©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR

JEE MAIN 2021

Question

1. A die is rolled n times. If the probability of getting odd number 2 times is equal to the probability of getting even number 3 times. Find the probability of getting odd number odd times

- Watch Video Solution

2. Common tangent to the curve $y^{2}=2 x-3$ and $x^{2}=4 y$ lies parallel to the line
3. $\lim n \rightarrow \infty \tan \left(\sum_{r=1}^{n} \tan ^{-1}\left(\frac{1}{r^{2}+r+1}\right)\right)$

- Watch Video Solution

4. $\vec{a}, \vec{b}, \vec{c}$ are coplanar and \vec{b} is \perp to $\vec{c}, \vec{a} \cdot \vec{c}=7$
$\vec{a}=-\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{k}$ then find $2(\vec{a}+\vec{b}+\vec{c})$

- Watch Video Solution

5. Diameter of $x^{2}+y^{2}-2 x-6 y+6=0$ is chord of circle with center $(2,1)$ then radius of bigger circle is

- Watch Video Solution

6. $\int \frac{\cos x-\sin x}{\sqrt{8-\sin 2 x}} d x=A \sin ^{-1}\left(\frac{\sin x+\cos x}{B}\right),(A, B)=$
A. $(1,3)$
B. (-1, 3)
C. $(1,-3)$
D. $(3,1)$

- Watch Video Solution

7. The solution of the differential equation $\mathrm{xdy}-\mathrm{y} d x=\sqrt{x^{2}+y^{2}} d x$ is

- Watch Video Solution

8. A man on the straight line whose arithmetic mean of reciprocal of intercepts on the axes is $\frac{1}{4}$. There are 3 marbles at $A(1,1), B(2,2), C(4,4)$. Then which marble lie on its path

(D) Watch Video Solution

9. $f(x)=\frac{4 x^{3}-3 x^{2}}{6}-2 \sin x+(2 x-1) \cos x$, then $f(x)$ is
A. Increases in $\left(\frac{1}{2}, \infty\right)$
B. Decreases in $\left(\frac{1}{2}, \infty\right)$
C. Increases in $\left(-\infty, \frac{1}{2}\right)$
D. Decreases in $\left(-\infty, \frac{1}{2}\right)$

Answer: A

Watch Video Solution

10. $f(x)=[x-1] \cos \left(\frac{2 x-1}{2}\right) \pi$, then $f(x)$ is
A. $f(x)$ is continous at $x \in R$
B. $f(x)$ is discontinous at $x=1$
C. $f(x)$ is discontinous at $x=2$
D. $f(x)$ is discontinous at all integers except 2

Watch Video Solution

11. Find the area bounded between $y^{2} \geq 9 x$ and $x^{2}+y^{2} \leq 36$

- Watch Video Solution

12. $a_{1}, a_{2}, \ldots . . a_{10}$ are in G.P $\frac{a_{7}}{a_{5}}=25$ Find $\frac{a_{10}}{a_{8}}$

D Watch Video Solution

13. If $p, q>0, p+q=2$ and $p^{4}+q^{4}=272$, then p and q are roots of
14. Which of the following is tautology?
A. $A \cup(A \cap B)$
B. $B \rightarrow(A \cap A \rightarrow B)$
C. $A \cap(A \cup B)$
D. $A \cap(A \rightarrow B)) \rightarrow B$

- Watch Video Solution

15. If $Z+\alpha|Z-1|+2 i=0$, then find the sum of maximum and minimum values of $\alpha .(\alpha \in R)$

- Watch Video Solution

16. If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4\end{array}\right]$ and $6 A^{-1}=A^{2}+c A+d I$. Then $c+d$ is

- Watch Video Solution

17. There are two poles and one is three times the other and they are 150m apart and a man from there mid-point found elevation angles complementary find the height of small pole

- Watch Video Solution

18. The distance of the point $(1,1,9)$ from the point of intersection of the line $\frac{x-3}{1}=\frac{y-4}{2}=\frac{z-5}{2}$ and plane $x+y+z=17$

- Watch Video Solution

19. A abscissa of A and B are the roots of the equation $x^{2}+2 a x-b^{2}=0$ and their ordinates are roots of the equation $y^{2}+2 p y-q^{2}=0$. The equation of the circle with $A B$ as diameter is
A. $x^{2}+y^{2}+2 a x+2 p y-b^{2}-q^{2}=0$
B. $x^{2}+y^{2}+2 a x+p y-b^{2}-q^{2}=0$
C. $x^{2}+y^{2}+2 a x+2 p y+b^{2}+q^{2}=0$
D. None of these

- Watch Video Solution

20. $\int_{-a}^{a}(|x|+|x-2|) d x=22$ then find $\int_{-a}^{a}(x+[x]) \mathrm{dx}$

- Watch Video Solution

21. A committee has to be formed from 6 Indians and 8 foreignera such that the number of Indians should be atleast two and foreigners should be double that of Indians. In how many ways can it be formed

- Watch Video Solution

22. Let a matrix M of order 3×3 has elements from the set $\{0,1,2\}$. How many matrices are possible whose sum of diagonal elements is 7 of matrix $M^{T} \cdot M$

- Watch Video Solution

$$
\frac{x-\left(\frac{1}{2}\right)}{x}-1, f(x)=2 x-1 \text {, then } f \circ g(x) \text { is }
$$

A. one-one , onto
B. one-one, not onto
C. not one-one, onto
D. Not one-one, not onto

- Watch Video Solution

24. $y^{2}=4 a x$ is a parabola. A line segment joining focus of parabola to any moving point $\left(a t^{2}, 2 a t\right)$ is made. Then locus of mid-point of the line segment is a parabola with the directrix
A. $x=\frac{a}{2}$
B. $x=0$
C. $x=-\frac{a}{2}$
D. $x=a$

Answer: B

25. Tangent is drawn to $y=x^{3}$ at $P\left(t, t^{3}\right)$, it intersects curve again at Q.Find ordinate of point which divide PQ internally in 1:2
A. 0
B. $-2 t^{3}$
C. $2 t^{3}$
D. t^{3}

- Watch Video Solution

$$
\int_{0}^{x^{2}} \sin \sqrt{t} d t
$$

26. Evaluate : $\lim x \rightarrow 0-\frac{x^{3}}{}$
A. $-\frac{2}{3}$
B. $\frac{2}{3}$
C. $\frac{3}{2}$
D. 1

(Watch Video Solution

27. The arithmetic mean of reciprocal of intercepts of line $y=m x+c$ on the axis is $\frac{1}{4}$, then the line will pass through the point is
A. $(1,1)$
B. $(2,2)$
C. $(4,4)$
D. All of these

- Watch Video Solution

28. Locus of mid point of a focal radius of parabola $y^{2}=4 a x$ is a parabola whose focus is
A. $\left(-\frac{a}{2}, 0\right)$
B. $\left(\frac{a}{2}, 0\right)$
C. $(a, 0)$
D. $(-a, 0)$

- Watch Video Solution

29. Find the minimum value of α where $\frac{4}{\sin x}+\frac{1}{1-\sin x}=\alpha$

- Watch Video Solution

30.

Value
${ }^{-15} C_{1}+2 . .{ }^{15} C_{2}-3 .{ }^{15} C_{3}+\ldots \ldots .-15 \cdot{ }^{15} C_{15}+{ }^{15} C_{1}+{ }^{15} C_{2}+\ldots .{ }^{15} C_{14}$ is
A. 2^{15}
B. $2^{15}-2$
C. $2^{15}-1$
D. $2^{14}-2$

- Watch Video Solution

31. Evaluate $\tan \left(\frac{1}{4} \cdot \sin ^{-1}\left(\frac{\sqrt{63}}{8}\right)\right)$

- Watch Video Solution

32. An aeroplane from point A gives an angle of elevation 60° and after 20 second when aeroplane is moving with the speed $432 \mathrm{~km} / \mathrm{hr}$ and makes an angle of 30°. then find the height of the aeroplane in meter

- Watch Video Solution

33. The variance of 10 natural numbers $1,1,1,1 \ldots k$ is less then 10 . Find maximum value of k

Watch Video Solution

34. If $a+\alpha=1, b+\beta=2$ and $a f(n)+\alpha f\left(\frac{1}{n}\right)=b n+\frac{\beta}{n}$, then find the value $\frac{f(n)+f\left(\frac{1}{n}\right)}{n+\frac{1}{n}}$

- Watch Video Solution

35. If A is symmetric matrix and B is skew symmetric matrix of order 3×3, then consider $\left(A^{2} B^{2}-B^{2} A^{2}\right) X=0$, where X is a matrix of unknown variable of 3×1 and O is a null matrix of 3×1, then system of linear equation has

