びdoubtnut

MATHS

NCERT - NCERT MATHEMATICS(ENGLISH)

VECTOR ALGEBRA

Solved Examples

1. For any two vectors $\rightarrow a$ and $\rightarrow b$ we always have $|\rightarrow a \xrightarrow{\bullet} b| \leq|\rightarrow a||\rightarrow b|$ (Cauchy-Schwartz inequality).

- Watch Video Solution

2. If \vec{a} is a unit vector and $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$, then find $|\vec{x}|$

D Watch Video Solution

3. Find $|\vec{a}-\vec{b}|$, if two vector \vec{a} and \vec{b} are such that $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \vec{b}=4$.
A. $\sqrt{5}$
B. 5
C. 2
D. $\sqrt{2}$

Answer: A

- Watch Video Solution

4. Find the projection of the $\vec{a}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ on the $\vec{b}=$ $\hat{i}+2 \hat{j}+\hat{k}$.

- Watch Video Solution

5. If $\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}-5 \hat{k}$ then show that the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular.

- Watch Video Solution

6. Find angle θ between the vectors $\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$.
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(-\frac{1}{2}\right)$
C. $\cos ^{-1}\left(-\frac{1}{3}\right)$
D. $\cos ^{-1}\left(\frac{1}{2}\right)$

- Watch Video Solution

7. Find the angle between two \vec{a} and \vec{b} with magnitudes 1 and 2 respectively and when $\vec{a} \cdot \vec{b}=1$.

- Watch Video Solution

8.

Show
that
the
points
$A(2 \hat{i}-\hat{j}+\hat{k}), B(\hat{i}-3 \hat{j}-5 \hat{k}), C(3 \hat{i}-4 \hat{j}-4 \hat{k})$ are the vertices of a right angled triangle.

- Watch Video Solution

9. Consider two points P and Q with position vectors
$\rightarrow O P=3 \rightarrow a-2 \rightarrow$ band $\rightarrow O Q=\rightarrow a+\rightarrow b$ Find the
position vector of a point R which divides the line joining P and Q in the ratio 2:1, (i) internally, and (ii) externally.

- Watch Video Solution

10. Find the vector joining the points $P(2,3,0)$ and $Q(1,2,4)$ directed from P to Q .

(Watch Video Solution

11. Find the unit vector in the direction of the sum of the vectors,

$$
\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k} \text { and } \vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}
$$

12. Write the direction ratios of the vector $\vec{a}=\hat{i}+\hat{j}-2 \hat{k}$ and hence calculate its direction cosines.

- Watch Video Solution

13. Represent graphically a displacement of $40 \mathrm{~km}, 30^{\circ}$ west of south.

- Watch Video Solution

14. Classify the following measures as scalars and vectors.(i) 5 seconds (ii) $1000 \mathrm{~cm}^{3}$

- Watch Video Solution

15. In the given figure, which of the vectors are :
(a) Collinear
(b) Equal
(C) Colinitial

- Watch Video Solution

16. Find the values of x, y and z so that the vectors $\vec{a}=x \hat{i}+2 \hat{j}+z \hat{k}$ and $\vec{b}=2 \hat{i}+y \hat{j}+\hat{k}$ are equal.

- Watch Video Solution

17. Let $\rightarrow a=\hat{i}+2 \hat{j}$ and $\rightarrow b=2 \hat{i}+\hat{j}$. Is $|\rightarrow a|=|\rightarrow b|$?

Are the vector \rightarrow a and \rightarrow bequal?
18. Find unit vector in the direction of vector $\rightarrow a=2 \hat{i}+3 \hat{j}+\hat{k}$

- Watch Video Solution

19. Find a vector in the direction of vector $\vec{a}=\hat{i}-2 \hat{j}$ that has magnitude 7 units.

- Watch Video Solution

20. If with reference to the right handed system of mutually perpendicular unit vectors $\quad \hat{i}, \hat{j}$ and \hat{k},
$\vec{\alpha}=3 \hat{i}-\hat{j}, \vec{\beta}=2 \hat{i}+\hat{j}-3 \hat{k}$, then express $\vec{\beta}$ in the from $\vec{\beta}=\vec{\beta}_{1}+\vec{\beta}_{2}$, where $\vec{\beta}_{1}$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_{2}$ is perpendicular to $\vec{\alpha}$
21. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$.

- Watch Video Solution

22. Find a unit vector perpendicular to each of the vectors
$(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$,
where
$\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$.

