©゙’ doubtnut

MATHS

BOOKS - XII BOARDS PREVIOUS YEAR

SAMPLE PAPER 2019

Section A

1. If A is any square matrix of order 3×3 such that
$|A|=3$, then the value of $|\operatorname{adj} A|$ is ?
A. 3
B. $\frac{1}{3}$
C. 9
D. 27

Answer: C

- Watch Video Solution

2. Suppose P and Q are two different matrices of order
$3 \times n$ and $n \times p$, then the order of the matrix $P \times Q$
is?
A. $3 \times p$
B. $p \times 3$
C. $n \times n$
D. 3×3

Answer: A

- Watch Video Solution

3. If $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+p \hat{j}+q \hat{k})=\overrightarrow{0}$, then the values of p and q are ?
A. $p=6, q=27$
B. $p=3, q=\frac{27}{2}$
C. $p=6, q=\frac{27}{2}$
D. $p=3, q=27$

- Watch Video Solution

4. If A and B two events such that $P(A)=0.2, P(B)=0.4$ and $P(A \cup B)=0.5$, then value of $P(A / B)$ is ?
A. 0.1
B. 0.25
C. 0.5
D. 0.08

Answer: B

- Watch Video Solution

5. The point which does not lie in the half plane
$2 x+3 y-12 \leq 0$ is
A. $(1,2)$
B. $(2,1)$
C. $(2,3)$
D. $(-3,2)$

Answer: C

D Watch Video Solution

6. If $\sin ^{-1} x+\sin ^{-1}=\frac{2 \pi}{3}$, then $\cos ^{-1} x \cos ^{-1} y$ is equal to
A. $\frac{2 \pi}{3}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. π

Answer: B

- Watch Video Solution

7. An urn contains 6 balls of which two are red and four are black. Two balls are drawn at random. Probability that they are of the different colours is
A. $\frac{2}{5}$
B. $\frac{1}{15}$
C. $\frac{8}{15}$
D. $\frac{4}{15}$

Answer: C

- Watch Video Solution

8. $\int \frac{d x}{\sqrt{9-25 x^{2}}}$
A. $\sin ^{-1}\left(\frac{5 x}{3}\right)+c$
B. $\frac{1}{5} \sin ^{-1}\left(\frac{5 x}{3}\right)+c$
C. $\frac{1}{6} \log \left(\frac{3+5 x}{3-5 x}\right)+c$
D. $\frac{1}{30} \log \left(\frac{3+5 x}{3-5 x}\right)+c$

Answer: B

- Watch Video Solution

9. What is the distance (in units) between the two planes $3 x+5 y+7 z=3$ and $9 \mathrm{x}+15 \mathrm{y}+21 \mathrm{z}=9^{\prime}$?
A. 0
B. 3
C. $\frac{6}{\sqrt{83}}$
D. 6

Answer: A

10. The equation of the line in vector form passing through the point $(-1,3,5)$ and parallel to line $\frac{x-3}{2}=\frac{y-4}{3}, z=2$ is
A. $\vec{r}=(-\hat{i}+3 \hat{j}+5 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+\hat{k})$
B. $\vec{r}=(-\hat{i}+3 \hat{j}+5 \hat{k})+\lambda(2 \hat{i}+3 \hat{j})$
c. $\vec{r}=(2 \hat{i}+3 \hat{j}-2 \hat{k})+\lambda(-\hat{i}+3 \hat{j}+5 \hat{k})$
D. $\vec{r}=(2 \hat{i}+3 \hat{j})+\lambda(-\hat{i}+3 \hat{j}+5 \hat{k})$

Answer: B

1. If f be greatest integer function defined $\operatorname{asf}(x)=[x]$ and g be the mdoulus function defined as $g(x)=|x|$, then the value of g of $\left(-\frac{5}{4}\right)$ is

- Watch Video Solution

2. If the function $f(x)=\left\{\begin{array}{lll}\frac{x^{2}-1}{x-1} & \text { When } & x \neq 1 \\ k & \text { When } & x=1\end{array}\right.$ is given to be continuous at $\mathrm{x}=1$, then the value of k is \qquad .

- Watch Video Solution

3. If $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}5 \\ 4\end{array}\right]$, then value of y is

Fill In The Blanks 14 A

1. If tangent to the curve $y^{2}+3 x-7=0$ at the point
(h, k) is parallel to line $x-y=4$, then value of k is \qquad ?

D Watch Video Solution

Fill In The Blanks 14 B

1. For the curve $y=5 x-2 x^{3}$, if x increases at the rate of

2units/sec, then at $\mathrm{x}=3$ the slope of the curve is changing
at \qquad

(Watch Video Solution

Fill In The Blanks 15 A

1. The magnitude of projection of
$(2 \hat{i}-\hat{j}+\hat{k})$ on $(\hat{i}-2 \hat{j}+2 \hat{k})$ is

- Watch Video Solution

Fill In The Blanks 15 B

1. Vector of magnitude 5 units and in the direction opposite to $2 \hat{i}+2 \hat{j}-6 \hat{k}$ is

Answer The Following Questions

1. Check whether $(1+m+n)$ is a factor of the determinant $1+m \quad m+n \quad n+1$

n	1	m
2	2	2

or not. Give reason.

