y=3$
(C) $x+y=1$
(D) $x y=1$

Watch Video Solution

23. Find the points on the curve $9 y^{2}=x^{3}$ where normal to the curve makes equal intercepts with the axes.

- Watch Video Solution

Exercise 64

1. If the radius of a sphere is measured as 9 m
with an error of 0.03 m , then find the
approximate error in calculating its surface area.

D Watch Video Solution

2. If the radius of a sphere is measured as 7 m with an error of 0.02 m , then find the approximate error in calculating its volume.

D Watch Video Solution
3. Find the approximate value of $f(5.001)$, where $f(x)=x^{3}-7 x^{2}+15$.

- Watch Video Solution

4. Find the approximate value of $f(2.01)$,
where $f(x)=4 x^{2}+5 x+2$.

- Watch Video Solution

5. Using differentials, find the approximate value of each of the following up to 3 places of decimal.(i) $\sqrt{25.3}$ (ii) $\sqrt{49.5}$ (iii) $\sqrt{0.6}$ (iv) $(0.009)^{\frac{1}{3}}(\mathrm{v})(0.999)^{\frac{1}{10}}(\mathrm{vi})(15)^{\frac{1}{4}}$

- Watch Video Solution

6. The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is(A) $0.06 x^{3} m^{3}$ (B) $0.6 x^{3} m^{3}$ (C)
$0.09 x^{3} m^{3}$ (D) $0.9 x^{3} m^{3}$
7. If $f(x)=3 x^{2}+15 x+5$, then the approximate value of $f(3.02)$ is(A) 47.66

D Watch Video Solution

8. Find the approximate change in the volume
' V ' of a cube of side x metres caused by decreasing the side by 1%.
9. Find the approximate change in the volume
V of a cube of side x meters caused by increasing side by 1%.

D Watch Video Solution

Exercise 65

1. Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum

D Watch Video Solution

2. For all real values of x, the minimum value of
$\frac{1-x+x^{2}}{1+x+x^{2}}$ is(A) 0 (B) 1 (C) 3 (D) $\frac{1}{3}$

D Watch Video Solution

> 3. The maximum value of
> $[x(x-1)+1]^{\frac{1}{3}}, 0 \leq x \leq \operatorname{lis}(\mathrm{A})\left(\frac{1}{3}\right)^{\frac{1}{3}}$
> $\frac{1}{2}$ (B) 1 (D) 0
4. Show that the semi vertical angle of a right circular cone of maximum volume of a given slant height is $\tan ^{-1} \sqrt{2}$.

- Watch Video Solution

5. A square piece of tin of side 18 cm is to be made into a box without top, by cutting a square from each corner and folding up the
flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maxi

- Watch Video Solution

6. Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.

- Watch Video Solution

7. Find two positive numbers x and y such that their sum is 35 and the product $x^{2} y^{5}$ is maximum.

D Watch Video Solution

8. Find two positive numbers x and y such
that $x+y=60$ and $x y^{3}$ is maximum.

D Watch Video Solution

9. Find two numbers whose sum is 24 and whose product is as large as possible.

- Watch Video Solution

10. Find the maximum and minimum values of
$f(x)=x+\sin 2 x$ in the interval $[0,2 \pi]$

D Watch Video Solution

11. It is given that at $x=1$, the function $x^{4}-62 x^{2}+a x+9$ attains its maximum value on the interval $[0,2]$. Find the value of a.

D Watch Video Solution

12. Find the maximum value of
$2 x^{3}-24 x+107$ in the interval $[1,3]$. Find the maximum value of the same function in
$[-3,-1]$.
13. Find the maximum and minimum values, if any, of the function f given by $f(x)=3-|x|$

D Watch Video Solution

14. Find the maximum and minimum values, if any, of the following functionsgiven by(i)
$f(x)=|x+2|-1$ (ii) $g(x)=-|x+1|+3$
(iii) $\quad h(x)=\sin (2 x)+5$
$f(x)=|\sin 4 x+3|$
15. Find the points of local maxima or local minima, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum values, as the case
may be: $f(x)=\frac{x}{2}+\frac{2}{x}, x>0$
16. Prove that the following functions do not have maxima or minima:
(i) $f(x)=e^{x} \quad(i i) g(x)=\log x$
$(i i i) h(x)=x^{3}+x^{2}+x+1$

- Watch Video Solution

17. Find the absolute maximum value and the absolute minimum value of
$f(x)=\sin x+\cos x$ in $[0, \pi]$
18. Find the maximum profit that a company can make, if the profit function isgiven by $p(x)=41-24 x-18 x^{2}$

D Watch Video Solution

19. Find the maximum value and the minimum
value and the minimum value of
$3 x^{4}-8 x^{3}+12 x^{2}-48 x+25$ on the interval
$[0,3]$.
20. At what points in the interval $[0,2 \pi]$, does
the function $\sin 2 x$ attain its maximum value?