D Watch Video Solution

23. For any two vectors \vec{a} and \vec{b}, prove that

$$
\begin{align*}
& |\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}| \quad \text { (ii) } \quad|\vec{a}-\vec{b}| \leq|\vec{a}|+|\vec{b}| \tag{iii}\\
& |\vec{a}-\vec{b}| \geq|\vec{a}|-|\vec{b}|
\end{align*}
$$

24. Show that the points $A(-2 \hat{i}+3 \hat{j}+5 \hat{k}), B(\hat{i}+2 \hat{j}+3 \hat{k})$ and $C(7 \hat{i}-\hat{k})$ are collinear.

- Watch Video Solution

25. Write all the unit vectors in $X Y$ - plane.

- Watch Video Solution

26. If $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{i}-6 \hat{j}-\hat{k}$ are the position vectors of points A, B, C and D respectively, then find the angle between $\overrightarrow{A B}$ and $\overrightarrow{C D}$.

Deduce that $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are collinear

- Watch Video Solution

27. Find the area of a triangle having the points $A(1,1,1)$, $B(1,2,3)$ and $C(2,3,1)$ as its vertices.

- Watch Video Solution

28. Find the area of a parallelogram whose adjacent sides are given by the vectors $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$.

- Watch Video Solution

29. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5$ and each one of them being perpendicular to the sum of the other two, find $|\vec{a}+\vec{b}+\vec{c}|$.
A. $\sqrt{2}$
B. $2 \sqrt{2}$
C. $5 \sqrt{2}$
D. $3 \sqrt{2}$

Answer: C

(Watch Video Solution

30. Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the condition $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$. Evaluate the quantity $\mu=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}, \quad$ if $\quad|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=2$.

D Watch Video Solution

31.

Find
λ
if
the vectors
$\vec{a}=\hat{i}+3 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}-\hat{k}$ and $\vec{c}=\lambda \hat{i}+7 \hat{j}+3 \hat{k}$
are coplanar.
32. Prove that $[\vec{a}, \vec{b}, \vec{c}+\vec{d}]=[\vec{a}, \vec{b}, \vec{c}]+[\vec{a}, \vec{b}, \vec{d}]$

(Watch Video Solution

> 33. $\begin{gathered}\text { Show } \\ \text { that }\end{gathered}$ the $\rightarrow a=\hat{i}-2 \hat{j}+3 \hat{k}, \rightarrow b=2 \hat{i}+3 j-4 \hat{k}$ and $c=\hat{i}-3 \hat{j}+5 \hat{k}$
are coplanar.

(Watch Video Solution

34.

Find
$\vec{a} \cdot(\vec{b} \times \vec{c}), \quad$ if $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}+\hat{k} \quad$ and
$c=3 \hat{i}+\hat{j}+2 \hat{k}$.
35. Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a}, \vec{b}, \vec{c}]$.

- Watch Video Solution

36. Show that the four points A, B, C and D with position vectors $4 \hat{i}+5 \hat{j}+\hat{k},-(\hat{j}+\hat{k}), 3 \hat{j}+9 \hat{j}+4 \hat{k}$ and $4(\hat{i}+\hat{j}+\hat{k})$, respectively are coplanar.

- Watch Video Solution

Exercise 104

1. Area of a rectangle having vertices A, B, C and D with position vectors $-\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}$ and $-\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}$ respectively is(A) $1 / 2$ (B) 1 (C) 2 (D) 4

- Watch Video Solution

2. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between \vec{a} and $\vec{b}(\mathrm{~A})$ $\pi / 6$ (B) $\pi / 4$ (C) $\pi / 3$ (D) $\pi / 2$

- Watch Video Solution

3. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k} \quad$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$.

- Watch Video Solution

4. If either $\vec{a}=0$ and $\vec{b}=0$ then $\vec{a} \times \vec{b}=0$. Is Is the converse true? Justify your answer with an example.

- Watch Video Solution

5. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$

- Watch Video Solution

6. Find λ and $\mu \mathrm{if}(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\overrightarrow{0}$.

- Watch Video Solution

7. Given that $\vec{a} \dot{\vec{b}}=0$ and $\vec{a} \times \vec{b}=0$. What can you conclude about the vectors \vec{a} and \vec{b}.

