©゙’doubtnut

India's Number 1 Education App

MATHS

NCERT - NCERT

MATHEMATICS(ENGLISH)

THREE DIMENSIONAL GEOMETRY

Exercise 112

1. Show that the three lines with direction
cosines
$\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}, \frac{4}{13}, \frac{12}{13}, \frac{3}{13} ; \frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$ are mutually perpendicular.

D Watch Video Solution

2. Show that the line through the points
$(4,7,8),(2,3,4)$ is parallel to the line through
the points $(1,2,1),(1,2,5)$.

Watch Video Solution
3. Show that the line through the points $(1,1,2),(3,4,2)$ is perpendicular to the line through the points ($0,3,2$) and ($3,5,6$).

D Watch Video Solution

4. Find the equation of the line in vector and in
cartesian form that passes through the point with position vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and is in the direction $\hat{i}+2 \hat{j}-\hat{k}$.

D Watch Video Solution

5. Find the equation of the line which passes through the point (1,2,3) and is parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$.

(Watch Video Solution

6. The cartesian equation of a line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$. Write its vector form.
7. Find the cartesian equation of the line which passes through the point $(2,4,5)$ and parallel to the line given by $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$.

D Watch Video Solution

8. Find the vector and the cartesian equations of
the line that passes through the points
$(3,2,5),(3,2,6)$.
9. Find the vector and the cartesian equations of the lines that passes through the origin and $(5,2,3)$.

(D) Watch Video Solution

10. Find the values of p so that the lines
$\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and
$\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.

D Watch Video Solution
11. Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$
and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other.

D Watch Video Solution

12. Find the angle between the following pairs of
lines:(i)

$$
\begin{aligned}
& \rightarrow r=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k}) \text { and } \\
& \rightarrow r=7 \hat{i}-6 \hat{k}+\mu(\hat{i}+2 \hat{j}+2 \hat{k})(\mathrm{ii}) \\
& \rightarrow r=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}-2 \hat{k}) \text { and } `-
\end{aligned}
$$

13. Find the angle between the following pair of
lines:

$$
\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3} \text { and }
$$

$\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$

- Watch Video Solution

14. Find the shortest distance between the lines
whose
vector equations are

$$
\begin{aligned}
& \rightarrow r=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}) \text { and } \\
& \rightarrow r=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k}) .
\end{aligned}
$$

15. Find the shortest distance between the lines whose vector equations are

$$
\begin{aligned}
& \rightarrow r=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k} \text { and } \\
& \rightarrow r=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k}
\end{aligned}
$$

D Watch Video Solution

16. Find the shortest distance between the lines

$$
\begin{aligned}
& \rightarrow r=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \text { and } \\
& \rightarrow r=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
\end{aligned}
$$

17. Find the shortest distance between the lines

$$
\begin{aligned}
& \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \text { and } \\
& \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}
\end{aligned}
$$

(Watch Video Solution

Miscellaneous Exercise

1. Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes
$\rightarrow r \hat{i}-\hat{j}+2 \hat{k}=5$ and $\rightarrow r 3 \hat{i}+\hat{j}+\hat{k}=6$.
2. Find the distance of the point $(1,5,10)$ from
the point of intersection of the line $\rightarrow r=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and
the plane $\rightarrow r=(\hat{i}-\hat{j}+\hat{k})=5$.

D Watch Video Solution

3. Find the equation of the plane passing through the intersection of the planes

$$
\rightarrow r \hat{i}+\dot{\hat{j}}+\hat{k}=1 \text { and } \rightarrow r 2 \hat{i}+3 \hat{j}-\hat{k}+4=0
$$

and parallel to x-axis.

(D) Watch Video Solution

4. If the points $(1,1, p) \operatorname{and}(3,0,1)$ be equidistant from the plane
$\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$, then find the value of p.

D Watch Video Solution

5. Find the equation the plane which contain the
line of intersection of the planes
$\vec{r} \hat{i}+2 \dot{\hat{j}}+3 \hat{k}-4=0$ and $\vec{r} 2 \hat{i}+\dot{\hat{j}}-\hat{k}+5=0$
and which is perpendicular to the plane
$\vec{r}(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$.

(Watch Video Solution

6. If O be the origin and the coordinates of P be
$(1,2,-3)$, then find the equation of the plane passing through P and perpendicular to $O P$.
7. Find the coordinates of the point where the line through $(5,1,6)$ and $(3,4,1)$ crosses the $Z X$ plane.

D Watch Video Solution

8. Find the coordinate of the point where the
line through $(5,1,6)$ and $(3,4,1)$ crosses the i. yzplane ii. zx -plane.

D Watch Video Solution
9. Find the equation of the plane passing through the point $(1,3,2)$ and perpendicular to each of the planes $x+2 y+3 z=5$ and $3 x+3 y+z=0$.

