

MATHS

NCERT - NCERT MATHEMATICS(ENGLISH)

APPLICATION OF INTEGRALS

Miscellaneous Exercise

1. The area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$ is(A) $\frac{4}{3}(4\pi - \sqrt{3})$ (B) $\frac{4}{3}(4\pi + \sqrt{3})$ (C) $\frac{4}{3}(8\pi - \sqrt{3})$ (D) $\frac{4}{3}(8\pi + \sqrt{3})$

2. Using the method of integration find the area bounded by the curve |x| + |y| = 1.[Hint: The required region is bounded by lines x + y = 1, x - y = 1, -x + y = 1and -x - y = 1].

Watch Video Solution

3. Find the area of region by the curve $y = \sin x$ between x = 0 and $x = 2\pi$.

4. Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).

5. Area bounded by the curve $y = x^3$, the *x*-axis

and the ordinates x = -2 and x = 1 is:

6. Find the area of the region lying in the first quadrant and bounded by $y = 4x^2$, x = 0, y = 1 and y = 4.

Watch Video Solution

7. Find the area bounded by curves $ig\{(x,y)\!:\!y\geq x^2 ext{ and } y=|x|ig\}$

9. Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line $\frac{x}{3} + \frac{y}{2} = 1$.

10. Find the area of the smaller region bounded by

the ellipse $rac{x^2}{a^2}+rac{y^2}{b^2}=1$ and the straight line $rac{x}{a}+rac{y}{b}=1.$

11. Sketch the graph y=|x+3|. Evaluate $\int_{-6}^{0}|x+3|dx$. What does the value of this

integral represent on the graph?

12. Find the area of the region enclosed by the parabola $y^2 = 4ax$ and the line y = mx. Watch Video Solution

13. Find the area enclosed by the parabola

 $4y = 3x^2$ and the line 2y = 3x + 12.

Watch Video Solution

14. Find the area under the given curves and given lines:(i) $y = x^2, x = 1, x = 2$ and x-axis(ii) $y = x^4$,

17. Find the area of the region enclosed by the parabola $x^2 = y$, the line y = x + 2 and the X-axis.

A.
$$\frac{3}{2}$$

B. $\frac{7}{2}$
C. $\frac{9}{2}$
D. $\frac{5}{2}$

Answer: C

18. The area bounded by the curve

$$y = x | x |$$
, x-axis and the ordinates
 $x = -1$ and $x = 1$ is given by (A) 0
(B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ [Hint : $y = x^2$ if $x > 0$ and
 $y = -x^2$ if $x < 0$].

Watch Video Solution

19. The area bounded by the y-axis, $y=\cos x$ and $y=\sin x$ when $0\leq x\leq rac{\pi}{2}$ is(A) $2ig(\sqrt{2-1}ig)$ (B) $\sqrt{2}-1$ (C) $\sqrt{2}+1$ (D) $\sqrt{2}$

Solved Examples

2. Find the area of the region in the first quadrant enclosed by the y-axis, the line y = x and the circle $x^2 + y^2 = 32$, using integration.

3. Find the area, lying above the x=axis and included between the circle $x^2 + y^2 = 8x$ and the parabola $y^2 = 4x$.

Watch Video Solution

4. Find the area of the region bounded by the two

parabolas $y = x^2$ and $y^2 = x$.

5. Find the area enclosed by the circle $x^2 + y^2 = a^2.$ Watch Video Solution 6. Find the area of the region bounded by the curve $y = x^2$ and the line y = 4. Watch Video Solution

8. Using integration find the area of region bounded by the triangle whose vertices are (1, 0), (2, 2) and (3, 1).

Watch Video Solution

9. In Figure, AOBA is the part of the ellipse $9x^2 + y^2 = 36$ in the first quadrant such that OA = 2andOB = 6. Find the area between the arc AB and the chord AB.

10. Find the area bounded by the curve $y = \cos x$

between x = 0 and $x = 2\pi$.

Watch Video Solution

11. Prove that the curves $y^2 = 4x$ and $x^2 = 4y$ divide the area of the square bounded by x = 0, y = 0, x = 4 and y = 4 into three equal parts.

12. Find the area of the region $\{(x, y): 0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2\}$ Vatch Video Solution

13. Find the area of the region bounded by the line

y=3x+2, the x-axis and the ordinates

$$x = 1 and x = 1.$$

Watch Video Solution

14. Using integration, find the area of the region enclosed between the two circles $x^2+y^2=4$ and

1. Find the area of the smaller part of the circle $x^2 + y^2 = a^2$ cut off by the line $x = rac{a}{\sqrt{2}}$

A.
$$a^4 \left[\frac{\pi}{5} - \frac{1}{3} \right]$$

B. $a^2 \left[\frac{\pi}{4} - \frac{1}{2} \right]$
C. $a^2 \left[\frac{\pi}{3} - \frac{1}{4} \right]$
D. $a^3 \left[\frac{\pi}{3} - \frac{1}{2} \right]$

Answer: B

2. The area between $x = y^2$ and x = 4 is divided into two equal parts by the line x = a, find the value of a. A. $a = 7^{rac{2}{3}}$ B. $a = 2^{rac{2}{3}}$ C. $a = 5^{rac{2}{3}}$ D. $a = 4^{rac{2}{3}}$

Answer: D

3. Find the area of the region bounded by the parabola $y = x^2$ and y = |x| .

4. Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0 and x = 2 is:

Watch Video Solution

5. Find the area of the region bounded by $y^2 = 9x, x = 2, x = 4$ and the x-axis in the first quadrant.

A.
$$16 - 4\sqrt{2}$$

B. $15 - 4\sqrt{5}$

C.
$$17 - 4\sqrt{3}$$

D.
$$18 - 4\sqrt{7}$$

Answer: A

6. Find the area of the region bounded by $x^2 = 4y$,

y=2, y=4and the y-axis in the first quadrant.

8. Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the x-axis.

9. Prove that the area in the first quadrant enclosed by the axis, the line $x=\sqrt{3}y$ and the circle $x^2+y^2=4$ is $\pi/3$.

Watch Video Solution

10. Find the area of the region bounded by the curve $y^2 = 4x$ and the line x = 3.

11. Find the area bounded by the curve $x^2=4y$

and the straight line x = 4y - 2.

A. 10π

B. 11π

C. 12π

D. 13π

Answer: C

13. Find the area of the region bounded by the ellipse
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$
. **Vatch Video Solution**

Exercise 8 2

1. Find the area of the region bounded by the curves $y = x^2 + 2$, y = x, x = 0 and x = 3. Watch Video Solution

2. Find the area bounded by the curve
$$(x-1)^2 + y^2 = 1$$
 and $x^2 + y^2 = 1$.
Vatch Video Solution

3. Find the area of the circle $4x^2 + 4y^2 = 9$ which

is interior to the parabola $x^2 = 4y$.

4. Area lying between the curves
$$y^2 = 4x$$
 and $y = 2x$ is(A) $\frac{2}{3}$ (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) $\frac{3}{4}$

Watch Video Solution

5. Smaller area enclosed by the circle $x^2+y^2=4$ and the line x+y=2is(A) $2(\pi-2)$ (B) $\pi-2$ (C) $2\pi-1$ (D) $2(\pi+2)$

6. Using integration find the area of the triangular region whose sides have the equations y = 2x + 1, y = 3x + 1 and x = 4.

Watch Video Solution

7. Using integration find the area of region bounded by the triangle whose vertices are (1, 0), (1, 3)and(3, 2).