A. No Solution

B. infinity Solution
C. Unique Solution
D. None of these

Answer: B

- Watch Video Solution

36. Find $\int_{1}^{3}\left[x^{2}-2 x-2\right] d x$

- Watch Video Solution

37. Let f be a twice differentiable defined on R such that $f(0)=1, f^{\prime}(0)=2$.

If $\left|\begin{array}{cc}f(x) & f^{\prime}(x) \\ f^{\prime}(x) & f^{\prime \prime}(x)\end{array}\right|=0 \forall n \in R$, then the value of $f(1)$ lie in the interval
A. $(9,12)$
B. $(3,6)$
C. $(6,9)$
D. $(0,3)$

Answer: C

- Watch Video Solution

38. Find the area enclosed by the parabolas $y=5 x^{2}$ and $y=2 x^{2}+9$

- Watch Video Solution

39. Find the point on $y=x^{2}+4$ which is at shortest distance from the line
$y=4 x-4$

- Watch Video Solution

40. Given $y=y(x)$ passing through $(1,2)$ such that $x \frac{d y}{d x}+y=b x^{4}$ then find b if $\int_{1}^{2} f(x) d x=\frac{62}{5}$

(D) Watch Video Solution

41. A set $\{1,2,3,4,5\}$, two subset of A and B are chosen. Find probability such that $n(A \cap B)=2$

- Watch Video Solution

42. The general solution of the differential equation
$\frac{d y}{d x}+\sin \left(\frac{x+y}{2}\right)=\sin \left(\frac{x-y}{2}\right)$

- Watch Video Solution

43. The number of natural numbers less than 7,000 which can be formed by using the digits $0,1,3,7,9$ (repetition of digits allowed) is equal to
A. 250
B. 374
C. 372
D. 375

- Watch Video Solution

44. The number of functions f from $\{1,2,3, \ldots, 20\}$ onto $\{1,2,3, \ldots \ldots .20\}$
such that $f(k)$ is a multiple of 3 whenever k is a multiple of 4 is:
A. $15!\times 6$!
B. $(15)^{6} \times 15$
C. $5!\times 6$!
D. $15!\times 6^{5}$
45. $A(5,0)$ and $B(-5,0)$ are two points $P A=3 P B$ Then locus of P is a circle with radius r then $4 r^{2}=$

Watch Video Solution

46. $x+\sqrt{3} . y=2 \sqrt{3}$ is tangent to a curve at $\left(\frac{3 \sqrt{3}}{2}, \frac{1}{2}\right)$ then curve can be
A. $x^{2}+9 y^{2}=9$
B. $2 x^{2}+18 y^{2}=9$
C. $y^{2}=\frac{x}{6 \sqrt{3}}$
D. $x^{2}+y^{2}=7$

Answer: A

- Watch Video Solution

47. If $n \geq 2,{ }^{n+1} C_{2}+2\left(.{ }^{2} C_{2}+{ }^{3} C_{2}+{ }^{4} C_{2}+\ldots+{ }^{n} C_{2}\right)=$
48. $f(0)=1, f(2)=e^{2}, f(x)=f(2-x)$, then find the value of $\int_{0}^{2} f(x) d x$

- Watch Video Solution

49. Negation of the statement $\sim p \vee(p \wedge q)$ is

- Watch Video Solution

50. Vertices of Δ are (a,c), ($2, \mathrm{~b}$) , and (a,b) where a,b,c are in A.P and the centroid of Δ is $\left(\frac{10}{3}, \frac{7}{3}\right)$. If α, β are the roots of $a x^{2}+b x+1=0$ then $\alpha^{2}+\beta^{2}-\alpha \cdot \beta=$

- Watch Video Solution

51. If normal and tangent are drawn to $(x-2)^{2}+(y-3)^{2}=25$,at point $(5,7)$ and area of Δ made by normal , tangent and x-axis is A. Then find 24A

- Watch Video Solution

52. Sum of first four terms of GP is $\frac{65}{12}$, sum of their reciprocals is $\frac{65}{18}$
.Product of their first 3 terms is 1 and if 3 rd term is α then find 2α

- Watch Video Solution

53. $S_{1}, S_{2}, \ldots, S_{10}$ are 10 students, in how many ways they can be divided in 3 groups A, B and C such that all groups have atleast one student and C has maximum 3 students.

- Watch Video Solution

54. Equation of plane through $(1,0,2)$ and line of intersection of planes $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1$ and $\vec{r} \cdot(\hat{i}-2 \hat{j})=-2$
A. $\vec{r} \cdot(\hat{i}+7 \hat{j}+3 \hat{k})=7$
B. $\vec{r} \cdot(3 \hat{i}+10 \hat{j}+3 \hat{k})=7$
C. $\vec{r} \cdot(\hat{i}+\hat{j}-3 \hat{k})=4$
D. $\vec{r} \cdot(\hat{i}+4 \hat{j}-\hat{k})=-7$

- Watch Video Solution

55. A curve $y=a x^{2}+b x+c$ passing through the point $(1,2)$ has slope of tangent at orign equal to 1 , then ordered triplet (a, b, c) may be
A. $\left(\frac{1}{2}, 1,0\right)$
B. $(1,1,0)$
C. $\left(-\frac{1}{2}, 1,1\right)$
D. $(2,-1,0)$

- Watch Video Solution

56. Let $f(x)= \begin{cases}-55 x & x<-5 \\ 2 x^{3}-3 x^{2}-120 x & -5 \leq x<4 \\ 2 x^{3}-3 x^{2}-36 x+10 & x \geq 4\end{cases}$

Then interval in which $f(x)$ is monotonically increasing is
A. $(-5,-4) \cup(4, \infty)$
B. $(-\infty,-4) \cup(5, \infty)$
C. $(-5,4) \cup(5, \infty)$
D. $(-5,-4) \cup(3, \infty)$

Answer: A

57. Find the total number of number lying between 100 and 1000 formed using $1,2,3,4,5$ and divisible by either 3 or 5

- Watch Video Solution

58. Locus of centre of a circle which touches $x^{2}+y^{2}-6 x-6 y+14=0$ externally and also touches y-axis

- Watch Video Solution

59. A straight line $x+2 y=1$ cuts the x and y axis at A and B.A circle passes through point A and B and origin.Then the sum of length of perpendicular from A and B on tangent of the circle at the origin is
A. $\frac{\sqrt{5}}{4}$
B. $\frac{\sqrt{5}}{3}$
C. $\frac{\sqrt{5}}{2}$
D. None of these

Answer: C

- Watch Video Solution

60. $\int_{-1}^{1}\left(x^{2} e\left[x^{3}\right]\right) d x$

D Watch Video Solution

61. The value of

D Watch Video Solution

62. A man watches a boat travelling towards him while standing on a top. Its deviation is 30°. After 20sec deviation changes to 45°. Then how much
time it talkes to reach bottom of the tower ?

- Watch Video Solution

63. Out of 30 observations, 10 observations are $\left(\frac{1}{2}-d\right)$ and 10 observations are d and remaining 10 are $\left(\frac{1}{2}+d\right)$. If the variance of 30 observation is $\frac{4}{3}$ then d is .

- Watch Video Solution

64. $\lim n \rightarrow \infty\left(1+\left(\frac{1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}}{n^{2}}\right)\right)^{n}$
65. If $x=\sum_{n=0}^{\infty}(\cos \theta)^{2 n}, y=\sum_{n=0}^{\infty}(\sin \phi)^{2 n}, z=\sum_{n=0}^{\infty}(\cos \phi)^{2 n} .(\sin \theta)^{2 n}$ Then which of the following is true ??
A. $x y+z=x y z$
B. $x y-z=(x+y) z$
C. $x y z=4$
D. $x y+z y+z x=z$

- Watch Video Solution

66. For any two statement p and $\mathrm{q} \sim(p \vee q) \vee(\sim p \wedge q)$ logically to
A. p
B. $\sim p$
C. q
D. $\sim q$

Answer: B

- Watch Video Solution

67. Curve passing through $(0,0)$ and slope of tangent to any point (x, y) is
$x^{2}-4 x+y+8$
$x-2$, then curve also passes through
A. $(4,4)$
B. $(4,5)$
C. $(5,5)$
D. $(5,4)$

Answer: B

- Watch Video Solution

68. The number of points where $f(x)=|2 x-1|-3|x+2|+\left|x^{2}+x-2\right|, n \in R$ is not differentiable is
69. Integral value of k for which $x^{2}-2(3 k-1) x+8 k^{2}-7>0$

- Watch Video Solution

70. Let $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}, \vec{b}=\hat{i}-\hat{j}, \vec{c}=\hat{i}-\hat{j}-\hat{k}$, and $\vec{r} \times \vec{a}=\vec{c} \times \vec{a}, \vec{r} \cdot \vec{b}=0$.

