©゙doubtnut

MATHS

NCERT - NCERT MATHEMATICS(ENGLISH)

RELATIONS AND FUNCTIONS

Miscellaneous Exercise

1. Given a non-empty set X, consider the binary operation $\cdot: P(X) \times P(X) \rightarrow P(X)$ given by $A \cdot B=A \cap B \forall A, B \in P(X)$ is the power set of X. Show that X is the identity element for this operation and X is the only invertible element i
2. Given a non-empty set X, consider $P(X)$ which is the set of all subjects of X. Define a relation in $P(X)$ as follows: For subjects A, B in $P(X), \quad A R B$ if $A \subset B$. Is R an equivalence relation on $P(X)$? Justify your answer.

Watch Video Solution

3. Given examples of two functions $f: N \rightarrow N$ andg: $N \rightarrow N$ such that of is onto but f is not onto. (Hint: Consider
$f(x)=x \operatorname{andg}(x)=|x|)$.

- Watch Video Solution

4. Give examples of two functions $f: N \rightarrow Z$ and $g: Z \rightarrow Z$ such that gof is injective but g is not injective. (Hint: Consider $f(x)=x$ and $g(x)=|x|)$
5. Show that the function $f: R \rightarrow\{x \in R:-1<x<1\}$ defined by $f(x)=\frac{x}{1+|x|}, x \in R$ is one-one and onto function.

- Watch Video Solution

6. If $f: R \rightarrow R$ is defined by $f(x)=x^{2}-3 x+2$, find $f(f(x))$.

- Watch Video Solution

7. Let $f: W \rightarrow W$ be defined as $f(n)=n-1$, if n is odd and $f(n)=n+1$, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.

- Watch Video Solution

8. Let $f: R \rightarrow R$ be defined as $f(x)=10 x+7$. Find the function $g: R \rightarrow R$ such that $g o f=f o g=I_{R}$
9. Let $f: R \rightarrow R$ be the Signum Function defined as $f(x)=\{1, x>0 ; 0, x=0 ;-1, x<1$ and $g: R \rightarrow R$ be the Greatest Integer Function given by $g(x)=[x]$, where $[\mathrm{x}]$ is greatest integer less than or equal to x . Then does fog and gof coincide in $(0,1]$

Watch Video Solution

10. Show that the function $f: R \rightarrow R$ given by $f(x)=x^{3}$ is injective.

- Watch Video Solution

11. Let $A=\{1,2,3\}$ Then number of relations containing
$(1,2)$ and $(1,3)$ which are reflexive and symmetric but not transitive is
(A) 1 (B) 2 (C) 3 (D) 4
12. Find the number of all onto functions from the set $A=\{1,2,3,, n\}$ to itself.

- Watch Video Solution

13. Let $S=\{a, b, c\}$ and $T=\{1,2,3\}$. Find F^{-1} of the following functions F from S to T , if it exists.(i) $F=\{(a, 3),(b, 2),(c, 1)\}$ (ii) $F=\{(a, 2),(b, 1),(c, 1)\}$

- Watch Video Solution

14. Consider the binary operations : $R \times R \rightarrow R$ and $o: R \times R \rightarrow R$ defined as $a \cdot b=|a-b|$ and $a o b=a$ for all $a, b \in R$. Show that \cdot is commutative but not associative, o is associative but not commutative.

- Watch Video Solution

15. Given a non -empty set x , let $*: P(X) \times P(X) \rightarrow P(X)$ be defined as $A * B=(A-B) \cup(B-A), \forall A, B \in P(X)$. Show that the empty set φ is the identity for the operation $*$ and all the elements A of $\mathrm{P}(\mathrm{A})$ are invertible with $A^{-1}=\mathrm{A}$

- Watch Video Solution

16. Define a binary operation $*$ on the set $\{0,1,2,3,4,5\}$ as $a * b=\{a+b$ if $a+b<6 ; a+b-6$, if $a+b \geq 6$. Show that zero is the identity for this operation and each element $a \neq 0$ of the set is invertible with $6-a$ being the inverse of a

