© 'doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - XII BOARDS PREVIOUS YEAR

SAMPLE PAPER 2019

Section A

1. A read storage battery is the most impotant type of secondary cell having a lead anode and a grid of lead packed with PbO_{2} as cathode. A 38% solution of sulphuric acid is used as electrolyte. (Density=1.294 g $m L^{-1}$) battery holds 3.5 L of the acid. During the discharge of the battery, the density of $\mathrm{H}_{2} \mathrm{SO}_{4}$ falls to 1.139 g $m L^{-1} .\left(20 \% H_{2} \mathrm{SO}_{4}\right.$ by mass $)$

Write the reaction taking place at the cathode when the battery is in use.

- Watch Video Solution

2. A read storage battery is the most impotant type of secondary cell having a lead anode and a grid of lead packed with PbO_{2} as cathode. A 38% solution of sulphuric acid is used as electrolyte. (Density=1.294 g $m L^{-1}$) battery holds 3.5 L of the acid. During the discharge of the battery, the density of $\mathrm{H}_{2} \mathrm{SO}_{4}$ falls to 1.139 g $m L^{-1} .\left(20 \% H_{2} S O_{4}\right.$ by mass $)$

How much electricity in terms of Faraday is required to carry out the reduction of one mole of PbO_{2} ?

- Watch Video Solution

3. A read storage battery is the most impotant type of secondary cell having a lead anode and a grid of lead packed with PbO_{2} as cathode. A 38% solution of sulphuric acid is used as electrolyte. (Density=1.294 g $m L^{-1}$) battery holds 3.5 L of the acid. During the discharge of the battery, the density of $\mathrm{H}_{2} \mathrm{SO}_{4}$ falls to 1.139 g $m L^{-1} .\left(20 \% H_{2} S O_{4}\right.$ by mass $)$

Lead storage battery is considered a secondary cell. Why?

- Watch Video Solution

4. A read storage battery is the most impotant type of secondary cell having a lead anode and a grid of lead packed with PbO_{2} as cathode. A 38% solution of sulphuric acid is used as electrolyte.
(Density=1.294 g $m L^{-1}$) battery holds 3.5 L of the acid. During the discharge of the battery, the density of $\mathrm{H}_{2} \mathrm{SO}_{4}$ falls to 1.139 g
$m L^{-1} .\left(20 \% H_{2} S O_{4}\right.$ by mass $)$
Lead storage battery is considered a secondary cell. Why?

- Watch Video Solution

5. A read storage battery is the most impotant type of secondary cell having a lead anode and a grid of lead packed with PbO_{2} as cathode. A 38% solution of sulphuric acid is used as electrolyte. (Density=1.294 g $m L^{-1}$) battery holds 3.5 L of the acid. During the discharge of the battery, the density of $\mathrm{H}_{2} \mathrm{SO}_{4}$ falls to 1.139 g $m L^{-1} \cdot\left(20 \% H_{2} S O_{4}\right.$ by mass $)$

Write the reaction taking place at the cathode when the battery is in use.
6. Name the substance used as depressant in the separation of two sulphide ores in Froth floatation method.

- Watch Video Solution

7. Name the unit formed by the attachment of a base to 1 position of sugar in a nucleoside.

- Watch Video Solution

8. Name the SQPecies formed when an aqueous solution of amino acid is dissolved in water?

D Watch Video Solution

9. What type of reaction occurs in the formation of Nylon 6,6 polymer?

- Watch Video Solution

10. Which of the following compoundswould undergo cannizzaro reaction:

Benzaldehyde, Cyclohexanone, 2-Methylpentanal.