Find $\vec{r} \cdot \vec{a}$

- Watch Video Solution

71. $\mathrm{A}=\left[\begin{array}{cc}0 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 0\end{array}\right]$ and $(I+A)(I-A)^{-1}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$. Find $13\left(a^{2}+b^{2}\right)$

- Watch Video Solution

72. Let α be the angle between the lines whose direction cosines satisfy the equation $l+m-n=0$ and $l^{2}+m^{2}-n^{2}=0$ then value of $(\sin \alpha)^{4}+(\cos \alpha)^{4}$ is
A. $\frac{3}{8}$

3
B. $\frac{-}{4}$
C. $\frac{5}{8}$
D. $\frac{1}{2}$

- Watch Video Solution

73. A missile fires a target. The probability of getting intercepted is $\frac{1}{3}$ and if it is not intercepted then probability of hitting the target is $\frac{3}{4}$. Three independent missiles are fired. Find the probability of all three hit.

Watch Video Solution

74. $\sqrt{3} k x+k y=4 \sqrt{3}$
$\sqrt{3} x-y=4 \sqrt{3} k$
The locus of the point of intersection of these lines form a conic with eccentricity \qquad

Watch Video Solution

75. The polynomial $f(x)=x^{3}-b x^{2}+c x-4$ satisfies the conditions of Rolle's
theorem for $x \in[1,2], f\left(\frac{4}{3}\right)=0$ the order pair (b, c) is
A. $(5,8)$
B. $(-5,8)$
C. $(-5,-8)$
D. $(5,-8)$
76. If $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$ and $\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$ are orthogonal then relation between a, b, c, d is
A. $a+b=c+d$
B. $a-b=c-d$
C. $a+d=c+b$
D. $a-d=c-b$

D Watch Video Solution

77. The image of the point $(3,5)$ in line $x-y+1=0$ lies on
A. $(x-2)^{2}+(y-2)^{2}=4$
B. $(x-2)^{2}+(y-2)^{2}=8$
C. $(x-2)^{2}+(y-2)^{2}=6$
D. $(x-2)^{2}+(y+2)^{2}=2$

- Watch Video Solution

78. $x y z=24, x, y, z \in N$. Then find the number of order pairs (x, y, z)
A. 24
B. 30
C. 36
D. 38

D Watch Video Solution

79. If $p(x)$ is a polynomial of degree 6 with coefficient of x^{6} equal to 1 . If
extreme value occur at $\mathrm{x}=1$ and $\mathrm{x}=-1, \lim x \rightarrow o\left(\frac{f(x)}{x^{3}}\right)=1$ then $5 f(2)=$
80. If area between two consecutive point of intersection of $y=\sin x$ and $y=\cos x$ is A then find A^{4}.
A. 64
B. 32
C. 28
D. 16

- Watch Video Solution

81. Find the equation of the line passing through $A(0,1,2)$ and perpendicular to line $\frac{x-1}{2}=\frac{y+1}{2}=\frac{z-1}{3}$
A. $\frac{x-0}{27}=\frac{y-1}{-24}=\frac{z-2}{5}$
B. $\frac{x-0}{27}=\frac{y-1}{24}=\frac{z-2}{2}$
c. $\frac{x-0}{27}=\frac{y-1}{-24}=\frac{z-2}{-2}$
D. $\frac{x-0}{27}=\frac{y-1}{-24}=\frac{z-2}{4}$

- Watch Video Solution

82. If a,b,c are the outputs obtained when the three unbiased dicess are rolled . Find the probability that the roots of quadratic equation $a x^{2}+b x+c=0$ are equal to
A. $\frac{5}{216}$
B. $\frac{7}{216}$
C. $\frac{3}{216}$
D. $\frac{1}{36}$

Answer: A

83. The slope of its tangent at (x, y) is $\frac{d y}{d x}=\frac{(x-2)^{2}+(y+4)}{x-2}$ and the curve passes through origin then the point which passes through the curve is
A. $(2,-4)$
B. $(2,4)$
C. (-2, 4)
D. $(4,-2)$

- Watch Video Solution

84. If $A=\left[\begin{array}{lll}x & y & z \\ y & z & x \\ z & x & y\end{array}\right]$ and $A^{2}=I_{3}$ and $x y z=2$ and $x+y+z>0$ find the value of $x^{3}+y^{3}+z^{3}$ is
85. $f(x+1)=f(x)+f(1), f(x), g(x): N \rightarrow N$
$g(x)=$ any arbitrary function and $f \circ g(x)$ is one-one
A. $f(x)$ is many-one
B. $g(x)$ is many-one
C. $g(x)$ is one-one
D. $f(x)$ and $g(x)$ both are many-one

- Watch Video Solution

86. Let $(2-i) z=(2+i) \bar{z}$ and $(2+i) z+(-2+i) \bar{z}-i=0$ be normal to the circle and $i z+\bar{z}+1+i=0$ is tangent to the same circle having radius r. Then vaue of $128 r^{2}$

- Watch Video Solution

87. When x is divided by 4 leaves remainder 3 then $(2022+x)^{2022}$ is divisided by 8 , remainder is

Watch Video Solution

$$
a x-\left(e^{4 x}-1\right)
$$

88. $\lim x \rightarrow 0 \longrightarrow=b$. Find $a-2 b$

$$
a x\left(e^{4 x}-1\right)
$$

- Watch Video Solution

89. Contrapositive of "IF you want money then you have to do work "

- Watch Video Solution

90. There is a group of 400 people of which 160 are non-vegetarian and smokers, 100 are smokers and vegetarian and remaining 140 are non smoker vegetarian. It is found that in a survey chest disorder are
$35 \%, 15 \%, 10 \%$ respectively. A random guy is chosen and is found that he chest disorder . Find the probabability that the person is smoker and non-vegetarian

- Watch Video Solution

91. If $0<x, y<\pi$ and $\cos x+\cos y-\cos (x+y)=\frac{3}{2}$. Find $\sin x+\cos y$

- Watch Video Solution

92. The sum of length of perpendicular drawn from focii to any real tangent to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ is always greater than a .hence Find the minimum value of a

- Watch Video Solution

93. If $x^{2}+2 y^{2}=1$ and $x+y=1$ intersect and line joining them subtends an angle at the origin , then find angle

(Watch Video Solution

94. $\lim N \rightarrow \infty\left[\frac{1}{n}+\frac{n}{(n+1)^{2}}+\frac{n}{(n+2)^{2}}+\ldots+\frac{n}{(2 n-1)^{2}}\right]$

(Watch Video Solution

95. If $z^{2}+\alpha z+\beta$ has one root $1-2 i$, then find the value of $\alpha-\beta(\alpha, \beta, \in R)$

- Watch Video Solution

96. Let $f(x)=\frac{5^{x}}{5^{x}+5}$ Then find the value of
$f\left(\frac{1}{20}\right)+f\left(\frac{2}{20}\right)+f\left(\frac{3}{20}\right)+\ldots+f\left(\frac{39}{20}\right)$

- Watch Video Solution

97. If the equation of ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ then find the equation of hyperbola such that product of eccentircities of both curves equal to 1 and the axes of ellipse are coinciding with hyperbola and also hyperbola passes through the focii of ellipse.

- Watch Video Solution

98. $I=\int_{-2}^{2}\left|3 x^{2}-3 x-6\right| d x$. Find the value of I

- Watch Video Solution

99. If α and β be root of $x^{2}-6 x-2=0$ with $\alpha>\beta$ if $a_{n}=\alpha^{n}-\beta^{n}$ for $n \geq 1$ then the value of $\frac{a_{10}-2 a_{8}}{3 a_{9}}$

- Watch Video Solution

100. Total number of two digit number n What is the value of n such that $\left(3^{n}+7^{n}\right)$ is divisible by 10

- Watch Video Solution

101. The shortest distance between the line $x-y=1$ and the curve id
$x^{2}=2 y$

- Watch Video Solution

102. If A is 3×3 matrix and $|A|=4$. Operation $R_{2} \rightarrow 2 R_{2}+5 R_{3}$ is applied on 2 A to get new matrix B .Find $|B|$

- Watch Video Solution

103. $\operatorname{cosec}\left(2 \cot ^{-1}(5)+\cos ^{-1}\left(\frac{4}{5}\right)\right)$ is equal to
104. If $A=\left[\begin{array}{cc}1 & -\alpha \\ \alpha & \beta\end{array}\right]$ and $A A^{T}=I$.Then find the value of α and β

- Watch Video Solution

105. Minimum value at $a^{a x}+a^{1-a x} ; a>0$ and $x \in R$, is
A. \sqrt{a}
B. $\frac{a}{\sqrt{2}}$
C. $2 \sqrt{a}$
D. $\frac{1}{2 \sqrt{a}}$

Answer: C

- Watch Video Solution

106. If $x=y^{4}$ and $x y=K$, cut each other at right angle then Find $(4 K)^{6}=$
107. $\int \frac{e^{3 \log _{e}(2 x)}+5 e^{2 \log _{e}(2 x)}}{e^{4 \log _{e}(x)}+5 e^{3 \log _{e}(x)}-7 e^{2 \log _{e}(x)}} \cdot d x, x>0$

- Watch Video Solution

108. $I_{n}=\int_{\pi / 4}^{\pi / 2} \cot ^{n} x \cdot d x$ Find relation between $I_{2}+I_{4}, I_{3}+I_{5}, I_{4}+I_{6}$,
A. A.P
B. G.P
C. Reciprocals are in A.P
D. None of these
109. A number is selected from 4 digit numbers of the form $5 n+2$ where n belongs to N containing exactly one digit as 7 . Find the probability that number when divided by 5 leaves remainder 2 .

