©゙’ doubtnut

MATHS

NCERT - NCERT MATHEMATICS(ENGLISH)

APPLICATION OF INTEGRALS

Miscellaneous Exercise

1. The area of the circle $x^{2}+y^{2}=16$ exterior to
the parabola $y^{2}=6 x$ is(A) $\quad \frac{4}{3}(4 \pi-\sqrt{3})$
$\frac{4}{3}(4 \pi+\sqrt{3})$ (C) $\frac{4}{3}(8 \pi-\sqrt{3})$ (D) $\frac{4}{3}(8 \pi+\sqrt{3})$
2. Using the method of integration find the area bounded by the curve $|x|+|y|=1$.[Hint: The required region is bounded by lines $x+y=1, x-y=1,-x+y=1$ and $-x-y=1]$.

- Watch Video Solution

3. Find the area of region by the curve $y=\sin x$ between $x=0$ and $x=2 \pi$.
4. Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are $A(2,0), B(4,5)$ and $C(6,3)$.

- Watch Video Solution

5. Area bounded by the curve $y=x^{3}$, the x-axis and the ordinates $x=-2$ and $x=1$ is:

- Watch Video Solution

6. Find the area of the region lying in the first quadrant and bounded by $y=4 x^{2}$, $x=0, y=1 a n d y=4$.

- Watch Video Solution

7. Find the area bounded by curves
$\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$

- Watch Video Solution

8. Find the area of the region $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$

- Watch Video Solution

9. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$.

D Watch Video Solution
10. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the straight line $\frac{x}{a}+\frac{y}{b}=1$.

- Watch Video Solution

11. Sketch the graph $y=|x+3|$. Evaluate $\int_{-6}^{0}|x+3| d x$. What does the value of this integral represent on the graph?

- Watch Video Solution

12. Find the area of the region enclosed by the parabola $y^{2}=4 a x$ and the line $y=m x$.

- Watch Video Solution

13. Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$.

- Watch Video Solution

14. Find the area under the given curves and given
lines:(i) $y=x^{2}, x=1, x=2$ and x -axis(ii) $y=x^{4}$,
$x=1, x=5$ and x -axis

- Watch Video Solution

15. the area between the curves $y=x^{2}$ and $y=4 x$ is

- Watch Video Solution

16. Using the method of integration find the area of the region bounded by lines:
$2 x+y=4,3 x-2 y=6$ and $x-3 y+5=0$
17. Find the area of the region enclosed by the parabola $x^{2}=y$, the line $y=x+2$ and the X axis.

> A. $\frac{3}{2}$
> B. $\frac{7}{2}$
> C. $\frac{9}{2}$
> D. $\frac{5}{2}$

Answer: C
18. The area bounded by the curve
$y=x|x|, x$-axis and the ordinates
$x \quad=\quad-1$ and $x \quad=\quad 1$ is given by (A) 0
(B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ [Hint : $y=x^{2}$ if $x \quad>\quad 0$ and
$y=-x^{2}$ if $\left.x<0\right]$.

- Watch Video Solution

19. The area bounded by the y-axis, $y=\cos x$ and
$y=\sin x$ when $0 \leq x \leq \frac{\pi}{2}$ is(A) $2(\sqrt{2-1})$
$\sqrt{2}-1$ (C) $\sqrt{2}+1$ (D) $\sqrt{2}$

Solved Examples

1. Find the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad$ and \quad the \quad ordinates
$x=a e$ and $x=0$,
where
$b^{2}=a^{2}\left(1-e^{2}\right)$ and $e<1$.

- Watch Video Solution

2. Find the area of the region in the first quadrant enclosed by the y-axis, the line $y=x$ and the circle $x^{2}+y^{2}=32$, using integration.

- Watch Video Solution

3. Find the area, lying above the $x=a x i s$ and included between the circle $x^{2}+y^{2}=8 x$ and the parabola $y^{2}=4 x$.

- Watch Video Solution

4. Find the area of the region bounded by the two parabolas $y=x^{2}$ and $y^{2}=x$.

- Watch Video Solution

5. Find the area enclosed by the circle $x^{2}+y^{2}=a^{2}$.

- Watch Video Solution

6. Find the area of the region bounded by the curve $y=x^{2}$ and the line $y=4$.

- Watch Video Solution

7. Find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
8. Using integration find the area of region bounded by the triangle whose vertices are (1, 0),
$(2,2)$ and $(3,1)$.