- Watch Video Solution

8. If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} \quad$ and

$$
\begin{aligned}
& \vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}, \quad \text { then } \\
& \vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}
\end{aligned}
$$

- Watch Video Solution

9. Find a unit vector perpendicular to each of the vector $\rightarrow a+\rightarrow$ band $\rightarrow a-\rightarrow b$ where $\quad \rightarrow a=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\rightarrow b=\hat{i}+2 \hat{j}-2 \hat{k}$

- Watch Video Solution

10. Find the area of the triangle with vertices $A(1,1,2), B(2,3,5)$ and $C(1,5,5)$.
11. If \vec{a} and \vec{b} are two collinear vectors, then which of the following are incorrect:(A) $\vec{b}=\lambda \vec{a}$, for some scalar lambda $\vec{a}= \pm \vec{b}$ (C) the respective components of \vec{a} and \vec{b} are proportional(D) both the vectors \vec{a} and \vec{b} have same direction, but different magnitudes.

- Watch Video Solution

2. In triangle ABC (Figure), which of the following is not true:
(A) $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{0}$
(B) $\overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{A C}=\overrightarrow{0}$
(C) $\overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{C A}=\overrightarrow{0}$
(D) $\overrightarrow{A B}+\overrightarrow{C B}+\overrightarrow{C A}=\overrightarrow{0}$

- Watch Video Solution

3. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

- Watch Video Solution

4. Find a vector in the direction of vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude 8 units.

- Watch Video Solution

5. Find the direction cosines of the vector joining the points $A(1,2,3)$ and $B(1,2,1)$, directed from A to B .

- Watch Video Solution

6. Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

7. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively, in the ratio $2: 1$ (i) internally (ii) externally
8. Show that the vector $\hat{i}+\hat{j}+\hat{k}$ is equally inclined to the axes OX, OY and OZ .

- Watch Video Solution

9. Show that the points A, B and C with position vectors, $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \quad \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\quad \vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$ respectively form the vertices of a right angled triangle.

- Watch Video Solution

10. Find the position vector of the mid point of the vector joining the points $\mathrm{P}(2,3,4)$ and $Q(4,1,2)$.
11. Find the unit vector in the direction of vector $\overrightarrow{P Q}$, where P and Q are the points $(1,2,3)$ and $(4,5,6)$, respectively.
A. $\frac{\hat{i}}{\sqrt{3}}+\frac{\hat{j}}{\sqrt{2}}+\frac{\hat{k}}{\sqrt{2}}$
B. $\frac{\hat{i}}{\sqrt{2}}+\frac{\hat{j}}{\sqrt{3}}+\frac{\hat{k}}{\sqrt{3}}$
C. $\frac{\hat{i}}{\sqrt{2}}+\frac{\hat{j}}{\sqrt{2}}+\frac{\hat{k}}{\sqrt{2}}$
D. $\frac{\hat{i}}{\sqrt{3}}+\frac{\hat{j}}{\sqrt{3}}+\frac{\hat{k}}{\sqrt{3}}$

Answer: D

- Watch Video Solution

12. For given vectors, $\quad \rightarrow a=2 \hat{i}-\hat{j}+2 \hat{k}$ and
$\rightarrow b=-\hat{i}+\hat{j}-\hat{k}$ find the unit vector in the direction of the vector $\rightarrow a+\rightarrow b$.
13. Write two different vectors having same magnitude.

(Watch Video Solution

14. Write two different vectors having same direction.

- Watch Video Solution

15. Compute the magnitude of the following vectors:

$$
\begin{array}{ll}
\vec{a}=\hat{i}+\hat{j}+\hat{k} & ; \quad \vec{b}=2 \hat{i}-7 \hat{j}-3 \hat{k} \\
\vec{c}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k} &
\end{array}
$$

$$
\begin{aligned}
& \text { 16. Find the sum of the vectors } \\
& \rightarrow a=\hat{i}-2 \hat{j}+\hat{k}, \rightarrow b=-2 \hat{i}+4 \hat{j}+5 \hat{k} \text { and } \\
& \rightarrow c=\hat{i}-6 \hat{j}-7 \hat{k}
\end{aligned}
$$

- Watch Video Solution

17. Find the unit vector in the direction of the vector

$$
\vec{a}=\hat{i}+\hat{j}+2 \hat{k}
$$

- Watch Video Solution

18. Find the values of x and y so that the vectors $2 \hat{i}+3 \hat{j}$ and $x \hat{i}+y \hat{j}$ are equal.

- Watch Video Solution

19. Find the scalar and vector components of the vector with initial point $(2,1)$ and terminal point $(5,7)$.

- Watch Video Solution

Miscellaneous Exercise

1. If θ is the angle between any two vectors \vec{a} and \vec{b}, then $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ when θ is equal to(A) 0 (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) π

- Watch Video Solution

2. The two adjacent sides of a parallelogram are $2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\hat{i}-2 \hat{j}-3 \hat{k}$. Find the unit vector parallel to one of its diagonals.