- Watch Video Solution

110. Set A contain 3 elements, set B contain 5 elements, number of oneone function from $A \rightarrow B$ is "x" and number of one-one functions from $A \rightarrow A \times B$ is " y " then relation between x and y
A. $2 y=78 x$
B. $4 y=91 x$
C. $2 y=91 x$
D. $y=52 x$

Answer: $2 y=91 x$
111. The number of all 4 -digit number of the form $5 n+2(n \in n)$ having exactly one digit 7

Watch Video Solution

112. Find no. of solutions $\log _{2}(x-3)=\log _{4}(x-1)$

- Watch Video Solution

113. Find Value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}|\sin (2 x)| d x$

- Watch Video Solution

114. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{1+3^{x}} d x$
A. $\frac{\pi}{4}$
B. 2π
C. $\frac{\pi}{2}$
D. 4π

- Watch Video Solution

115. If the vectors \vec{a} and \vec{b} are mutually perpendicular, then $\vec{a} \times\{\vec{a} \times\{\vec{a} \times(\vec{a} \times \vec{b})\}\}$ is equal to

- Watch Video Solution

116. A fair coin is tossed fixed times. The probability of getting 7 heads is equal to probability of getting 9 heads. Then find the probability of getting 2 heads

- Watch Video Solution

117. $x-y=0,2 x+y=6, x+2 y=3$ triangle formed by these lines is
A. Right Triangle
B. Equilateral Triangle
C. Isosceles Triangle
D. None of these

Answer: C

- Watch Video Solution

118. Find value of determinant of $A=\left|\begin{array}{lll}(a+1)(a+2) & (a+2) & 1 \\ (a+3)(a+2) & (a+3) & 1 \\ (a+3)(a+4) & (a+4) & 1\end{array}\right|$
A. -2
B. $(a+1)(a+2)(a+3)$
C. 1

$$
\text { D. }(a+4)(a+2)(a+3)
$$

Answer: A

- Watch Video Solution

119. $30 \cdot{ }^{30} C_{0}+29 \cdot{ }^{30} C_{1}+\ldots+1 \cdot{ }^{30} C_{29}=m 2^{n}$ and $m, n \in N$ then $\mathrm{m}+\mathrm{n}=$

- Watch Video Solution

120. Sum of series $1+\frac{2}{3}+\frac{7}{3^{2}}+\frac{12}{3^{3}}+\ldots \ldots \infty$

(Watch Video Solution

121. Growth of bacteria is directly proportional to number of bacteria. At $\mathrm{t}=0$, number of bacteria $=1000$ and after 2 hours population is increased
by 20%. After this population becomes 2000 where $t=\underline{k}$. Find $\ln \left(\frac{6}{5}\right)$
value of $\left(\frac{k}{\ln 2}\right)^{2}$
A. 4
B. 6
C. 16
D. 8

Answer: A

- Watch Video Solution

122. Number of 7 digit possible number whose sum of digit is equal to 10 by using 1,2,3
A. 76
B. 77
C. 78
D. 80

- Watch Video Solution

123. The sum of $162^{\text {nd }}$ power of the root of the equation $x^{3}-2 x^{2}+2 x-1=0$ is

- Watch Video Solution

124. In a G.P if $T_{2}+T_{6}=\frac{25}{2}, T_{3} T_{5}=25$ then find value of $T_{2}+T_{6}+T_{8}$
125. $3 \cos x+4 \sin x=k+1$ then set of integral value of k
126. $y=\frac{1}{2} x^{4}-5 x^{3}+18 x^{2}-19 x$ what will be max. value of slope at Watch Video Solution
127. The value of $\sum_{n=1} \int_{n-1}^{n} e^{x-[x]} d x=$
A. $100(e-1)$
B. $100 e$
C. $100(e+1)$
D. $100(1-e)$

Answer: A

Watch Video Solution
128. The number of solution of $\sqrt{3} \cos ^{2} x=(\sqrt{3}-1) \cos x+1, x \in\left[0, \frac{\pi}{2}\right]$
129. A is 2×2 symmetric such that trace of A^{2} is 1 .How many such matrices are possible with integer entries ?

Watch Video Solution

130. $|f(x)-f(y)| \leq(x-y)^{2} \forall x, y \in R$ and $f(0)=1$ then
A. $f(x)<0 \forall x \in R$
B. $f(x)>0 \forall x \in R$
C. $f(x)=0 \forall x \in R$
D. $f(x)=1$
131. Let $P(x, y)$ be a point which is a constant distance from the origin.

Then equivalence relation of $(1,-1)$ is
A. $A=\left\{(x, y)\left|x^{2}+y^{2}=1\right|\right\}$
B. $A=\left\{(x, y)\left|x^{2}+y^{2}=2\right|\right\}$
C. $A=\left\{(x, y)\left|x^{2}+y^{2}=3\right|\right\}$
D. $A=\left\{(x, y)\left|x^{2}+y^{2}=4\right|\right\}$

Answer: B

(Watch Video Solution

132. Find maximum value of term independent of " t " in

$$
\left(t x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{t}\right)^{10}, x \in(0,1)
$$

133. $\lim h \rightarrow 02\left(\frac{\sqrt{3} \sin \left(h+\frac{\pi}{6}\right)-\cos \left(h+\frac{\pi}{6}\right)}{h(\sqrt{3} \cosh -\sinh)}\right)$

- Watch Video Solution

134. $\frac{\sin ^{-1} \chi}{a}=\frac{\cos ^{-1} \chi}{b}=\frac{\tan ^{-1} y}{c}$ value of $\cos \left(\frac{\pi c}{a+b}\right)$

- Watch Video Solution

135. Find area bounded by $y=\| x-1|-2|$ with x-axis

- Watch Video Solution

136. $e^{\sin y} \cos y \frac{d y}{d x}+e^{\sin y} \cos x=\cos x$ Find general solution for this
137. If $O A=1, O B=13$.Find area of $\triangle P Q B$

A. $24 \sqrt{3}$
B. $24 \sqrt{2}$
C. $26 \sqrt{3}$
D. $26 \sqrt{2}$
138.

$3 x+15 y+21 z=9,2 x+y-z=4,2 x+10 y+14 z=\frac{19}{5} \quad$ respectively then which of the following is correct.
A. P_{1} is parallel to P_{2}
B. P_{3} is parallel to P_{2}
C. P_{1} is parallel to P_{3}
D. P_{1}, P_{2}, P_{3} are parallel to one another

- Watch Video Solution

139. $\tan ^{-1} a+\tan ^{-1} b=\frac{\pi}{4}$. Find the value of $a+b-\frac{a^{2}+b^{2}}{2}+\frac{a^{3}+b^{3}}{3}-\frac{a^{4}+b^{4}}{5}+\ldots$
140. $3,3,4,4,4,5,5$ Find the probability for 7 digit number such that number is divisible by 2
A. $\frac{1}{7}$
B. $\frac{3}{7}$
C. $\frac{4}{7}$
D. $\frac{6}{7}$

Answer: B

- Watch Video Solution

141. Mirror image of point $(1,3,5)$ w.r.t plane $4 x-5 y+2 z=8$ is (α, β, γ) then $5(\alpha+\beta+\gamma)$
142. $f(x)$ is differentiable function at $x=a$ such that $f^{\prime}(a)=2, f(a)=4$.