D Watch Video Solution

21. What is the maximum value of the function
$\sin x+\cos x ?$

D Watch Video Solution
22. A rectangular sheet of tin 45 cm by 24 cm
is to be made into a box without top by cutting off squares from the corners and folding up the flaps. What should be the side of the square in order the volume of the box is maximum.
A. $x=18$
B. $x=24$
C. $x=5$
D. None of these

Answer: C

D Watch Video Solution

23. A wire of length 28 m is to be cut into two
pieces. One of the pieces is to be made into a
square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?

$$
\text { A. } L_{1}=\frac{112}{\pi+4}, L_{1}=\frac{28 \pi}{\pi+4}
$$

B. $L_{1}=\frac{142}{\pi+4}, L_{1}=\frac{28 \pi}{\pi+4}$
C. $L_{1}=\frac{112}{\pi+4}, L_{1}=\frac{\pi}{\pi+4}$
D. None of these

Answer: A

D Watch Video Solution

24. Prove that the volume of the largest cone,
that can be inscribed in a sphere of radius R. is $\frac{8}{27}$ of the volume of the sphere.
25. Show that the height of a closed right circular cylinder of given surface and maximum volume, is equal to the diameter of its base.

D Watch Video Solution

26. Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic
centimetres, find the dimensions of the can which has the minimum surface area?

D Watch Video Solution
27. Show that semi-vertical angle of right circular cone of given total surface area and maximum volume is $\sin ^{-1} \frac{1}{3}$.

D Watch Video Solution

28. The point on the curve $x^{2}=2 y$ which is nearest to the point $(0,5)$ is

D Watch Video Solution

29. Show that the right-circular cone of least
curved surface and given volume has an altitude equal to $\sqrt{2}$ times the radius of the base.
30. Prove that $f(\theta)=\frac{4 \sin \theta}{2+\cos \theta}-\theta$ is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$.

D Watch Video Solution

2. Find the values of x for which
$f(x)=[x(x-2)]^{2}$ is an increasing function.

Also, find the points on the curve, where the tangent is parallel to x-axis.
3. Show that the function given by $f(x)=3 x+17$ is increasing on R.

D Watch Video Solution

4. Show that $f(x)=\sin x$ is increasing on
($0, \pi / 2$) and decreasing on $(\pi / 2, \pi)$ and neither increasing nor decreasing in $(0, \pi)$.
5. Show that the function given by $f(x)=e^{2 x}$
is strictly increasing on R .

- Watch Video Solution

6. Find the intervals in which the function f
given by $f(x)=2 x^{3}-3 x^{2}-36 x+7$ is
strictly increasing (b) strictly decreasing

D Watch Video Solution

7. Find the intervals in which the function f given by $f(x)=2 x^{2}-3 x$ is(a) strictly increasing (b) strictly decreasing

D Watch Video Solution

8. Show that $y=\log (1+x)-\frac{2 x}{2+x}, x \succ 1$ is an increasing function of x throughout its domain.
9. Find the intervals in which the following functions are strictly increasing or decreasing:
(a $\quad x^{2}+2 x-5$
(b) $10-6 x-2 x^{2}$
$6-9 x-x^{2}(\mathrm{~d})(x+1)^{3}(x-3)^{3}$

- Watch Video Solution

> 10. Prove that the function
> $f(x)=x^{3}-3 x^{2}+3 x-100$ is increasing on
R.
11. The interval in which $y=x^{2} e^{-x}$ is increasing is:

D Watch Video Solution
12. Which of the following functions are decreasing on $\left(0, \frac{\pi}{2}\right)$?
(a) $\cos x(b) \cos 2 x$
(c) $\cos 3 x(d) \tan x$

D Watch Video Solution
13. On which of the following intervals is the
function f given by
$f(x)=x^{100}+\sin x-1$ strictly decreasing?

D Watch Video Solution

14. Prove that the logarithmic function is strictly increasing on $(0, \infty)$.

D Watch Video Solution
15. Prove that the function f given by $f(x)=x^{2}-x+1$ is neither strictly increasing nor strictly decreasing on $(1,1)$.