Also, find its area.
3. Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$.

- Watch Video Solution

4. Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of x-axis.

- Watch Video Solution

5. A girl walks 4 km towards west, and then she walks 3 km in a direction 30° east of north and stops. Determine the girls displacement from her initial point of departure.
6. Find the scalar components and magnitude of the vector joining the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$

- Watch Video Solution

7. Find the value of x for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

D Watch Video Solution

8. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k} \quad$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d}=15$.

- Watch Video Solution

9. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vector $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of λ.

- Watch Video Solution

10. If θ is the angle between two vectors \vec{a} and \vec{b}, then $\vec{a} \cdot \vec{b} \geq 0$ only when
(A) $0<\theta<\frac{\pi}{2}$
$(B) 0 \leq \theta \leq \frac{\pi}{2}$
(C) $0<\theta<\pi$
(D) $0 \leq \theta \leq \pi$

- Watch Video Solution

11. Let \vec{a} and \vec{b} be two unit vectors and is the angle between them. Then $\vec{a}+\vec{b}$ is a unit vector if
(A) $\theta=\frac{\pi}{4}$
(B) $\theta=\frac{\pi}{3}$
(C) $\theta=\frac{\pi}{2}$
(D) $\theta=\frac{2 \pi}{3}$

- Watch Video Solution

12. If $\rightarrow a, \rightarrow b, \rightarrow c a r e$ mutually perpendicular vectors of equal magnitudes, show that the vector $\rightarrow a+\rightarrow b+\rightarrow$ cis equally inclined to $\rightarrow a, \rightarrow b$ and $\rightarrow c$.

- Watch Video Solution

13. Prove that $(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{a}|^{2}+|\vec{b}|^{2}$, if and only if \vec{a}, \vec{b} are perpendicular, given $\vec{a} \neq \overrightarrow{0}, \vec{b} \neq \overrightarrow{0}$
14. The value of $\hat{i} \cdot(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} \cdot(\hat{i} \times \hat{j})$ is
(A) 0
(B) 1
(C) 1
(D)3

(Watch Video Solution

15. यदि $\vec{a}=\vec{b}+\vec{c}$, तब क्या यह सत्य है कि $||\vec{a}|=|\vec{b}|+|\vec{c}|$? अपने उत्तर की पुष्टि कीजिए।

D View Text Solution

16. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are
$(2 \vec{a}+\vec{b})$ and $(\vec{a}-3 \vec{b})$ respectively, externally in the ratio
1:2.Also, show that P is the mid-point of the line segment $R Q$.

- Watch Video Solution

17. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$ find a unit vector parallel to the vector $2 \vec{a}-\vec{b}+3 \vec{c}$.

- Watch Video Solution

18. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\quad \rightarrow a=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\rightarrow b=\hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

19. Show that the points $A(1,-2,-8), B(5,0,-2)$ and $C(11,3,7)$ are collinear, and find the ratio in which B divides $A C$.

- Watch Video Solution

Exercise 103

1. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively having $\vec{a} \cdot \vec{b}=\sqrt{6}$

- Watch Video Solution

2. Find the projection of the vector $\hat{i}-\hat{j}$ on the vector $\hat{i}+\hat{j}$
3. Find the angle between the vectors $\hat{i}-2 \hat{j}+3 k$ and $3 \hat{i}-2 \hat{j}+k$

- Watch Video Solution

4. Show that each of the given three vectors is a unit vector:
$\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}), \frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k}), \frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})$ Also, show that they are mutually perpendicular to each other.

D Watch Video Solution

5. Find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$

- Watch Video Solution

6. Evaluate the product $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$

- Watch Video Solution

7. Find $\quad|\vec{a}|$ and $\quad|\vec{b}|$, if $\quad(\vec{a}+\vec{b})(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$

- Watch Video Solution

> 8. Find $\quad|\rightarrow x|$, if for a \quad unit vector $\rightarrow a,(\rightarrow x-\rightarrow a) \rightarrow x+\rightarrow a=12$.