D Watch Video Solution

10. Find the coordinates of the point where the
line through $(3,4,5)$ and $(2,3,1)$ crosses the plane $2 x+y+z=7$.
11. The planes $2 x-y+4 z=5$ and $5 x-2.5 y+10 z=6$ are

(D) Watch Video Solution

12. Find the equation of the plane passing through (a, b, c) and parallel to the plane $\rightarrow r \hat{i}+\dot{\hat{j}}+\hat{k}=2$.
13. Find the shortest distance between lines

$$
\begin{aligned}
& \rightarrow r=6 \hat{i}+2 \hat{j}+\hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k}) \text { and } \\
& \rightarrow r=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k})
\end{aligned}
$$

(Watch Video Solution

14. If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular,
find the value of k.
A. $-\frac{11}{19}$
B. $-\frac{8}{7}$
C. $-\frac{10}{7}$
D. $-\frac{9}{7}$

Answer: C

D Watch Video Solution

15. Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0$.
16. Find the equation of a line parallel to x-axis and passing through the origin.

(Watch Video Solution

17. If the coordinates of the points A, B, C, D be
$(1,2,3)$,
$(4,5,7)$,
$(4,3,6)$ and
$(2,9,2)$
respectively, then find the angle between the
lines $A B$ and CD.

D Watch Video Solution
18. If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are $m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}, l_{1} m_{2}-l_{2} m_{1}$.

(Watch Video Solution

19. Find the angle between the lines whose direction ratios are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and
$b-c, c-a, a-b$.
20. Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points $(3,5,-1),(4,3,-1)$.

- Watch Video Solution

21. Find the vector equation of the line passing through the point $(1,2,-4)$ and perpendicular to the two lines: $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$
22. Prove that if a plane has the intercepts
$a, b, c a n d$ is at a distance of p units from
theorigin, then $\frac{1}{a^{2}}=\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$.

D Watch Video Solution

23. Distance between the two planes:
$2 x+3 y+4 z=4$ and $4 x+6 y+8 z=12$ is(A) 2
units (B) 4 units (C) 8 units (D) $\frac{2}{\sqrt{29}}$ units

Solved Examples

$$
\begin{aligned}
& \text { 1. Show that the lines } \\
& \frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta} \\
& \frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma} \text { and }
\end{aligned}
$$

D Watch Video Solution

2. Find the distance between the point $P(6,5,9)$ and the plane determined by the points $A(3,1,2), B(5,2,4)$ and $C(1,1,6)$.

- Watch Video Solution

3. Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane
$10 x+2 y-11 z=3$.

D Watch Video Solution

4. Find the equation of the plane that contains the point $(1,-1,2)$ and is perpendicular to each of the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$.

- Watch Video Solution

5. A line makes angles \angle, β, γ and δ with the diagonals of a cube. Show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=4 / 3$.

D Watch Video Solution

6. Find the coordinates of the point where the line through the points
$A(3,4,1)$ and $B(5,1,6)$ crosses the XY-plane.
7. Find the vector equation for the line passing through the points $(1,0,2)$ and $(3,4,6)$.

D Watch Video Solution

8. Find the vector and the Cartesian equations of the line through the point $(5,2,4)$ and which is parallel to the vector $3 \hat{i}+2 \hat{j}-8 \hat{k}$.

D Watch Video Solution

9. Show that the points $A(2,-3,-4)$, $B(1,2,3)$ and $C(3,-8,-11)$ are collinear.

D Watch Video Solution

10. Find the direction cosines of x, y and z-axis.

D Watch Video Solution

11. Find the direction cosines of the line passing through the two points $(2,4,5)$ and $(1,2,3)$.
12. If a line has direction ratios $2,1,2$ determine its direction cosines.

D Watch Video Solution

13. If a line makes angle $90^{\circ}, 60^{\circ}$ and 30° with
the positive direction of x, y and z-axis respectively, find its direction cosines.

D Watch Video Solution

14. Find the angle between the pair of lines given by $\vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k})$ and $\vec{r}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})$.

- Watch Video Solution

15. The Cartesian equation of a line is $\frac{x+3}{2}=\frac{y-5}{4}=\frac{z+6}{2}$. Find the vector equation for the line.
16. Show that the lines
$\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and
$\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar.

D Watch Video Solution

17. Find the vector equation of the plane passing through the intersection of the planes
$\rightarrow r \hat{i}+\hat{j}+\hat{k}=6$ and
$\rightarrow r 2 \hat{i}+3 \hat{j}+4 \hat{k}=-5$ and the point $(1,1,1)$.

D Watch Video Solution
18. Find the angle between the two planes
$3 x-6 y+2 z=7$ and $2 x+2 y-2 z=5$.

D Watch Video Solution

19. Find the angle between the two planes
$2 x+y-2 z=5$ and $\quad 3 x-6 y-2 z=7$ using
vector method.

D Watch Video Solution
20. Find the distance of a point $(2,5,3)$ from the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})=4$.

D Watch Video Solution

21. Find the angle between the pair of lines
$\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$ and
$\frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$.
(Watch Video Solution

22. Find the shortest distance between the lines

11 and 12 whose vector equations are

$$
\begin{align*}
& \rightarrow r=\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k}) \\
& \rightarrow r=2 \hat{i}+\hat{j}-k+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k}) \tag{2}
\end{align*}
$$

(1) and

D Watch Video Solution

23. Find the distance between the lines l_{1} and l_{2} given by $\vec{r}=\hat{i}+2 \hat{j}-4 k+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$ and $\vec{r}=3 \hat{i}+3 \hat{j}-5 k+\mu(2 \hat{i}+3 \hat{j}+6 \hat{k})$.