Find $\lim _{x \rightarrow a} \frac{x f(a)-a f(x)}{x-a}$

- Watch Video Solution

143. $P_{n}=\alpha^{n}+\beta^{n}, \alpha+\beta=1, \alpha \cdot \beta=-1, P_{n-1}=11, P_{n+1}=29$, then $P_{n}^{2}=$

- Watch Video Solution

144. Let $A(1,4)$ and $B(1,-5)$ be two points let p be the point on $(x-1)^{2}+(y-1)^{2}=1$. Find maximum value of $(P A)^{2}+(P B)^{2}$

- Watch Video Solution

145. Let L is a line of intersection of $x+2 y+z=6$ and $y+2 z=4$. If P (α, β, γ) is foot of perpendicular from $(3,2,1)$ on L then Find $21(\alpha+\beta+\gamma)$

- Watch Video Solution

146. How many four digit number are there where g.c.d. with 18 is 3

D Watch Video Solution

147. $f(x)=\int_{1}^{x} \frac{\ln t}{1+t} d t, f(e)+f\left(\frac{1}{e}\right)=$

- Watch Video Solution

148. $f(x)=\int_{0}^{x} e^{t} f(t) d t+e^{x}, f(x)$ is a differentiable function on $x \in R$ then $f(x)=$

- Watch Video Solution

149. The prime factorization of a number ' n ' is given as $n=2^{x} \times 3^{y} \times 5^{z}, y+z=5$ and $y^{-1}+z^{-1}=\frac{5}{6}$. Find out the odd divisors of n including 1

- Watch Video Solution

150. $-16,8,-4,2, \ldots, A . M$ and $G . M$ of $p^{\text {th }}$ and $q^{\text {th }}$ term are roots of $4 x^{2}-9 x+5=0$ then $p+q=$

D Watch Video Solution

151. The value of square of slope of the common tangent to the curves $4 x^{2}+9 y^{2}=36$ and $(2 x)^{2}+(2 y)^{2}=31$

- Watch Video Solution

152. If A_{1} is area between the curve $y=\sin x, y=\cos x$ and y-axis in 1st quadrant and A_{2} is area between $y=\sin x, y=\cos x x=\frac{\pi}{2}$ and x-axis in 1st quadrant. Then find $\frac{A_{2}}{A_{1}}$
153. $\sum_{n=1}\left(x_{i}-\alpha\right)=36, \sum_{n=1}\left(x_{i}-\beta\right)^{2}=90$ where α and β are distinct and the standard deviation of x_{i} is 1 then Find $|\beta-\alpha|$

- Watch Video Solution

154. $\sum_{n=1}\left(x_{i}-\alpha\right)=36, \sum_{n=1}\left(x_{i}-\beta\right)^{2}=90$ where α and β are distinct and the standard deviation of x_{i} is 1 then Find $|\beta-\alpha|$

- Watch Video Solution

155. If $f: A \rightarrow$ Awhere $A=\{1,2,3,4,5,6,7,8,9,10\}$ and $f(x)=\left\{\begin{array}{ll}x & x i s e v e n \\ x+1 & x i s o d d\end{array}\right.$ and $g: A \rightarrow A$ such that $g(f(x))=f(x)$. Find the number(s) of such function
A. $\frac{10!}{5!\cdot 5!}$
B. 5^{5}
C. 10^{5}
D. 10^{10}

- Watch Video Solution

156. Let $\hat{i}+y \hat{j}+z \hat{k}$ and $x \hat{i}-\hat{j}+\hat{k}$ are parallel then unit vector parallel to $x \hat{i}+y \hat{j}+z \hat{k}$
A. $\frac{i}{\sqrt{2}}(\hat{i}-\hat{j})$
B. $\frac{i}{\sqrt{2}}(\hat{i}+\hat{j})$
C. $\frac{i}{\sqrt{3}}(\hat{i}-\hat{j}+\hat{k})$
D. $\frac{i}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$

Answer: C

- Watch Video Solution

157. If all the zeros of polynomial function $f(x)=2 x^{5}+5 x^{4}+10 x^{3}+10 x^{2}+10 x+10$ lies in $(a, a+1)$ where $a \in I$ then find $|a|$

- Watch Video Solution

158. Locus of the mid-point of the line joining (3,2) and point on $\left(x^{2}+y^{2}=1\right)$ is a circle of radius r. Find r

- Watch Video Solution

159. If $f(x)=\sin ^{-1} x$ and $g(x)=\frac{x^{2}-x-2}{2 x^{2}-x-6}$ then domain of $f \circ g(x)$ is
A. $x \in(-\infty,-2] \cup\left[-\frac{4}{3}, \infty\right)-\{2\}$
B. $x \in(-\infty,-2] \cup\left[-\frac{3}{2}, \infty\right)$
C. $x \in(-\infty,-2] \cup\left[-\frac{4}{3}, \infty\right)$
D. $x \in(-\infty,-2] \cup[-1, \infty)$

- Watch Video Solution

160. If $f(x)$ is a continuous function such that
$f(x)=\left\{\begin{array}{ll}2 \sin \left(-\frac{\pi}{2} x\right) & x<-1 \\ \left|a x^{2}+x+b\right| & -1 \leq x \leq 1 \\ \sin \pi x & x>1\end{array}\right.$. Find a+b
A. -3
B. 3
C. -1
D. 1

Answer: C

161. The slope of the tangent to curve is $\frac{x y^{2}+y}{x}$ and it intersects the line $x+2 y=4$ at $x=-2 . I f(3, y)$ lies on the curve then y is
A. $-\frac{18}{19}$
B. 119
C. $-\frac{18}{29}$
D. None of these

Answer: A

- Watch Video Solution

162. If $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & -1\end{array}\right]$ and $A^{20}+\alpha A^{19}+\beta A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$ Find the value of $(\alpha+\beta)$
163. $\sum_{n=1}^{\infty} \frac{n^{2}+6 n+10}{(2 n+1)!}$
A. $\frac{41 e}{8}-\frac{19}{8 e}-10$
B. $\frac{41 e}{8}+\frac{19}{8 e}-10$
C. $\frac{41 e}{8}-\frac{19}{8 e}-80$
D. None of these

- Watch Video Solution

164. IF $z(z \in C)$ satisfy $|z+5| \leq 5$ and $z(1+i)+\bar{z}(1-i) \geq-10$.If the maximum value of $|z+1|^{2}$ is $\alpha+\sqrt{2} \beta$ then find $\alpha+\beta$

- Watch Video Solution

165. If a triangle is inscribed in a circle of radius r, then which of the following triangle can have maximum area
A. equilateral triangle with side $\sqrt{3} r$
B. equilateral triangle with side $\sqrt{2} r$
C. isosceles triangle with side $2 r$
D. right angle triangle with side $r, 2 r$

Answer: A

- Watch Video Solution

166. Consider
the
system
of
equation
$x+2 y-3 z=a, 2 x+6 y-11 z=b, x-2 y+7 c$ then
A. no solution for all a, b, c
B. unique solution for $5 a=2 b+c$
C. infinite solution for $5 a=2 b+c$
D. None of these
167. The of values of x and y satisfying $3^{x}-4^{y}=77,3^{\frac{x}{2}}-2^{y}=7$

Watch Video Solution

168. If $f(x)=\prod_{i=1}\left(x-a_{i}\right)+\sum_{i=1} a_{i}-3 x$ where $a_{i}<a_{i+1} \forall i=1,2, \ldots$ then $f(x)=0$ has
A. one distinct real root
B. 2 distinct real root
C. 3 distinct real root
D. 3 real root

Answer: C

169. Let $f(x)=\int_{0}^{x}\left((a-1)\left(t^{2}+t+1\right)^{2}-(a+1)\left(t^{4}+t^{2}+1\right)\right) d t$ then find the total number of integral value of a for which $f^{\prime}(x)=0$ has no real root

- Watch Video Solution

170. Variable x and y are related by equation $x=\int_{0}^{y} \frac{d t}{\sqrt{1+t^{2}}}$. The value of $\frac{d^{2} y}{d x^{2}}$ is equal to

- Watch Video Solution

171. In a pack of 52 cards, a card is missing. If 2 cards are drawn randomly and found to be of spades. Then probability thatmissing card is not of spade
172. A 3×3 matrix is formed from $\{0,1,2,3\}$ and sum of diagonal elements of $A^{T} A$ is 9 . Find number of such matrices

Watch Video Solution

173. $A=\left[\begin{array}{cc}i & -i \\ -i & i\end{array}\right], A^{8}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}8 \\ 64\end{array}\right]$ has
A. unique solutions
B. no solutions
C. Infinite solutions
D. 2 solutions

Answer: B

- Watch Video Solution

174. $\frac{d y}{d x}+2 y \tan x=\sin x, y\left(\frac{\pi}{3}\right)=0$, maximum value of $y(x)$ is
A. $\frac{1}{8}$
B. $\frac{1}{16}$
C. $\frac{15}{4}$
D. $\frac{3}{8}$