- Watch Video Solution

17. Let $A=\{-1,0,1,2\}, B=\{-4,-2,0,2\}$ and $f, g: A \rightarrow B$ be functions defined by $f(x)=x^{2}-x, x \in A$ and $g(x)=2\left|x-\frac{1}{2}\right|-1, x \in A$. Are f and g equal? Justify your answer.
18. Number of binary operations on the set $\{a, b\}$ are
(A) 10
(B) 16
(C) 20
(D) 8

- Watch Video Solution

19. Let $A=\{1,2,3\}$. Then number of equivalence relations containing (1,
2) is (A) 1 (B) 2 (C) 3 (D) 4

- Watch Video Solution

Solved Examples

1. Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are onto, then $g o f: A \rightarrow C$ is also onto.
2. Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are one-one, then gof: $A \rightarrow C$ is also one-one.

- Watch Video Solution

3. Let $f:\{2,3,4,5\} \rightarrow\{3,4,5,9\}$ and $g:\{3,4,5,9\} \rightarrow\{7,11,15\}$ be functions defined as $f(2)=3, \quad f(3)=4, \quad f(4)=f(5)=5$ and
$g(3)=g(4)=7$ and $\mathrm{g}(5)=g(9)=11$. Find gof.

- Watch Video Solution

4. Show that a one-one function $f:\{1,2,3\} \rightarrow\{1,2,3\}$ must be onto.

- Watch Video Solution

5. Show that if $f: R-\left\{\frac{7}{5}\right\} \rightarrow R-\left\{\frac{3}{5}\right\}$ is defined by $f(x)=\frac{3 x+4}{5 x-7}$ and $g: R-\left\{\frac{3}{5}\right\} \rightarrow R-\left\{\frac{7}{5}\right\}$ is define by $g(x)=\frac{7 x+4}{5 x-3}$, then $f o g=I_{A}$ and $g o f=I_{B}$, where $A=R-\left\{\frac{3}{5}\right\}, B=R-\left\{\frac{7}{5}\right\} ; I_{A}(x)=x, \forall x \in A, I_{B}(x)=x, \forall x \in 1$ are called ideal

- Watch Video Solution

6. Find gof and fog, if $f: R \rightarrow$ Rand $g: R \rightarrow$ Rare given by $f(x)=\cos x$ and $g(x)=3 x^{2}$. Show that gof $\neq f o g$.

- Watch Video Solution

7. Show that the function $f: R \rightarrow R$, defined as $f(x)=x^{2}$, is neither one-one nor onto.
8. Show that the function $f: N \rightarrow N$ given by $f(1)=f(2)=1$ and $f(x)=x-1$ for every $x \geq 2$, is onto but not one-one.

Watch Video Solution

9. If $A=\{1,2,3\}$, show that an onto function $f: A \rightarrow A$ must be oneone

- Watch Video Solution

10.

Show
that
$f: N \vec{N}$,
given
by
$f(x)=\{x+, \quad$ if x is oddx $-1, \quad$ if x is even is both oneone and onto.

- Watch Video Solution

11. Show that the function $f: N \rightarrow N$, given by $f(x)=2 x$, is one-one but not onto.

(D) Watch Video Solution

12. Prove that $f: R \rightarrow R$, given by $f(x)=2 x$, is one-one and onto.

- Watch Video Solution

13. Let R be the relation defined on the set $A=\{1,2,3,4,5,6,7\}$ by $R=\{(a, b):$ both a and b are either odd or even $\}$. Show that R is an equivalence relation. Further, show that all the elements of the subset $\{1$, $3,5,7\}$ are related to each other and all the elements of the subset $\{2,4$, $6\}$ are related to each other, but no element of the subset $\{1,3,5,7\}$ is related to any element of the subset $\{2,4,6\}$.

