©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR

COMPLEX NUMBERS AND QUADRATIC

EQUATIONS

Others

1. If the difference between the roots of the
equation $x^{2}+a x+1=0$ is less than $\sqrt{5}$,
then the set of possible values of a is (1)

$$
\begin{aligned}
& (-3,3) \quad(2) \quad(-3, \infty) \quad(3) \quad(3, \infty) \\
& (-\infty,-3)
\end{aligned}
$$

A. $(-3,3)$
B. $(-3, \infty)$
C. $(3, \infty)$

$$
\text { D. }(-\infty,-3)
$$

Answer: null

D Watch Video Solution
2. If $|z+4| \leq 3$, then the maximum value of $|z+1|$ is (1) 4 (B) 10 (3) 6 (4) 0

- Watch Video Solution

3. If the roots of the equation
$b x^{2}+c x+a=0$ be imaginary, then for all
real values of x, the expression
$3 b^{2} x^{2}+6 b c x+2 c^{2}$ is (1) greater than 4ab (2)
less than $4 a b$ (3) greater than $4 a b$ (4) less than
$4 a b$
4. If $\left|z-\frac{4}{z}\right|=2$, then the maximum value of
$|Z|$ is equal to (1) $\sqrt{3}+1$ (2) $\sqrt{5}+1$ (3) 2 (4)
$2+\sqrt{2}$

- Watch Video Solution

5. Let α, β be real and z be a complex number.

If $z^{2}+\alpha z+\beta=0$ has two distinct roots on the line $\operatorname{Re} z=1$, then it is necessary that : (1)
$b \in(0,1) \quad$ (2) $\quad b \in(-1,0) \quad$ (3) $\quad|b|=1$
$b \in(1, \infty)$

D Watch Video Solution

6. If z is a complex number of unit modulus and argument q , then $\arg \left(\frac{1+z}{1+\bar{z}}\right)$ equal (1)
$\frac{\pi}{2}-\theta(2) \theta(3) \pi-\theta(4)-\theta$

D Watch Video Solution

7. The real number k for which the equation,
$2 x^{3}+3 x+k=0$ has two distinct real roots
in [0, 1] (1) lies between 2 and 3 (2) lies between -1 and 0 (3) does not exist (4) lies between 1 and 2

- Watch Video Solution

8. A complex number z is said to be unimodular if. Suppose z_{1} and z_{2} are complex numbers such that $\frac{z_{1}-2 z_{2}}{2-z_{1} z_{2}}$ is unimodular
and z_{2} is not unimodular. Then the point z_{1}
lies on a: (1) straight line parallel to x-axis (2)
straight line parallel to y-axis (3) circle of radius 2 (4) circle of radius $\sqrt{2}$

D Watch Video Solution

9. Let α and β be the roots of equation
$x^{2}-6 x-2=0$
$a_{n}=\alpha^{n}-\beta^{n}, f$ or $n \geq 1$, then the value of
$\frac{a_{10}-2 a_{8}}{2 a_{9}}$ is equal to: (1) $6(2)-6$ (3) 3 (4) -3

D Watch Video Solution

10. A value of θ for which $\frac{2+3 i \sin \theta}{1-2 i \sin \theta}$ purely imaginary, is : (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)$
(4) $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$

- Watch Video Solution

11. Let ω be a complex number such that
$2 \omega+1=i \sqrt{3}$. If $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -\omega^{2}-1 & \omega^{2} \\ 1 & \omega^{2} & \omega^{7}\end{array}\right|=3 k$,
then k is equal to

Watch Video Solution