Answer: A

D Watch Video Solution

175. $81^{\cos ^{2} x}+81^{\sin ^{2} x}=30$. then no. of solutions in $x \in(0, \pi)$
A. 0
B. 2
C. 8
D. 4

Answer: D

176. If $\lim x \rightarrow 0 \frac{a a^{x}-b \cos x+c e^{-x}}{x \sin x}=2$, then $a+b+c=$

- Watch Video Solution

177. $\alpha \hat{i}+\beta \hat{j}$ is obtained by rotating $\sqrt{3} \hat{i}+\hat{j}$ by 45° in counter direction about only 45°. Find area of Δ made by $(0,0),(0, \beta)$ and (α, β)

- Watch Video Solution

178. $\sum_{r=1}^{\infty} \tan ^{-1}\left(\frac{6^{r}}{2^{2 r+1}+3^{2 r+1}}\right)$

- Watch Video Solution

179. $\log _{10} \sin x+\log _{10} \cos x=-1, \log _{10}(\sin x+\cos x)=\frac{1}{2}\left(\log _{10} n-1\right)$ Then $\mathrm{n}=$
180. $a+2, b+2, c+2$ are 3 observations such that $b=a+c$, and $a+2, b+2$, $\mathrm{c}+2$ has standard deviation $=\mathrm{d}$ Then
A. $b^{2}=3\left(a^{2}+c^{2}+d^{2}\right)$
B. $b^{2}=a^{2}+c^{2}-\frac{d^{2}}{9}$
C. $b^{2}=a^{2}+c^{2}+\frac{d^{2}}{9}$
D. $b^{2}=3\left(a^{2}+c^{2}\right)-9 d^{2}$

Answer: D

Watch Video Solution

181. Number of solution of $(|x|-3)|x+4|=6$

- Watch Video Solution

182. The locus of the midpoint of the chord of the circle $x^{2}+y^{2}=25$ which is tangent of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ is

- Watch Video Solution

183. If n is the number of irrational terms in the expansion $\left(3^{1 / 4}+5^{1 / 8}\right)^{60}$ then value of n is

- Watch Video Solution

184. $\sqrt{x+14-8 \sqrt{x-2}}+\sqrt{x+23-10 \sqrt{x-2}}=3$ Find number of real root

- Watch Video Solution

185. Which one of the following Boolean expression is a tautology ?

$$
\text { A. }(p \wedge q) \vee(p \rightarrow q)
$$

B. $(p \vee q) \wedge(p \rightarrow q)$
C. $(p \wedge q) \wedge(p \rightarrow q)$
D. $(p \wedge q) \rightarrow(p \rightarrow q)$

Answer: D

- Watch Video Solution

$$
\int_{0}^{x^{2}}\left(\cos ^{2} t\right) d t
$$

186. If $\lim x \rightarrow 0 \frac{x \sin x}{x}$

- Watch Video Solution

187. The area under the curve $y=\sin x, y=\cos x, y$-axis is A_{1}, $y=\sin x, y=\cos x, x$-axis is A_{2} then $A_{1}: A_{2}$ is
188. If $\log _{\frac{1}{\sqrt{2}}}\left(\frac{|z|+11}{(|z|-1)^{2}}\right) \geq 2$ Find $|z|_{\min }$

- Watch Video Solution

189.

If

$$
f(x)=\log _{2}\left(1+\tan \left(\frac{\pi x}{4}\right)\right) .
$$

Find
$\lim _{n \rightarrow \infty} \frac{2}{n}\left(f\left(\frac{1}{n}\right)+f\left(\frac{2}{n}\right)+\ldots+f(1)\right)$

- Watch Video Solution

190. The middle term in the expansition of $\left(x^{2}+\frac{1}{x^{2}}+2\right)^{n}$ is
A. $\frac{(n)!}{}$

$$
\left(\frac{n}{2}\right)^{2}!
$$

B. $\frac{(2 n)!}{}$

$$
\left(\frac{n}{2}\right)^{2}!
$$

C. $\frac{1 \cdot 3.5 \ldots(2 n+1)}{n!} \cdot 2^{n}$
D. $\frac{(2 n)!}{n!}$

Answer: D

- Watch Video Solution

191. The equation of common tangent to the curve $y^{2}=4 x$ and $x y=-1$ is
A. $2^{\frac{2}{3}} \cdot y=x+2^{\frac{4}{3}}$
B. $2^{\frac{2}{3}} \cdot x=y+2^{\frac{4}{3}}$
C. $y=2^{\frac{2}{3}} \cdot x-2^{\frac{4}{3}}$
D. $y=x-2^{\frac{2}{3}}$

Answer: A

- Watch Video Solution

192. Three normal are drawn to $y^{2}=2 x$ intersect at point $(a, 0)$. Then a must be greater than
A. 1
B. $\frac{1}{2}$
C. -1
D. $\frac{1}{4}$

Answer: A

- Watch Video Solution

193. If a differential equation is given by $\frac{d y}{d x}=2(x+1)$ and area bounded by $y(x)$ with x-axis is $\frac{4 \cdot \sqrt{8}}{3}$ then $y(1)$ is
194. If $y=y(x)$ be the solution of differential equation $\frac{d y}{d x}+\tan x \cdot y=\sin x$. If $y(0)=0$ Then $y\left(\frac{\pi}{4}\right)=$?

- Watch Video Solution

195. If S_{p} denote sum of the series $1+r^{p}+r^{2 p}+\ldots \infty$ and s_{p} denote the sum $1-r^{p}+r^{2 p}-r^{3 p} \ldots \infty,|r|<1$ then $S_{p}+s_{p}$ equals
A. $2 S_{2 p}$
B. 0
C. $\frac{1}{2} S_{2 p}$
D. $-\frac{1}{2} S_{2 p}$

Answer: A

- Watch Video Solution

196. Consider the sequence of number $\left[n+\sqrt{2 n}+\frac{1}{2}\right]$ for $n \geq 1$ where [.] means GIF. If missing Z^{+}in sequence are
$n_{1}<n_{2}<n_{3}<\ldots$ find n_{12}
A. 29
B. 5
C. 78
D. none of these

- Watch Video Solution

197. Let two points be $A(1,-1)$ and $B(0,2)$. If a point $P\left(x^{\prime}, y^{\prime}\right)$ be such that the area of $\triangle P A B=5$ sq. unit and it lies on the line $3 x+y-4 \lambda=0$ then value of λ is
A. 1
B. 4
C. -3
D. 3

- Watch Video Solution

198. If $A a n d B$ are acute positive angles satisfying the equations $3 \sin ^{2} A+2 \sin ^{2} B=1$ and $3 \sin 2 A-2 \sin 2 B=0$, then $A+2 B$ is equal to π (b) $\frac{\pi}{2}$
(c) $\frac{\pi}{4}$ (d) $\frac{\pi}{6}$
A. 0
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. none of these

Answer: A

199. Let N be the set of $Z^{+}, \forall n \in N$ Let
$f(n)=(n+1)^{\frac{1}{3}}-n^{\frac{1}{3}}$ and $A=\left\{n \in N: f_{n+1}<\frac{1}{3(n+1)^{\frac{2}{3}}}<f_{n}\right\}$ then
A. $A=N$
B. A is finite set
C. Complement of A in N is nonempty but finite
D. A and it's complement is N are both finite

- Watch Video Solution

200. $\int \frac{d x}{x^{4}\left(1+x^{3}\right)^{2}}=a \ln \left|\frac{1+x^{3}}{x^{3}}\right|+\frac{b}{x^{3}}+\frac{c}{1+x^{3}}+d$ then
A. $a=\frac{1}{3}, b=\frac{1}{3}, c=\frac{1}{3}$
B. $a=\frac{2}{3}, b=-\frac{1}{3}, c=\frac{1}{3}$
C. $a=\frac{2}{3}, b=-\frac{1}{3}, c=-\frac{1}{3}$
D. $a=\frac{2}{3}, b=\frac{1}{3}, c=-\frac{1}{3}$
201. Q. if $\int_{0}^{100}\left(f(x) d x=a\right.$, then $\sum_{r=1}^{100}\left(\int_{0}^{1}(f(r-1+x) d x)\right)=$

- Watch Video Solution

202. $\frac{1}{16}$, a and b are in G.P, $\frac{1}{a}, \frac{1}{b}$ and 6 are in A.P then find $72(\mathrm{a}+\mathrm{b})$
203. Find the maximum value of $\left|\begin{array}{ccc}\sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x\end{array}\right|$