- Watch Video Solution

14. Let A be the set of all 50 students of class $X I I$ in a central school. Let $f: A \rightarrow N$ be a function defined by $f(x)=$ Roll number of student x Show that f is one-one but not onto.

(D) Watch Video Solution

15. Show that the relation R in the set $\{1,2,3\}$ given by $R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ is reflexive but neither symmetric nor transitive.

- Watch Video Solution

16. Show that the relation R on the set Z of integers, given by $R=\{(a, b): 2$ divides $a-b\}$, is an equivalence relation.

- Watch Video Solution

17. Let T be the set of all triangles in a plane with R a relation in T given by $R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is congruent to $\left.T_{2}\right\}$. Show that R is an equivalence relation.
18. Let L be the set of all lines in a plane and R be the relation in L defined as $R=\left\{\left(L_{1}, L_{2}\right): L_{1}\right.$ (is perpendicular to $\left.L_{2}\right\}$ Show that R is symmetric but neither reflexive nor transitive.

- Watch Video Solution

19. Let A be the set of all students of a boys school. Show that the relation R in A given by $R=\{(a, b)$: a is sister of $b\}$ is the empty relation and $R^{\prime}=$ $\{(a, b)$: the difference between heights of a and b is less than 3 meters $\}$ is the universal relation.

- Watch Video Solution

20. Show that a is the inverse of a for the addition operation + on R and $\frac{1}{a}$ is the inverse of $a \neq 0$ for the multiplication operation \times on R .
21. Show that zero is the identity for addition on R and 1 is the identity for multiplication on R. But there is no identity element for the operations $-: R \times R \rightarrow R$ and $\div: R . \times R . \rightarrow R$.

- Watch Video Solution

22. Show that the $F: R \rightarrow R$ given by $(a, b) \rightarrow \max \{a, b\}$ and the $G: R \rightarrow R$ given by $(a, b) \rightarrow \min \{a, b\}$ are binary operations.

- Watch Video Solution

23. Let P be the set of all subsets of a given set X. Show that $\cup: P \times P \rightarrow P$ given by $(A, B) \rightarrow A \cup B$ and $\cap: P \times P \rightarrow P$ given by $(A, B) \rightarrow A \cap B$ are binary operations on the set P .

- Watch Video Solution

24. Show that $F: R \times R \rightarrow R$ given by $(a, b) \rightarrow a+4 b^{2}$ is a binary operation.

- Watch Video Solution

25. Show that subtraction and division are not binary operations on N .

- Watch Video Solution

26. Show that $\cdot: R \times R \rightarrow R$ given by $a \cdot b=a+2 b$ is not associative.

- Watch Video Solution

27. Show that addition and multiplication are associative binary operation on R. But subtraction is not associative on R. Division is not associative on R*.
28. Show that $\quad: R \times R \rightarrow R$ defined by $a \cdot b=a+2 b$ is not commutative.

- Watch Video Solution

29. Show that $+: R \times R \rightarrow R$ and $\times: R \times R \rightarrow R$ are commutative binary operations, but $-: R \times R \rightarrow R$ and $\div: R . \times R . \rightarrow R$. are not commutative.

- Watch Video Solution

30. Let $Y=\left\{n^{2}: n \in N\right\} \in N$. Consider $f: N \rightarrow Y$ as $f(n)=n^{2}$. Show that f is invertible. Find the inverse of f.

- Watch Video Solution

31. Let $f: N \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow$ Range (f) is invertible. Find the inverse of f.

- Watch Video Solution

32. Consider $f: N \rightarrow N, g: N \rightarrow N$ and $h: N \rightarrow R$ defined as $f(x)=2 x$, $g(y)=3 y+4$ and $h(z)=\sin z, \forall \mathrm{x}, \mathrm{y}$ and z in N . Show that ho(gof $)=$ (hog) of.