D Watch Video Solution

24. Find the vector equation of the plane which is at a distance of $\frac{6}{\sqrt{29}}$ from the origin and its normal vector from the origin is $2 \hat{i}-3 \hat{j}+4 \hat{k}$.

Also, find its Cartesian form.

D Watch Video Solution

25. Find the direction cosines of the unit vector perpendicular to the plane $\rightarrow r 6 \hat{i}-3 \hat{j}-2 \hat{k}+1=0$ passing through the origin.
26. Find the distance of the plane
$2 x-3 y+4 z-6=0$ from the origin.

D Watch Video Solution

27. Find the coordinates of the foot of the perpendicular drawn from the origin to the plane $2 x-3 y+4 z-6=0$.
28. Find the vector and cartesian equations of the plane which passes through the point $(5,2,4)$ and perpendicular to the line with direction ratios $(2,3,1)$.

Watch Video Solution

29. Find the vector equations of the plane passing through the points $R(2,5,-3)$,

$$
S(-2,-3,5) \text { and } T(5,3,-3)
$$

D Watch Video Solution

30. Find the equation of the plane with intercepts 2,3 and 4 on the x, y and z-axis respectively.

- Watch Video Solution

Exercise 113

1. Find the equation of the plane through the
line of intersection of the planes $x+y+z=1$ and
$2 x+3 y+4 z=5$, which is perpendicular to the plane $\mathrm{x}-\mathrm{y}+\mathrm{z}=0$.
2. Find the vector equation of the plane passing through the intersection of the planes

$$
\rightarrow r 2 \hat{i}+2 \dot{\hat{j}}-3 \hat{k}=7, \rightarrow r 2 \hat{i}+5 \dot{\hat{j}}+3 \hat{k}=9
$$

and through the point ($2,1,3$).

- Watch Video Solution

3. In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between
them.(a)
$7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$
(b) $2 x+y+3 z-2=0$ and $x-2 y+5 z=0$
(c)
$2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$
(d)
$2 x-y+3 z-1=0$ and $2 x-y+3 z+3=0$
(e) $4 x+8 y+z-3=0$ and $y+z-4=0$

D Watch Video Solution
4. Find the angle between the planes whose vector equations are $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5$
and $\vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$.

(Watch Video Solution

5. In the following cases, find the distance of each of the given points from the corresponding given plane. Point Plane(a) $(0,0,0)$
$3 x-4 y+12 z=3$
$(3,-2,1)$
$2 x y+2 z+3=0$
(c)
$(2,3,-5)$
$x+2 y-2 z=9$
(d) $(-6,0,0)$
$2 x-3 y+6 z-2=0$
6. Find the equation of the plane with intercept

3 on the y-axils and parallel to ZOX plane.

D Watch Video Solution

7. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point $(2,2,1)$.
8. Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector $3 \hat{i}+5 \hat{j}-6 \hat{k}$.
A. $6 \sqrt{70}$
B. $5 \sqrt{70}$
C. $8 \sqrt{70}$
D. $7 \sqrt{70}$

Answer: D

D Watch Video Solution
9. Find the Cartesian equation of the following planes:
(a)
$\rightarrow r \hat{i}+\dot{\hat{j}}-\hat{k}=2(\mathrm{~b})$
$\rightarrow r 2 \hat{i}+3 \hat{j}-4 \hat{k}=1$ (c)
$\rightarrow r(s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k}=15$

D Watch Video Solution

10. In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.(a) $z=2$
$x+y+z=1$ (c) $2 x+3 y z=5(\mathrm{~d}) 5 y+8=0$
11. Find the equations of the planes that passes through three points.(a)(1,1,-1),(6,4,-5),(-4,-2,3)

D Watch Video Solution

12. Find the intercepts cut off by the plane
$2 x+y-z=5$.

D Watch Video Solution
13. In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.(a) $\quad 2 x+3 y+4 z-12=0$
$3 y+4 z-6=0$ (c) $\quad x+y+z=1$
$5 y+8=0$

D View Text Solution

14. Find the vector and cartesian equations of
the planes(a) that passes through the point
$(1,0,-2)$ and the normal to the plane is
$\hat{i}+\hat{j}-\hat{k}(\mathrm{~b})$ that passes through the point (1,4,
6) and the normal vector to the plane is
$\hat{i}-2 \hat{j}+\hat{k}$

D View Text Solution

Exercise 111

1. Find the direction cosines of a line which makes equal angles with the coordinate axes.
(D) Watch Video Solution

2. Show that the points

$(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.
(D) Watch Video Solution
3. Find the direction cosines of the sides of the triangle whose vertices are $(3,5,4),(1,1,2)$ and $(5,5,2)$.
4. If a line makes angles $90^{\circ}, 135^{\circ}, 45^{\circ}$ with the x , y and z-axes respectively, find its direction cosines.

D Watch Video Solution

5. If a line has the direction ratios $18,12,4$, then what are its direction cosines?