- Watch Video Solution

9. In Figure, $A O B A$ is the part of the ellipse $9 x^{2}+y^{2}=36$ in the first quadrant such that $O A=2 a n d O B=6$. Find the area between the $\operatorname{arc} A B$ and the chord $A B$.
10. Find the area bounded by the curve $y=\cos x$ between $x=0$ and $x=2 \pi$.

- Watch Video Solution

11. Prove that the curves $y^{2}=4 x$ and $x^{2}=4 y$ divide the area of the square bounded by $x=0, y=0, x=4 n d y=4$ into three equal parts.
12. Find the area of the region $\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$

D Watch Video Solution

13. Find the area of the region bounded by the line $y=3 x+2$, the x-axis and the ordinates $x=1$ and $x=1$.

- Watch Video Solution

14. Using integration, find the area of the region enclosed between the two circles $x^{2}+y^{2}=4$ and
$(x-2)^{2}+y^{2}=4$.

- Watch Video Solution

15. Find the area of the parabola $y^{2}=4 a x$ bounded by its latus rectum.

- Watch Video Solution

Exercise 81

1. Find the area of the smaller part of the circle
$x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$
A. $a^{4}\left[\frac{\pi}{5}-\frac{1}{3}\right]$
B. $a^{2}\left[\frac{\pi}{4}-\frac{1}{2}\right]$
C. $a^{2}\left[\frac{\pi}{3}-\frac{1}{4}\right]$
D. $a^{3}\left[\frac{\pi}{3}-\frac{1}{2}\right]$

Answer: B

- Watch Video Solution

2. The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$, find the value of a.
A. $a=7^{\frac{2}{3}}$
B. $a=2^{\frac{2}{3}}$
C. $a=5^{\frac{2}{3}}$
D. $a=4^{\frac{2}{3}}$

Answer: D

- Watch Video Solution

3. Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$.
4. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is:

- Watch Video Solution

5. Find the area of the region bounded by $y^{2}=9 x, x=2, x=4$ and the x-axis in the first quadrant.
A. $16-4 \sqrt{2}$
B. $15-4 \sqrt{5}$
C. $17-4 \sqrt{3}$
D. $18-4 \sqrt{7}$

Answer: A

- Watch Video Solution

6. Find the area of the region bounded by $x^{2}=4 y$, $y=2, y=4$ and the y-axis in the first quadrant.

- Watch Video Solution

7. Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is 2 b. $\frac{9}{4}$ c. $\frac{9}{3} \mathrm{~d}$. $\frac{9}{2}$

D Watch Video Solution

8. Find the area of the region bounded by the
curve $y^{2}=x$ and the lines $x=1, x=4$ and the x axis.

- Watch Video Solution

9. Prove that the area in the first quadrant enclosed by the axis, the line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$ is $\pi / 3$.

- Watch Video Solution

10. Find the area of the region bounded by the
curve $y^{2}=4 x$ and the line $x=3$.

D Watch Video Solution
11. Find the area bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$.

D Watch Video Solution

12. Find area enclosed by ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
A. 10π
B. 11π
C. 12π
D. 13π

Answer: C

- Watch Video Solution

13. Find the area of the region bounded by the
ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.

- Watch Video Solution

Exercise 82

1. Find the area of the region bounded by the

 curves $y=x^{2}+2, y=x, x=0$ and $x=3$.
- Watch Video Solution

2. Find the area bounded by the curve
$(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$.

D Watch Video Solution

3. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$.

D Watch Video Solution

4. Area lying between the curves $y^{2}=4 x$ and
$y=2 x$ is(A) $\frac{2}{3}$ (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) $\frac{3}{4}$

- Watch Video Solution

5. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2 \mathrm{is}(\mathrm{A}) 2(\pi-2)$ (B) $\pi-2$ (C)
$2 \pi-1$ (D) $2(\pi+2)$

- Watch Video Solution

6. Using integration find the area of the triangular region whose sides have the equations $y=2 x+1$, $y=3 x+1$ and $x=4$.

- Watch Video Solution

7. Using integration find the area of region bounded by the triangle whose vertices are $(1,0),(1,3) \operatorname{and}(3,2)$.

- Watch Video Solution