- Watch Video Solution

204. Let c be the locus of the mirror image of point on the parabola $y^{2}=4 x$ w.r.t to line $\mathrm{x}=\mathrm{y}$. Then equation of tangent to c at $\mathrm{p}(2,1)$ is

- Watch Video Solution

205. $f(x+1)=x f(x), g(x)=\ln (f(x))$ find $\left|g^{\prime \prime}(5)-g^{\prime \prime}(1)\right|:$

- Watch Video Solution

206. C_{1} and C_{2} are two curves intersecting at $(1,1), C_{1}$ satisfy $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}$ and C_{2} satisfy $\frac{d y}{d x}=\frac{2 x y}{-y^{2}+x^{2}}$ then area bounded by these

D Watch Video Solution

207. A six digit number is formed by the numbers $0,1,2,3,4,5,6$, without repetition Then the probability that the number is divisible by 3 is

- Watch Video Solution

208. $A B C D$ is a rectangle .It has $5,6,7,9$ points on $A D, B C, C D, A B$ respectively. if α is number of Δ formed by taking one point from each side and β is number of quadrilaterals formed by one point from each side, then $|\beta-\alpha|=$

- Watch Video Solution

209. $P(x)=x^{2}+b x+c, \int_{0}^{1} P(x) d x=1$ where $P(x)$ is divisible by ($x-2$) then rem. is $5,9(b+c)=$?
210. x, y, z be a point on plane passing through (42,0,0),(0,42,0),(0,0,42) then value
of
$\frac{x-11}{(y-19)^{2} \cdot(z-12)^{2}}+\frac{y-19}{(x-11)^{2} \cdot(z-12)^{2}}+\frac{z-12}{(x-11)^{2} \cdot(y-19)^{2}}+3-\frac{x}{14(x-11) \cdot}$

- Watch Video Solution

211. If the points of interscetions of ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the circle $x^{2}+y^{2}=4 b, b>4$ lie on the curve $y^{2}=3 x^{2}$ then b is equal to
A. 12
B. 6
C. 10
D. 5
212. If m is slope of common tangent of two curves $4 x^{2}+9 y^{2}=25$ and $4 x^{2}+16 y^{2}=31$ then find the value of the m^{2} equal to

- Watch Video Solution

213.2 $2^{\frac{(|z|+3) \cdot(|z|-1)}{|z|+1}} \geq \log _{\sqrt{2}}|5 \sqrt{7}+9 i|$. Find the minimum value of $|z|$

- Watch Video Solution

214. $f(x)= \begin{cases}\frac{\cos ^{-1}\left(1-\left\{x^{2}\right\}\right) \cdot \sin ^{-1}(1-\{x\})}{(\{x\}(1-\{x\})(1+\{x\}))} & x \neq 0 ; x \neq 0 \text {. Find } \alpha \text { if } \mathrm{f}(\mathrm{x}) \text { is } \\ \alpha & x=0\end{cases}$ continuous at $\mathrm{x}=0$

- Watch Video Solution

215. $A=\{2,3,4,5 \ldots, 30\}$ order pair $(a, b) R(c, d)$ are equivalence if $a d=c b$ then find number of elements equivalent to $(4,3)$ is

Watch Video Solution

216. Two sides of triangle $A B C$ are 5 and 12. Area of $\triangle A B C=30$ Find $2 \mathrm{R}+\mathrm{r}$ where R is circumradius and r is inradius.

- Watch Video Solution

217. $\int_{0}^{10}[x] \frac{e^{[x]}}{e^{x-1}} d x$ where $[x]$ is GIF
A. $9(e-1)$
B. $9(e+1)$
C. $45(e-1)$
D. $45(e+1)$

D Watch Video Solution

218. Find the interval in which $f(x)=\log _{e}\left|\frac{x-1}{x+1}\right|-\frac{2}{x-1}$ is increasing
A. $(-\infty,-1) \cup[0,1) \cup(1, \infty)$
B. $(-1,0) \cup[0,1) \cup(1, \infty)$
C. $(-1,-\infty)$
D. $(-\infty,-1) \cup(-1,1)$

Answer: A

- Watch Video Solution

219. If $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$ and a vector \vec{c} perpendicular to both \vec{a} and \vec{b} and \vec{c}. $(\hat{i}-\hat{j}+3 \hat{k})=8$ then find the value of $\vec{c} \cdot(\vec{a} \times \vec{b})$
A. 90
B. -88
C. 80
D. 78
220.

of
equation
$\sin ^{-1}\left(\frac{3 x}{5}\right)+\sin ^{-1}\left(\frac{4 x}{5}\right)=\sin ^{-1} x, x \in[-1,1]$ is
A. 0
B. 1
C. 2
D. 3
221. Points $(1,-1,2)$ is the foot of perpendicular drawn from point $(0,3,1)$ on the line $\frac{x-a}{l}=\frac{y-2}{3}=\frac{z-b}{4}$ find the shortest distance between this line and the line $\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}$
A. $\frac{61}{\sqrt{1314}}$
B. $\frac{71}{\sqrt{1314}}$
C. $\frac{91}{\sqrt{1314}}$
D. $\frac{31}{\sqrt{1314}}$

Answer: A

- Watch Video Solution

222. If $\quad S_{n}(x)=\log _{a^{1 / 2 X}}+\log _{a^{1 / 3 X}}+\log _{a^{1 / 6 X}}+\log _{a^{1 / 11 X}}+\ldots \quad$ also
$S_{24}(2 x)=1093$ and $S_{12}(2 x)=265$ then find a
223. Consider 3 points $A(-1,1), B(3,4)$ and $C(2,0)$. The line $y=m x+c$ cuts line $A C$ and $B C$ at points P and Q res. If the area of $\triangle A B C=A_{1}$ and area of $\triangle P Q C=A_{2}$ and $A_{1}=3 A_{2}$ then positive value of m is
A. 1
B. $\frac{4}{15}$
C. 2
D. $\frac{15}{4}$

Answer: A

- Watch Video Solution

224. Find inverse of $y=x^{\log 5}$
$225.4+\frac{1}{}=$

$$
\left(5+\frac{1}{4+\left(\frac{1}{5+\ldots \infty}\right)}\right)
$$

- Watch Video Solution

226. $\cot ^{-1}(\alpha)=\cot ^{-1}(2)+\cot ^{-1}(8)+\cot ^{-1}(18)+\cot ^{-1}(32)+\ldots$ then $\alpha=$?
A. 1.03
B. 1
C. 1.01
D. 1.02

Answer: B

227. $A=\left[\begin{array}{cc}\sin \alpha & 0 \\ 0 & \sin \alpha\end{array}\right]$ and $\operatorname{det}\left(A^{2}-\frac{1}{2} I\right)=0$, then a possible value of α is

- Watch Video Solution

228. $k x+y+z=1, x+k y+z=k, x+y+k z=k^{2}$ be the system of equations with no solution , then $k=$

- Watch Video Solution

229. Two dice with faces $1,2,3,5,7,11$ when rolled. Find the probability that the sum of the top faces is less than or equal to 8

- Watch Video Solution

230. If $f(x)=\frac{\cos (\sin x)-\cos x}{x^{4}}$ is continuous over the domain and $f(0)=\frac{1}{k}$, then $k=$?
231. $\frac{d y}{d x}=x y-1+x-y, y(0)=0$ then find $y(1)$

- Watch Video Solution

232. $\left(x+x^{\log _{2} x}\right)^{7}$ has fourth term as 4480 then $\mathrm{x}=$

- Watch Video Solution

233. (2021) ${ }^{3762}$ is divided by 17 then find the remainder

- Watch Video Solution

234. $\lim x \rightarrow 0^{+} \frac{\left(\cos ^{-1}\left(x-[x]^{2}\right)\right) \cdot \sin ^{-1}\left(\left(x-[x]^{2}\right)\right)}{x-x^{3}}$

- Watch Video Solution

235. Plane consisting of y-axis and passing through ($1,2,3$)

- Watch Video Solution

236. The line $2 x-y+1=0$ is tangent to the circle at the point $(2,5)$ and the center of the circle lies on $x-2 y=4$. The radius of the circle is
A. $3 \sqrt{5}$
B. $5 \sqrt{3}$
C. $2 \sqrt{5}$
D. $5 \sqrt{2}$

Answer: A

- Watch Video Solution

 a triangle, then the area of the triangle is
A. $\frac{1}{2}$
B. $\frac{1}{2}|z|^{2}$
C. 1
D. $\frac{1}{2}|z+i z|^{2}$

Answer: B

- Watch Video Solution

238. Team A contain 7 boys and n-girls, Team B has 4 boys and 6 girls. If each boy of Team A plays one match with each boy of Team B and each girl of Team A plays one match with every girls of Team B then total number of matches are 52 . Find value of n