- Watch Video Solution

33. Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ and $g:\{a, b, c\} \rightarrow\{$ apple, ball, cat\} defined as $f(1)=a, f(2)=b, f(3)=c, g(a)=$ apple, $g(b)=$ ball and $g(c)=c a t$. Show that f, g and gof are invertible. Find f^{-1}, g^{-1} and $(g \circ f)^{-1}$ and show that $(g \circ f)^{-1}=f^{-1} o g^{-1}$.

- Watch Video Solution

34. Consider functions f and g such that composite gof is defined and is one-one.Are f and g both necessarily one-one.

- Watch Video Solution

35. Are f and g both necessarily onto, if $g o f$ is onto?

- Watch Video Solution

36. Let $f:\{1,2,3\} \rightarrow\{a, b, c\}$ be one-one and onto function given by $f(1)=a, f(2)=b$ and $f(3)=c$. Show that there exists a function $g:\{a, b, c\} \rightarrow\{1,2,3\}$ such that $g \circ f=I_{x}$ and $f o g=I_{y}$

- Watch Video Solution

37. Let $f: N \vec{Y}$ be a function defined as $f(x)=4 x+3$, where $Y=\{y \in N: y=4 x+3$ for some $x \in N\}$. Show that f is invertible and
its inverse is (1) $g(y)=\frac{3 y+4}{3}$ (2) $g(y)=4+\frac{y+3}{4}$ (3) $g(y)=\frac{y+3}{4}$
(4) $g(y)=\frac{y-3}{4}$

- Watch Video Solution

38. Let $S=\{1,2,3\}$. Determine whether the functions $f: S \rightarrow S$ defined as below have inverses. Find f^{-1}, if it exists.(a) $f=\{(1,1),(2,2),(3,3)\}$
(b) $f=\{(1,2),(2,1),(3,1)\}(c)$ ' $\mathrm{f}=$

- Watch Video Solution

39. Show that addition, subtraction and multiplication are binary operations on R, but division is not a binary operation on R. Further, show that division is a binary operation on the set R of nonzero real numbers.

- Watch Video Solution

40. Consider the identity function $I_{N}: N \rightarrow N$ defined as, $I_{N}(x)=x$ for all $x \in N$. Show that although I_{N} is onto but $I_{N}+I_{N}: N \rightarrow N$ defined as $\left(I_{N}+I_{N}\right)(x)=I_{N}(x)+I_{N}(x)=x+x=2 x$ is not onto.

- Watch Video Solution

41. Let R be a relation on the set A of ordered pairs of positive integers defined by $(x, y) R(u, v)$ if and only if $x v=y u$. Show that R is an equivalence relation.

- Watch Video Solution

42. Let $X=\{1,2,3,4,5,6,7,8,9\}$, Let R_{1} be a relation on X given by $R_{1}=\{(x, y): x-y$ is divisible by 3$\}$ and R_{2} be another relation on X given by $R_{2}=\{(x, y):\{x, y\} \subset\{1,4,7\}$ or $\{x, y\} \subset\{2,5,8\}$ or $\{x, y\} \subset\{3,6,9\}\}$. Show that $R_{1}=R_{2}$.
43. Show that $-a$ is not the inverse of $a \in N f o r$ the addition operation + on N and $\frac{1}{a}$ is not the inverse of $a \in$ Nfor multiplication operation \times on N , for $a \neq 1$.

- Watch Video Solution

44. If R_{1} and R_{2} are equivalence relations in a set A , show that $R_{1} \cap R_{2}$ is also an equivalence relation.

- Watch Video Solution

45. Find the number of all one-one functions from set $A=\{1,2,3\}$ to itself.

- Watch Video Solution

46. Let $A=\{1,2,3\}$. Then, show that the number of relations containing (1, 2) and (2, 3) which are reflexive and transitive but not symmetric is three.

- Watch Video Solution

47. Let $f: X \rightarrow Y$ be a function. Define a relation R on X given by $R=\{(a, b): f(a)=f(b)\}$. Show that R is an equivalence relation on X.