- Watch Video Solution

11. When one mole of $\mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}$ was treated with excess of silver nitrate solution, 2 mol of AgCl was precipitated. The formula of the compound is:
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]\left(\mathrm{NH}_{3}\right) \mathrm{Cl}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]\left(\mathrm{NH}_{3}\right)_{2}$

Answer: B

- Watch Video Solution

12. The absorption maxima of several octahedral complex ions are as follows:

S.No	Compound	$\lambda_{\max } n m$
1	$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$	475
2	$\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$	310
3	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	490

The crystal field SQPlitting is maximum for :
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Co}(C N)_{6}\right]^{3-}$
c. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. All the complex ions have the same SQPlitting Δ_{0},

Answer: B

- Watch Video Solution

13. Predict the number of ions produced per formula unit in an aqueous solution of $\left[\mathrm{Co}(e n)_{3}\right] \mathrm{Cl}_{3}$
A. 4
B. 3
C. 6
D. 2

Answer: A
14. The incorrect statement about LDP is:
A. It is obtained through the free radical addition of ethene.
B. It consists of linear molecules.
C. It is obtained by the H -atom abstraction.
D. Peroxide is used as an initiator.

Answer: B

- Watch Video Solution

15. Assertion: The two strands in double strand helix structure of DNA are complementary to each other

Reason: Disulphide bonds are formed between SQPecific pairs of bases
A. Both assertion and reason are correct statements, and reason is the correct explanation of the assertion
B. Both assertion and reason are correct statements, but reason is not the correct explanation of the assertion
C. Assertion is correct, but reason is wrong statement.
D. Assertion is wrong, but reason is correct statement.

Answer: C

- Watch Video Solution

16. Assertion: Glucose reacts with hydroxylamine to form an oxime and alsoadds a molecule of hydrogen cyanide to give

cyanohydrin.

Reason: The carbonyl group is present in the open chain structure of glucose.
A. Both assertion and reason are correct statements, and reason is the correct explanation of the assertion
B. Both assertion and reason are correct statements, but reason is not the correct explanation of the assertion
C. Assertion is correct, but reason is wrong statement.
D. Assertion is wrong, but reason is correct statement.

Answer: A

17. Assertion: The acidic strength of halogen acids varies in the order $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$

Reason: The bond dissociation enthalpy of halogen acids decreases in the $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$
A. Both assertion and reason are correct statements, and reason is the correct explanation of the assertion
B. Both assertion and reason are correct statements, but reason is not the correct explanation of the assertion
C. Assertion is correct, but reason is wrong statement.
D. Assertion is wrong, but reason is correct statement.

Answer: D

- Watch Video Solution

18. Assertion : $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is a weaker base than phenol but is a stronger nucleophile than phenol.

Reason : In phenol the lone pair of electrons on oxygen is withdrawn towards the ring due to resonance.
A. Both assertion and reason are correct statements, and reason is the correct explanation of the assertion
B. Both assertion and reason are correct statements, but reason is not the correct explanation of the assertion
C. Assertion is correct, but reason is wrong statement.
D. Assertion is wrong, but reason is correct statement.

Answer: D

- Watch Video Solution

19. Assertion: Aryl halides undergo nucleophilic substitution reactions with ease.

Reason:The carbon halogen bond in aryl halides has partial double bonds character.
A. Both assertion and reason are correct statements, and reason is the correct explanation of the assertion
B. Both assertion and reason are correct statements, but reason is not the correct explanation of the assertion
C. Assertion is correct, but reason is wrong statement.
D. Assertion is wrong, but reason is correct statement.

Answer: D

- Watch Video Solution

1. Calculate the number of lone pairs on central atom in the following molecule and predict the geometry.
$X e F_{4}$

- Watch Video Solution

2. The rate of a reaction depends upon the temperature and is quantitatively expressed as
$k=A e^{\frac{-E a}{R T}}$
i) If a graph is plotted between $\log k$ and $1 / T$, write the expression for the slope of the reaction?
ii) If at under different conditions $E_{a 1}$ and $E_{a 2}$ are the activation energy of two reactions.
$E_{a 1}=40 \mathrm{~J} / \mathrm{mol}$ and $E_{a 2}=80 \mathrm{~J} / \mathrm{mol}$. Which of the two has a larger value of the rate constant?