- Watch Video Solution

9. Find the magnitude of two vectors \vec{a} and \vec{b} having the same magnitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$.

- Watch Video Solution

10. If $\rightarrow a \longrightarrow a=0$ and $\rightarrow a \longrightarrow b=0$, then what can be concluded about the vector $\rightarrow b$.

- Watch Video Solution

11. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ find the value of $(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})$.

- Watch Video Solution

12. If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ are such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}, then find the value of λ.

- Watch Video Solution

13. Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is a perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$, for any two non-zero vectors \vec{a} and \vec{b}.

- Watch Video Solution

14. Show that the points $\mathrm{A}(1,2,7), \mathrm{B}(2,6,3)$ and $C(3,10,-1)$ are collinear.

- Watch Video Solution

15. Show that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$ form the vertices of a right angled triangle.

- Watch Video Solution

16. If either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$, then $\vec{a} \cdot \vec{b}=0$ But the converse need not be true. Justify your answer with an example.

- Watch Video Solution

17. If the vertices A, B, C of a triangle $A B C$ are $(1,2,3),(1,0,0),(0,1,2)$, respectively, then find $\angle A B C$. $\angle \angle A B C$ is the angle between the vectors $\overrightarrow{B A}$ and $\overrightarrow{B C}$.

- Watch Video Solution

18. If \vec{a} is a nonzero vector of magnitude a and λ a nonzero scalar, then $\lambda \vec{a}$ is unit vector if
(A) $\lambda=1$
(B) $\lambda=-1$
(C) $a=|\lambda|$
(D) $a=\frac{1}{|\lambda|}$

- Watch Video Solution

Exercise 101

1. Classify the following as scalar and vector quantities. (i) time period (ii) distance (iii) force (iv) velocity (v) work done

- Watch Video Solution

2. Classify the following measures as scalars and vectors.(i) 10 kg
(ii) 2 meters north-west (iii) 40° (iv) 40 watt (v) $10^{\wedge} 19$ coulomb (vi)20 $\mathrm{m} / \mathrm{s}^{2}$

- Watch Video Solution

3. Represent graphically a displacement of 40 km , 30 oe ast of north.

- Watch Video Solution

4. Answer the following as true or false.(i) $\rightarrow a$ and $-\rightarrow a$ are collinear.(ii) Two collinear vectors are always equal in magnitude.
(iii) Two vectors having same magnitude are collinear.(iv) Two collinear vectors having the same magni
5. In a fig. 23.4 (a square), identify the following vectors: Coinitial ii.

Equal Collinear but not equal

- Watch Video Solution

Exercise 105

1. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}$ and $\vec{c}=c_{1} \hat{i}+\hat{c}_{2} j+c_{3} \hat{k}$ Then
(a) if $c_{1}=1$ and $c_{2}=2$, find c_{3} which makes $\vec{a}, \vec{b}, \vec{c}$ coplanar
(b) if $c_{2}=-1$ and $c_{3}=1$, show that no value of c_{1} can makes $\vec{a}, \vec{b}, \vec{c}$ coplanar.

- Watch Video Solution

$$
\begin{aligned}
& \text { 2. Show } \\
& \vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=-2 \hat{i}+3 \hat{j}-4 \hat{k} a n d \vec{c}=\hat{i}-3 \hat{j}+5 \hat{k}
\end{aligned}
$$ are coplanar.

- Watch Video Solution

3.

Find
$[\vec{a} \vec{b} \vec{c}]$ if
$\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 i-3 j+k, \vec{c}=3 \hat{i}+\hat{j}-2 \hat{k}$

- Watch Video Solution

4.

Find
$\lambda i f$
the
$\hat{i}-\hat{j}+\hat{k}, 3 \hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+\lambda \hat{j}+\hat{3} k$ are coplanar
vectors

D Watch Video Solution
5. Find x such that the four points $A(3,2,1), B(4, x, 5)$, $C(4,2,2)$ and $D(6,5,1)$ are coplanar

- Watch Video Solution

6. Show that vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar if $\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}$ are coplanar.

- Watch Video Solution

7. Show that the four points with position vectors $4 \hat{i}+8 \hat{j}+12 \hat{k}, 2 \hat{i}+4 \hat{j}+6 \hat{k}, 3 \hat{i}+5 \hat{j}+4 \hat{k}$ and $5 \hat{i}+8 \hat{j}+5 \hat{k}$ are coplanar.

- Watch Video Solution