- Watch Video Solution

48. Determine which of the following binary operations on the set N are associative and which are commutative. $(a) a \cdot b=1 \forall a, b \in N$
(b) $a \cdot b=\left(\frac{a+b}{2}\right) \forall a, b \in N$

- Watch Video Solution

49. Show that the number of equivalence relation in the set $\{1,2,3\}$ containing (1, 2) and (2, 1) is two.

- Watch Video Solution

50. Show that the number of binary operations on $\left\{\begin{array}{ll}1, & 2\}\end{array}\right\}$ having 1 as identity and having 2 as the inverse of 2 is exactly one.

- Watch Video Solution

Exercise 14

1. Let $\mathrm{A}=\mathrm{N} \times \mathrm{N}$ and \cdot be the binary operation on A defined $\mathrm{by}(\mathrm{a}, \mathrm{b}) \cdot(\mathrm{c}, \mathrm{d})=$ ($a+c, b+d$). Show that \cdot is commutative and associative. Find the identity element for • on A, if any.

- Watch Video Solution

2. Show that none of the operations given below has identity.(i)
$a * b=a-b$
(ii) $\quad a * b=a^{2}+b^{2}$
(iii) $\quad a * b=a+a b$
$a * b=(a-b)^{2}(\mathrm{v}) a * b=\frac{a b}{4}$ (vi) $a * b=a b^{2}$

- Watch Video Solution

3. If * is a binary operation in N defined as $\mathrm{a}^{*} \mathrm{~b}=a^{3}+b^{3}$, then which of the following is true :
(i) * is associative as well as commutative.
(ii) * is commutative but not associative
(iii) * is associative but not commutative
(iv) * is neither associative not commutative.
A. (A) Is $*$ both associative and commutative?
B. (B) Is * commutative but not associative?
C. (C) Is * associative but not commutative?
D. (D) Is * neither commutative nor associative?

Answer: (B) Is * commutative but not associative?

- Watch Video Solution

4. State whether the following statements are true or false. Justify.
(i) For an arbitrary binary operation $*$ on a set N, $a * a=a \forall a \in N$.
(ii) If $*$ is a commutative binary operation on N, then $a *(b * c)=(c * b) * a$

- Watch Video Solution

5. Let $*$ be the binary operation on N given by $a * b=L C M$ of a and b . Find (i) $5 * 7,20 * 16$ (ii) Is • commutative? (iii) Is $*$ associative? (iv) Find the identity of $*$ in $\mathrm{N}(\mathrm{v})$ Which elements of N are invert

- Watch Video Solution

6. Is \cdot defined on the set $\{1,2,3,4,5\} b y a \cdot b=L \dot{C} \dot{M} \cdot$ of a and b a binary operation? Justify your answer.

Watch Video Solution

7. Consider a binary operation * on the set $\{1,2,3,4,5\}$ given by the following multiplication table Compute (2*3) *4 and $2^{*}\left(3^{*} 4\right)$ Is * commutative? (iii) Compute ($\left.2^{*} 3\right)^{*}\left(4^{*} 5\right)$

- Watch Video Solution

8. Let $*$ 'be the binary operation on the set $\{1,2,3,4,5\}$ defined by $a *$ ' $b=H C F$ of a and b . Is the operation $*$ 'same as the operation * defined Justify your answer.

- Watch Video Solution

9. For each binary operation * defined below, determine whether * is commutative or associative.
(i) On Z, define $a * b=a-b$
(ii) On Q, define $a * b=a b+1$
(iii) On Q, define $a * b=\frac{a b}{2}$
(iv) On Z^{+}, define $a * b=2^{a b}$
(v) On Z^{+}, define $a * b=a^{b}$
(vi) On $R-\{-1\}$, define $a * b=\frac{a}{b+1}$

- Watch Video Solution

10. Consider the binary operation \wedge on the set $\{1,2,3,4,5\}$ defined by $a \wedge b=\min \{a, b\}$. Write the operation table of the operation \wedge.