D View Text Solution

16. Prove that the function f given by $f(x)=\log \sin x f(x)=\log \sin x$ is strictly increasing on $\left(0, \frac{\pi}{2}\right)$ and strictly decreasing on $\left(\frac{\pi}{2}, \pi\right)$.
17. Prove that the function f given by $f(x)=\log \cos x$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$ and strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$ prove that the function f given by $f(x)=\log \sin x$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$ and strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$.

- Watch Video Solution

18. For what values of a the function f given by
$f(x)=x^{2}+a x+1$ is increasing on $[1,2]$?

- Watch Video Solution

19. Let I be an interval disjointed from
$[-1,1]$. Prove that the function
$f(x)=x+\frac{1}{x}$ is increasing on I.

D Watch Video Solution

Exercise 61

1. The total revenue in Rupees received from
the sale of x units of a product is given by
$R(x)=3 x^{2}+36 x+5 . \quad$ The marginal revenue, when $x=15$ is (A) 116 (B) 96 (C) 90
(D) 126

D Watch Video Solution

2. A balloon, which always remains spherical,
has a variable diameter $\frac{3}{2}(2 x+1)$. Find the rate of change of its volume with respect to x .
3. The radius of an air bubble is increasing at the rate of $0.5 \mathrm{~cm} / \mathrm{sec}$. At what rate is the volume of the bubble increasing when the radius is 1 cm ?

D Watch Video Solution

4. A particle moves along the curve $6 y=x^{3}+2$. Find the points on the curve at
which the y-coordinate is changing 8 times as
fast as the x-coordinate

D Watch Video Solution

5. A ladder of length 5 m is leaning against a wall. The bottom of ladder is being pulled along the ground away from wall at rate of $2 \mathrm{~cm} / \mathrm{sec}$. How fast is the top part of ladder sliding on the wall when foot of ladder is 4 m away form wall.
6. The rate of change of the area of a circle with respect to its radius r at $r=6 \mathrm{~cm}$ is
(A) 10π
(B) 12π
(C) 8π
(D) 11π

- Watch Video Solution

7. The total revenue in Rupees received from
the sale of x units of a product is given by
$R(x)=13 x^{2}+26 x+15$. Find the marginal revenue when $x=7$.

D Watch Video Solution

8. The total cost C (x) in Rupees associated with the production of x units of an item is given
$C(x)=0.007 x^{3}-0.003 x^{2}+15 x+4000$.
Find the marginal cost when 17 units are produced.

D Watch Video Solution
9. Sand is pouring from a pipe at the rate of 12 cm^{3} / s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm ?

- Watch Video Solution

10. An edge of a variable cube is increasing at the rate of 3 cm per second. How fast is the
volume of the cube increasing when the edge is 10 cm long?

D Watch Video Solution

11. A stone is dropped into a quiet lake and waves move in circles at the speed of $5 \mathrm{~cm} / \mathrm{s}$.

At the instant when the radius of the circular
wave is 8 cm , how fast is the enclosed area increasing?
12. The radius of a circle is increasing at the rate of $0.7 \mathrm{~cm} / \mathrm{s}$. What is the rate of increase of its circumference?

- Watch Video Solution

13. The length x of a rectangle is decreasing at the rate of $5 \mathrm{~cm} /$ minute and the width y is increasing at the rate of $4 \mathrm{~cm} /$ minute. When x
$=8 \mathrm{~cm}$ and $\mathrm{y}=6 \mathrm{~cm}$, find the rates of change of
(a) the perimeter, and (b) the area of the rectangle
14. Find the rate of change of the area of a circle with respect to its radius r when(a) $r=3 \mathrm{~cm}$ (b) $r=4 \mathrm{~cm}$

- Watch Video Solution

15. The volume of a cube is increasing at the rate of $8 \mathrm{~cm}^{3} / \mathrm{s}$. How fast is the surface area
increasing when the length of an edge is 12 cm ?

D Watch Video Solution

16. The radius of a circle is increasing uniformly at the rate of $3 \mathrm{~cm} / \mathrm{s}$. Find the rate at which the area of the circle is increasing when the radius is 10 cm .
17. A balloon, which always remains spherical on inflation, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon increases when the radius is 15 cm .

- Watch Video Solution

18. A balloon, which always remains spherical, has a variable radius. Find the rate at which its
volume is increasing with the radius when the later is 10 cm .
(D) Watch Video Solution