- Watch Video Solution

2. Evaluate
$\int_{-2}^{2}\left(x^{3}+1\right) d x$
3. Find $\int x e^{1+x^{2}} d x$.

- Watch Video Solution

4. Write the general solution of differential equation $\frac{d y}{d x}=e^{x+y}$
A. $e^{x}+e^{-y}=c$
B. $e^{-x}+e^{-y}=c$
C. $e^{x}+e^{y}=c$
D. none of these

Answer: A

Answer The Following Questions 18 A

1. Find $\int \frac{3+3 \cos x}{x+\sin x} d x$.

- Watch Video Solution

Answer The Following Questions 18 Bs

1. Find $\int\left(\cos ^{2} 2 x-\sin ^{2} 2 x\right) d x$

- Watch Video Solution

Section B 21 A

1. Express $\sin ^{-1}\left(\frac{\sin x+\cos x}{\sqrt{2}}\right)$, where $-\frac{\pi}{4}<x<\frac{\pi}{4}$, in the simplest form.

D Watch Video Solution

Section B 21 B

1. Let R be the relation in the set Z of integers given by $R=$
$\{(a, b): 2$ divides $a-b\}$. Show that the relation R transitive ?
Write the equivalence class [0].

- Watch Video Solution

1. Show that $y=a \cdot e^{2 x}+b \cdot e^{-x}$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y=0$.

- Watch Video Solution

2. A particle moves along the curve $x^{2}=2 y$. At what point, ordinate increases at the same rate as abscissa increases ?

- Watch Video Solution

3. Find the acute angle between the lines

$$
\frac{x-4}{3}=\frac{y+3}{4}=\frac{z+1}{5} \text { and } \frac{x-1}{4}=\frac{y+1}{-3}=\frac{z+10}{5}
$$

D Watch Video Solution

4. A speaks truth in 80% cases and B speaks truth in 90% cases. In what percentage of cases are they likely to agree with each other in stating the same fact ?

- Watch Video Solution

Section B 24 A

1. For three non-zero vectors \vec{a}, \vec{b} and \vec{c}, prove that $[(\vec{a}-\vec{b})(\vec{b}-\vec{c})(\vec{c}-\vec{a})]=0$

Section B 24 B

1. If $\vec{a}+\vec{b}+\vec{c}=0$ and $|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, then find the value of $\vec{a}, \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

- Watch Video Solution

Section C

1. Let $f: A \rightarrow B$ be a function defined as $f(x)=\frac{2 x+3}{x-3}$, where $\mathrm{A}=\mathrm{R}-\{3\}$ and $\mathrm{B}=\mathrm{R}-\{2\}$. Is the function f one-one and onto ? Is f invertible ? If yes, then find its inverse.
2. Solve the differential equation
$x d y-y d x=\sqrt{x^{2}+y^{2}} d x$.

- Watch Video Solution

3. Evaluate the following integral: $\int_{1}^{3}\left|x^{2}-2 x\right| d x$

- Watch Video Solution

4. Two tailors A and B earn Rs. 150 and Rs. 200 per day respectively. A can stich 6 shirts and 4 pants per day, while B can stitch 10 shirts and 4 pants per day. Form a
L.P .P to minimize the labour cost to produce (stitch) at least 60 shirts and 32 pants and solve it graphically.

- Watch Video Solution

Section C 28 A

1. If $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$, then prove that $\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$

- Watch Video Solution

1.

$x=a(\cos 2 \theta+2 \theta \sin 2 \theta) \quad$ and $y=a(\sin 2 \theta-2 \theta \cos 2 \theta)$,
find $\frac{d^{2} y}{d x^{2}} \quad$ at $\theta=\frac{\pi}{8}$.

D Watch Video Solution

Section C 31 A

1. Two numbers are selected at random (without replacement) from first 7 natural numbers. If X denotes the smaller of the two numbers obtained, find the probability distribution of X. Also, find mean of the distribution.

Section C 31 B

1. There are three coins. One is a two headed coin (having head on both faces), another is a biased coin that comes up heads 75% of the time and third is an unbiased coin.

One of the three coins is chosen at random and tossed, it shows heads, what i

- Watch Video Solution

Section D 33 A

1. Prove that
$\left|\begin{array}{lll}(y+z)^{2} & x^{2} & x^{2} \\ y^{2} & (x+z)^{2} & y^{2} \\ z^{2} & z^{2} & (x+y)^{2}\end{array}\right|=2 x y z(x+y+z)^{3}$

- Watch Video Solution

Section D 33 B

1. If $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 1 & -1 & 0 \\ 0 & 1 & 2\end{array}\right]$, find A^{-1}. Hence, solve the
system of equations
$x-y=3$,
$2 x+3 y+4 z=17$,
$y+2 z=7$

- Watch Video Solution

Section D

1. Using integration, find the area of the region
$\left\{(x, y): x^{2}+y^{2} \leq 1, x+y \geq 1, x \geq 0, y \geq 0\right\}$

- Watch Video Solution

2. Find the equation of a plane passing through the points $A(2,1,2)$ and $B(4,-2,1)$ and perpendicular to plane $\vec{r} \cdot(\hat{i}-2 \hat{k})=5$. Also, find the coordinates of the point, where the line passing through the points $(3,4,1)$ and
$(5,1,6)$ crosses the plane thus obtained.

- Watch Video Solution

Section D 35 A

1. The given quantity of metal is to be cost into a half cylinder with a rectangular base and semicircular ends.

Show that in order that the total surface area may be minimum, the ratio of the length of the cylinder to the diameter of its semi-circular ends is $\pi:(\pi+2)$.

- Watch Video Solution

Section D 35 B

1. Show that the triangle of maximum area that can be inscribed in a given circle is an equilateral triangle.

- Watch Video Solution