- Watch Video Solution

11. Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give
justification for this.
(i) On Z^{+}, define $*$ by $a * b=a-b$
(ii) On Z^{+}, define $*$ by $a * b=a b$
(iii) On R, define $*$ by $a * b=a b^{2}$
(iv) On Z^{+}, define $*$ by $a * b=|a-b|$
(v) On Z^{+}, define $*$ by $a * b=a$

D Watch Video Solution

12. Let $*$ be the binary operation on N defined by $a * b=H C F$ of a and b. Is $*$ commutative? Is $*$ associative? Does there exist identity for this binary operation on N ?

- Watch Video Solution

13. Let $*$ be a binary operation on the set Q of rational numbers as follows:
(i) $a * b=a-b$ (ii) $a * b=a^{2}+b^{2}$

Find which of the binary operations are commutative and which are associative

- Watch Video Solution

Exercise 12

1. Let A and B be two sets. Show that $f: A \times B \rightarrow B \times A$ defined by $f(a, b)=(b, a)$ is a bijection.

- Watch Video Solution

2. Let $f: N \rightarrow N$ be defined by
$f(n)=\left\{\frac{n+1}{2}\right.$, if n is odd $\frac{n}{2}$, if n is even \quad for \quad all $n \in N . ~$ State whether the function f is bijective. Justify your answer.
3. Show that the Modulus Function $f: R \rightarrow R$, given by $f(x)=|x|$, is neither one-one nor onto, where $|x|$ is x , if x is positive or O and $|x|$ is x, if x is negative.

- Watch Video Solution

4. Show that the Signum function $f: R \rightarrow R$, given by $f(x)=\{1, \quad$ if $x>00, \quad$ if $x=0-1, \quad$ if $x<0$ is neither oneone nor onto.

- Watch Video Solution

5. In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.(i) $f: R \rightarrow R$, defined by $f(x)=34 x$ (ii) $f: R \rightarrow R$, defined by $f(x)=1+x^{2}$

- Watch Video Solution

6. Show that the function $f: R_{0} \rightarrow R_{0}$, defined as $f(x)=\frac{1}{x}$, is one-one onto, where R_{0} is the set of all non-zero real numbers. Is the result true, if the domain R_{0} is replaced by N with co-domain being same as R_{0} ?

- Watch Video Solution

7. Check the injectivity and surjectivity of the following functions:
(i) $f: N \rightarrow N$ given by $f(x)=x^{2}$
(ii) $f: Z \rightarrow Z$ given by $f(x)=x^{2}$
(iii) $f: R \rightarrow R$ given by $f(x)=x^{2}$
(iv) $f: N \rightarrow N$ given by $f(x)=x^{3}$
(v) $f: Z \rightarrow Z$ given by $f(x)=x^{3}$

- Watch Video Solution

8. Prove that the Greatest Integer Function $f: R \rightarrow R$, given by $f(x)=[x]$, is neither one-one nor onto, where [x$]$ denotes the greatest integer less than or equal to x .
9. Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. State whether f is one-one or not.

- Watch Video Solution

10. Let $f: R \rightarrow R$ be defined as $f(x)=3 x$. Choose the correct answer. (A) f is one-one onto (B) f is many-one onto (C) f is one-one but not onto (D) f is neither one-one nor onto.

- Watch Video Solution

11. Let $f: R \rightarrow R$ be defined as $f(x)=x^{4}$. Choose the correct answer. (A)
f is one-one onto (B) f is many-one onto (C) f is one-one but not onto (D) f is neither one-one nor onto
12. Let $A=R-\{3\}$ and $B=R-\{1\}$. Consider the function $f: A \rightarrow B$ defined by $(x)=\left(\frac{x-2}{x-3}\right)$. Is fone-one and onto? Justify your answer.

