

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

1. If the difference between the roots of the equation $x^2+ax+1=0$ is less than $\sqrt{5}$,

then the set of possible values of a is (1)

$$(-3,3)$$
 (2) $(-3,\infty)$ (3) $(3,\infty)$ (4)
 $(-\infty, -3)$
A. $(-3,3)$
B. $(-3,\infty)$
C. $(3,\infty)$
D. $(-\infty, -3)$

Answer: null

2. If $|z+4| \leq 3$, then the maximum value of

 $\left|z+1
ight|$ is (1) 4 (B) 10 (3) 6 (4) 0

3. If the roots of the equation $bx^2 + cx + a = 0$ be imaginary, then for all real values of x, the expression $3b^2x^2 + 6bcx + 2c^2$ is (1) greater than 4ab (2) less than 4ab (3) greater than 4ab (4) less than 4ab

4. If $\left|z-rac{4}{z}
ight|=2$, then the maximum value of |Z| is equal to (1) $\sqrt{3}+1$ (2) $\sqrt{5}+1$ (3) 2 (4) $2+\sqrt{2}$

Watch Video Solution

5. Let α , β be real and z be a complex number. If $z^2 + \alpha z + \beta = 0$ has two distinct roots on the line Re z = 1, then it is necessary that : (1) $b\in (0,1)$ (2) $b\in (\,-1,0)$ (3) |b|=1 (4) $b\in (1,\infty)$

6. If z is a complex number of unit modulus and argument q, then $arg\left(\frac{1+z}{1+\bar{z}}\right)$ equal (1) $\frac{\pi}{2} - \theta$ (2) θ (3) $\pi - \theta$ (4) $-\theta$

Watch Video Solution

7. The real number k for which the equation, $2x^3 + 3x + k = 0$ has two distinct real roots in [0, 1] (1) lies between 2 and 3 (2) lies between -1 and 0 (3) does not exist (4) lies between 1 and 2

Watch Video Solution

8. A complex number z is said to be unimodular if . Suppose z_1 and z_2 are complex numbers such that $\frac{z_1 - 2z_2}{2 - z_1 z_2}$ is unimodular and z_2 is not unimodular. Then the point z_1 lies on a : (1) straight line parallel to x-axis (2) straight line parallel to y-axis (3) circle of radius 2 (4) circle of radius $\sqrt{2}$

Watch Video Solution

$$a_n=lpha^n-eta^n, f\,\,{
m or}\,\,n\geq 1$$
 , then the value of ${a_{10}-2a_8\over 2a_9}$ is equal to: (1) 6 (2) $-$ 6 (3) 3 (4) $-$ 3

10. A value of
$$\theta$$
 for which $\frac{2+3i\sin\theta}{1-2i\sin\theta}$ purely
imaginary, is : (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$
(4) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$
Watch Video Solution

11. Let ω be a complex number such that $2\omega + 1 = i\sqrt{3}$. If $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix} = 3k$,

then k is equal to

