

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR

DIFFERENTIAL EQUATIONS

Others

1. The solution of the differential equation

$$\frac{dy}{dx} = \frac{x+y}{x}$$
 satisfying the condition

y(1)=1 is (1) $y=\ln\!x+x$ (2) $y=x\!\ln\!x+x^2$

(3) y = xe(x-1) (4) $y = x\ln x + x$

Watch Video Solution

2. Solution of the differential equation

(A)

 $\cos x dy = y(\sin x - y) dx, \, 0 < x < \frac{\pi}{2}$

 $\sec x = (\tan x + c)y$ (B) $y \sec x = \tan x + c$

(C)
$$y \tan x = \sec x + c$$
 (D)

 $\tan x = (\sec x + c)y$

Watch Video Solution

3. The population p(t) at time t of a certain mouse species satisfies the differential equation $\frac{dp(t)}{dt} = 0.5p(t) - 450$ p(0)=850 , then the time at which the population becomes zero is (1) 2 ln 18 (2) ln 9 (3) $\frac{1}{2}$ In 18 (4) In 18

Watch Video Solution