- Watch Video Solution

Exercise 11

1. Determine whether each of the following relations are reflexive, symmetric and transitive:

Relation R in the set A of human beings in a town at a particular time given by
$R=\{(x, y): x$ and y work at the same place $\}$

- Watch Video Solution

2. Check whether the relation R defined in the set $\{1,2,3,4,5,6\}$ as
$R=\{(a, b): b=a+1\}$ is reflexive, symmetric or transitive.
3. Show that the relations R on the set R of all real numbers, defined as $R=\left\{(a, b): a \leq b^{2}\right\}$ is neither reflexive nor symmetric nor transitive.

- Watch Video Solution

4. Check whether the relation R in R defined by $R=\left\{(a, b): a \leq b^{3}\right\}$ is reflexive, symmetric or transitive.

- Watch Video Solution

5. Show that the relation R in R defined as $R=\{(a, b): a \leq b\}$, is reflexive and transitive but not symmetric.

- Watch Video Solution

6. Show that the relation R in the set A of all the books in a library of a college, given by $R=\{(x, y): x$ and y have same number of pages $\}$ is an equivalence relation.

- Watch Video Solution

7. Show that the relation R in the set $\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ is symmetric but neither reflexive nor transitive.

- Watch Video Solution

8. Show that each of the relation R in the set $A=\{x \in Z: 0 \leq x \leq 12\}$, given by(i) $R=\{(a, b):|a-b|$ is a multiple of 4$\}($ (ii) $R=\{(a, b): a=b\}$ is an equivalence relation. Find the set of all elements related to 1 in each case.

- Watch Video Solution

9. Show that the relation R in the set $A=\{1,2,3,4,5\}$ given by $R=\{(a, b):|a-b|$ iseven $\}$, is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other and all the elements of $\{2,4\}$ are related to each other. But no element of $\{1,3,5\}$ is related to any element of $\{2,4\}$.

- Watch Video Solution

10. Show that the relation R defined in the set A of all triangles as
$R=\left\{\left(T_{1}, T_{2}\right): T_{1}(\text { issimilarto } T)_{2}\right\}$, is equivalence relation. Consider three right angle triangles T_{1} with sides $3,4,5, T_{2}$ with sides $5,12,13$ and $T_{3} \mathrm{w}$

- Watch Video Solution

11. Show that the relation R defined in the set A of all polygons as $R=\left\{\left(P_{1}, P_{2}\right): P_{1}\right.$ and P_{2} have same number of sides $\}$, is an
equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3,4 and 5 ?

- Watch Video Solution

12. Give an example of a relation. Which is(i) Symmetric but neither reflexive nor transitive.(ii) Transitive but neither reflexive nor symmetric.
(iii) Reflexive and symmetric but not transitive.(iv) Reflexive and transitive but not symmetric.(v) Symmetric and transitive but not reflexive.

- Watch Video Solution

13. Show that the relation R on the set A of points in a plane, given by $R=\{(P, Q):$ Distance of the point P from the origin is same as the distance of the point Q from the origin\}, is an equivalence relation. Further show that the set of all points related to a point $P \neq(0,0)$ is the circle passing through P with origin as centre.
14. Let R be the relation in the set N given by $R=\{(a, b): a=b-2, b>6\} . \quad$ Choose the correct answer.(A) $(2,4) \in R(\mathrm{~B})(3,8) \in R(\mathrm{C})(6,8) \in R(\mathrm{D})(8,7) \in R$

- Watch Video Solution

15. Let L be the set of all lines in $X Y=$ plane and R be the relation in L defined as $R=\left\{\left(L_{1}, L_{2}\right): L_{1}\right.$ is parallel to $\left.L_{2}\right\}$. Show that R is an equivalence relation. Find the set of all lines related to the line $y=2 x+4$.

- Watch Video Solution

16. Let R be the relation on the set $A=\{1,2,3,4\}$ given by $R=\{(1,2),(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}$. Then, R is (a) reflexive and symmetric but not transitive (b) R is reflexive and
transitive but not symmetric (c) R is symmetric and transitive but not reflexive (d) R is an equivalence relation

- Watch Video Solution

Exercise 13

1. Consider $f: R^{ \pm}>[-5, \infty)$ given by $f(x)=9 x^{2}+6 x+5$. Show that f is invertible with $f^{-1}(x)=\frac{\sqrt{x+6}-1}{3}$.