- Watch Video Solution

3. The experimentally determined molar mass for what type ofsubstances is always lower than the true value when water is used as solvent. Explain. Give one example of such a substance and one example of a substance which does not show a large variation from the true value.

- Watch Video Solution

4. Write structure of the products formed:
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \xrightarrow[\Delta]{\mathrm{cl}_{2}, \text { red } P_{4}}$
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl} \xrightarrow[\Delta]{\mathrm{H}_{2}, \mathrm{pd}-\mathrm{BaSO}_{4}}$
5. Draw one of the geometrical isomers of the complex $\left[P t(e n){ }_{2} C l\right]^{2+}$ which is optically inactive. Also write the name of this entity according to the IUPAC nomenclature.

- Watch Video Solution

6. Discuss the bonding in the coordination entity $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ on the basis of valence bond theory. Also, comment on the geometry and SQPin of the given entity. (Atomic no. of $\mathrm{Co}=27$)
7. What is meant by Vapour phase refining? Write any one example of the process which illustrates this technique, giving the chemical equations involved.

- Watch Video Solution

8. Write and explain the reactions involved in the extraction of gold.

- Watch Video Solution

9. Which one of the following compounds will undergo hydrolysis at a faster rate by SN1 mechanism? Justify.
or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
10. Calculate the freezing point of a solution containing 0.5 g KCl
(Molar mass $=74.5 \mathrm{~g} / \mathrm{mol})$ dissolved in 100 g water, assuming KCl
to be 92% ionized.
K_{f} of water $=1.86 \mathrm{~K} \mathrm{~kg} / \mathrm{mol}$.

D Watch Video Solution

2. For the reaction $\mathrm{A}+\mathrm{B} \rightarrow$ products, the following initial rates
were obtained at various given initial concentration

S.No.	$[\mathrm{A}] \mathrm{mol} / \mathrm{L}$	$[\mathrm{B}] \mathrm{mol} / \mathrm{L}$	Initial rate M/s
1.	0.1	0.1	0.05
2.	0.2	0.1	0.10
3.	0.1	0.2	0.05

Determine the half-life period.
3. Answer the following questions:
(i) Which of the following electrolytes is most effective for the coagulation of $\mathrm{AgI} / \mathrm{Ag}^{+}$sol ?
a. $\mathrm{MgCl}_{2}, \mathrm{~K}_{2} \mathrm{SO}_{4}, \mathrm{~K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(b) What happens when a freshly precipitated $\mathrm{Fe}(\mathrm{OH})_{3}$ is shaken with a little amount of dilute solution of FeCl_{3}.
(c) Out of sulphur sol and proteins, which one forms macromolecular colloids ?

- Watch Video Solution

4. Account for the following :
a) Moist SO_{2} decolourises KMnO_{4} solution.
b) In general interhalogen compounds are more reactive than
halogens (except fluorine).
c) Ozone acts as a powerful oxidizing agent

- Watch Video Solution

5. Identify the product formed when propan-I ol is treated with Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 413 K . Write the mechanism involved for the above reaction.

- Watch Video Solution

6. (a) Give chemical tests to distinguish between the following pairs of compounds:
(i) Ethanal and Propanone.
(ii) Pentan-2-one and Pentan-3-one.
(b) Arrange the following compounds in increasing order of their
acid strength: Benzoic acid, 4- Nitrobenzoic acid, 3,4Dinitrobenzoic acid,

4- Methoxybenzoic acid.

- Watch Video Solution

7. Compare the reactivity of benzaldehyde and ethanal towards nucleophilic addition reactions. Write the cross aldol condensation product between benzaldehyde and ethanal.

- Watch Video Solution

8. Define and write an example for the following :
(a) Broad SQPectrum antibiotics.
(b) Analgesics
9. (a) Calculate the degree of dissociation of 0.0024 M acetic acid if conductivity of this solution is $8.0 \times 10^{-5} \mathrm{~S} \mathrm{~cm}{ }^{-1}$.