- Watch Video Solution

2. Consider $f: R^{+} \rightarrow[4, \infty]$ given by $f(x)=x^{2}+4$. Show that f is invertible with the inverse $\left(f^{-1}\right)$ of f given by $f^{-1}(y)=\sqrt{y-4}$, where R^{+}is the set of all non-negative real numbers.

- Watch Video Solution

3. Find fog and gof, if (i) $f(x)=|x|$ and $g(x)=|5 x-2|$ (ii) $f(x)=8 x^{3}$ and $g(x)=x^{1 / 3}$

- Watch Video Solution

4. Let f, g and h be functions from R to R . Show that 1 . $(f+g) o h=f o h+g o h 2 .(f . g) o h=(f o h) .(g o h)$

- Watch Video Solution

5. Let $f:\{1,3,4\} \rightarrow\{1,2,5\}$ and $g:\{1,2,5\} \rightarrow\{1,3\}$ be given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$. Write down gof.

- Watch Video Solution

6. Consider $f: R \rightarrow R$ given by $f(x)=4 x+3$. Show that f is invertible. Find the inverse of f.

Watch Video Solution

7. Show that $f:[-1,1] \rightarrow R$, given by $f(x)=\frac{x}{(x+2)}$ is one- one. Find the inverse of the function $f:[-1,1] \rightarrow$ SwhereSistheRan $\geq o f f$.

- Watch Video Solution

8. State with reason whether following functions have inverse (i) $f:\{1,2,3,4\} \rightarrow\{10\}$ with $f=\{(1,10),(2,10),(3,10),(4,10)\}$
(ii) $g:\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ with $g=\{(5,4),(6,3),(7,4),(8,2)\}$
(iii)
$h:\{2,3,4,5\} \rightarrow\{7,9,11,13\}$ with $h=\{(2,7),(3,9),(4,11),(5,13)\}$

- Watch Video Solution

9. If $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$, show that $f o f(x)=x$ for all $x \neq \frac{2}{3}$. What is the inverse of f ?

- Watch Video Solution

10. Let $f: R-\left\{-\frac{4}{3}\right\} \rightarrow R$ be a function as $f(x)=\frac{4 x}{3 x+4}$. The inverse of f is map, g : Range $f \rightarrow R-\left\{-\frac{4}{3}\right\}$ given by.(a)
$g(y)=\frac{3 y}{3-4 y}$
(b) $\quad g(y)=\frac{4 y}{4-3 y}$ (c)
$g(y)=\frac{4 y}{3-4 y}$
$g(y)=\frac{3 y}{4-3 y}$

- Watch Video Solution

11. Let $f: X \rightarrow Y$ be an invertible function. Show that f has unique inverse. (Hint: suppose $g_{1}(\text { and } g)_{2}$ are two inverses of f. Then for all $y \in Y, f o g_{1}(y)=I_{Y}(y)=f o g_{2}(y)$. Use one oneness of $\left.f\right)$.

- Watch Video Solution

12. Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ given by $f(1)=a, f(2)=b$ and $f(3)=c$. Find f^{-1} and show that $\left(f^{-1}\right)^{-1}=f$.

Watch Video Solution

13. Let $f: X \rightarrow Y$ be an invertible function. Show that the inverse of f^{-1} is f , i.e., $\left(f^{-1}\right)^{-1}=f$.

- Watch Video Solution

14. If $f: R \rightarrow R$ be given by $f(x)=\left(3-x^{3}\right)^{1 / 3}$, then $f o f(x)$ is(a) $\frac{1}{x^{3}}$ x^{3} (c) $\times(\mathrm{d})\left(3-x^{3}\right)$

- Watch Video Solution