Given
$\lambda_{\mathrm{H}^{+}}^{\circ}=349.6 \mathrm{~S} \mathrm{~cm} \mathrm{~mol}^{-1}, \lambda_{\mathrm{CH}_{3} \mathrm{COO}^{-}}^{\circ}=40.9 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}$
(b) Solutions of two electrolytes ' A ' and ' B ' are diluted. The limiting molar conductivity of ' B ' increases to a smaller extent while that of ' A ' increases to a much larger extent comparatively.

Which of the two is a strong electrolyte? Justify your answer.

- Watch Video Solution

10. An organic compound A^{\prime} with molecular formula $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}$ reacts with $B r_{2} / \mathrm{aqKOH}$ to give compound B ', which upon reaction with $\mathrm{NaNO}_{2} \& \mathrm{HCl}$ at $\mathrm{O}^{\circ} \mathrm{C}$ gives C'. Compound C' on heating with $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ gives a hydrocarbon D'. Compound B'
on further reaction with $B r_{2}$ water gives white precipitate of compound E'. Identify the compound A, B, C, D\&E, also justify your answer by giving relevant chemical equations.

- Watch Video Solution

11. (a) How will you convert:
(i) Aniline into Fluorobenzene.
(ii) Benzamide into Benzylamine.
(iii) Ethanamine to N,N-Diethylethanamine.
(b) Write the structures of A and B in the following:
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN} \xrightarrow[\text { Partial hydrolysis }]{\mathrm{OH}^{-}} A \xrightarrow{\mathrm{NaOH}+\mathrm{Br}_{2}} B$
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow\left[\left(\text { ii) } \mathrm{LiAlH}_{4}\right]{(i) \mathrm{KCN}} A \xrightarrow[O^{\circ} \mathrm{C}]{\mathrm{NHO}_{2}} B\right.$
12. (a) When a chromite ore (A) is fused with an aqueous solution of sodium carbonate in free excess of air, a yellow solution of compound (B) is obtained. This solution is filtered and acidified with sulphuric acid to form compound (C). Compound (C) on treatment with solution of KCl gives orange crystals of compound (D). Write the chemical formulae of compounds A to
D.
(b) Describe the cause of the following variations with reSQPect to lanthanoids and actinoids:
(i) Greater range of oxidation states of actinoids as compared to lanthanoids.
(ii) Greater actinoid contraction as compared to lanthanoid contraction.
(iii) Lower ionisation enthalpy of early actinoids as compared to the early lanthanoids.
13. (a) What happens when
(i) Manganate ions $\left(\mathrm{MnO}_{4}^{2-}\right)$ undergoes diSQProportionation reaction in acidic medium?
(ii) Lanthanum is heated with Sulphur?
(b) Explain the following trends in the properties of the members of the First series of transition elements:
(i) $E^{\circ}\left(M^{2+} / M\right)$ value for copper is positive $(+0.34 V)$ in contrast to the other members of the series.
(ii) Cr^{2+} is reducing while Mn^{3+} is oxidising, though both have d^{4} configuration.
(iii) The oxidising power in the series increases in the order $\left.\mathrm{VO}_{2}^{+}<\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}<\mathrm{MnO}_{94}\right)^{-}$.

- Watch Video Solution

1. (a) The e.m.f. of the following cell at 298 K is 0.1745 V
$F e(s) / F e^{2+}(0.1 M) / / H^{+}(x M) / H_{2}(g)(1$ bar $) / P t(s)$
Given : $E_{F e^{2+} / F e}^{0}=-0.44 V$
Calculate the H^{+}ions concentration of the solution at the electrode where hydrogen is being produced.
(b) Aqueous solution of copper sulphate and silver nitrate are electrolysed by 1 ampere current for 10 minutes in separate electrolytic cells. Will the mass of copper and silver deposited on the cathode be same or different? Explain your answer.

- Watch Video Solution