- Watch Video Solution

239. $g(\alpha)=\int_{\frac{6}{6}}^{\frac{\pi}{3}} \frac{\sin ^{\alpha} x}{\sin ^{\alpha} x+\cos ^{\alpha} x} d x$ then which of the following is correct
A. $g(\alpha)$ is stricly increasing
B. $g(\alpha)$ is stricly decreasing
C. $g(\alpha)$ has point $\alpha=-\frac{1}{2}$ as point of inflection
D. $g(\alpha)$ is even

Watch Video Solution

240. $\tan ^{-1}(x+1)+\cot ^{-1}\left(\frac{1}{x-1}\right)=\tan ^{-1}\left(\frac{8}{31}\right)$ then sum of all the values x satisfying

- Watch Video Solution

241. $x^{2}+y^{2}-10 x-10 y+41=0$ and $x^{2}+y^{2}-16 x-10 y+80=0$ are two circle which of the following is NOT correct
A. Distance between centers is equal to average of radii
B. Both circles passes through centres of each other
C. Centers of each circle is contained in other circle
D. Both circle intersect at 2 point

Answer: C

- Watch Video Solution

242. $x^{2}+y^{2}-10 x-10 y+41=0$ and $x^{2}+y^{2}-24 x-10 y+160=0$ are two circle .Then the minimum distance between points lying on them is

- Watch Video Solution

243.

$$
\vec{a}=\alpha \hat{i}+\beta \hat{j}-3 \hat{k}, \vec{b}=-\beta \hat{i}-\alpha \hat{j}+\hat{k}, \vec{c}=\hat{i}-2 \hat{j}+\hat{k}
$$

where
$\vec{a} \cdot \vec{b}=1, \vec{b} \cdot \vec{c}=-3$ then find $\frac{1}{3}(\vec{a} \times \vec{b}) \cdot \vec{c}$

- Watch Video Solution

244. In a triangle PQR . the co-ordinate of the point P and Q are $(-2,4)$ and $(4,-2)$ respectively . If the equation of the perpendicular bisector $P R$ is $2 x-$ $y+2=0$, then centre of the circumcircle of the $\triangle P Q R$ is
A. $(-1,0)$
B. $(-2,-2)$
C. $(0,2)$
D. $(1,4)$

- Watch Video Solution

245. Let $4 x+3 y \leq 75,3 x+4 y \leq 100, x, y \geq 0$ and $z=6 x y+y^{2}$. Find maximum value of z
A. 575
B. 600
C. 625
D. 675

Answer: C

- Watch Video Solution

246. Let $(p \rightarrow q) \leftrightarrow(\sim q * p)$ is a tautology, then $p * \sim q$ is equivalent to
A. $(p \rightarrow q)$
B. $(p \vee q)$
C. $(p \leftrightarrow q)$
D. $p \wedge q$

Answer: A

- Watch Video Solution

247. $\int_{\int^{\frac{\pi}{2}}}^{\frac{\pi}{2}}\left[\left[x^{2}\right]+\cos x\right] d x$ (where [.] denotes greatest integer function)
A. $1-\sqrt{\frac{\pi}{2}}$
B. $\sqrt{\frac{\pi}{2}}$
C. $1+\sqrt{\frac{\pi}{2}}$
D. $\sqrt{\frac{\pi}{2}}-1$

Answer: D

- Watch Video Solution

248. Let $2 x-7 y+4 z-11=0$ and $-3 x-5 y+4 z-3=0^{\prime}$ are two planes .If planes $a x+b y+c z-7=0$ passes through the line of intersection of given planes and point $(-2,1,3)$, then find the value of $2 a+b+c+7$

- Watch Video Solution

249.

$\vec{r} \times \vec{a}=\vec{r} \times \vec{b}, \vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}, \vec{b}=7 \hat{i}+\hat{j}-6 \hat{k}, \vec{c}=\hat{i}+2 \hat{j}+\hat{k}$, and $\vec{r} \cdot \vec{c}=-3$
then find $\vec{r} \cdot \vec{a}$

- Watch Video Solution

250. Let $A=\left[\begin{array}{cc}2 & 3 \\ 0 & -1\end{array}\right]$, the value of $\left.\operatorname{det}\left(A^{4}\right)-\operatorname{det}\left(A^{10}-\operatorname{adj}(2 A)^{10}\right)\right)$

- Watch Video Solution

251. Of the three independent event E_{1}, E_{2} and E_{3}, the probability that only E_{1} occurs is α, only E_{2} occurs is β and only E_{3} occurs is γ. If the probavvility p that none of events E_{1}, E_{2} or E_{3} occurs satisfy the equations $(\alpha-2 \beta) p=\alpha \beta$ and $(\beta-3 \gamma) p=2 \beta \gamma$. All the given probabilities are probability of occurrence of E_{1} assumed to lie in the interval $(0,1)$. Then, $\overline{\text { probability of occurrence of } E_{3}}$ is equal to
252. 3 games are played in a school . If some students played exactly 2 games, and no student play all the 3 games, then which venn diagram can represents the above situtation
(A)

(B)

(C)

A. Only A is correct
B. A and B are correct
C. Only C is correct
D. None of these

Answer: D

- Watch Video Solution

253. $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], B=\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$ such that $A B=B$ and $a+d=2021, B$ is a nonzero matrix. find $a d-b c$

Watch Video Solution

254. $z \in C, S_{1}=\{|z-1|<\sqrt{2}\}, S_{2}=\left\{\operatorname{Re}(z(1-i) \geq 1\}, S_{3}=\{\operatorname{Im}(z)<1\}\right.$. Then $n\left(S_{1} \cap S_{2} \cap S_{3}\right)$
A. is a singletonset
B. Infinite set
C. Has exactly 2 elements
D. Null Set

Answer: B

- Watch Video Solution

255. $\sin ^{-1}\left[x^{2}+\frac{1}{3}\right]+\cos ^{-1}\left[x^{2}-\frac{2}{3}\right]=x^{2}$ the number of solution in $x \in(1,-1)$ where $[$.$] is the GIF.$
A. 0
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

256. Variance of $3 n$ observation is 4 , mean of first $2 n$ observations is 6 and mean of next n observations is 3 . If 1 is added in first 2 n observation and 1 is subtracted from last n observations than find new variance

- Watch Video Solution

257. $y^{2}=4 x-20$,Tangent to this parabola at $(6,2)$ is also tangent to $\frac{x^{2}}{2}+\frac{y^{2}}{b}=1$ then find b
258. $\sum_{r=0} .{ }^{6} C_{r} \times{ }^{6} C_{6-r}=$?

- Watch Video Solution

259. Computer is generating binary digits, Probability of ' O ' at odd position is $\frac{1}{3}$ and probability of ' 0 ' at even position is $\frac{1}{2}$. Find the probability that 10 is immediately followed by 01

- Watch Video Solution

260. Find $\lim \theta \rightarrow 0$

$$
\tan \left(\pi \cdot \cos ^{2} \theta\right)
$$

$$
\sin \left(2 \pi \sin ^{2} \theta\right)
$$

- Watch Video Solution

261. $\int_{0}^{10} \frac{[\sin 2 \pi x]}{e^{-[x]+x}} d x=\alpha e^{-1}+\beta e^{-\frac{1}{2}}+\gamma$. then find $\alpha+\beta+\gamma$
262. $x+2 \tan x=\frac{\pi}{2}$ Find the no. of values of x if $\mathrm{x} \in[0,2 \pi]$

- Watch Video Solution

263. $f(x)= \begin{cases}\left(2-\sin \left(\frac{1}{x}\right)\right)|x| & x \neq 0 \\ 0 & x=0\end{cases}$
A. Monotonic in $(-\infty, 0) \cup(0, \infty)$
B. Not Monotonic in $(-\infty, 0) \cup(0, \infty)$
C. Monotonic in $(-\infty, \infty)$
D. Not Monotonic in $(-\infty, \infty)$

Answer: B

- Watch Video Solution

264. $\lim _{n \rightarrow \infty} \frac{[r]+[2 r]+\ldots+[n r]}{n^{2}}$

- Watch Video Solution

265. $f(x)=e^{-x} \sin x, F(x)=\int_{0}^{x} f(t) d t$, Find $\int_{0}^{1} e^{x}\left(F^{\prime}(x)+f(x)\right) d x$ lies in interval
A. $\left(\frac{330}{360}, \frac{331}{360}\right)$
B. $\left(\frac{327}{360}, \frac{329}{360}\right)$
C. $\left(\frac{335}{360}, \frac{336}{360}\right)$
D. None of these

Answer: A

- Watch Video Solution

266. Angle between tangents is $\tan ^{-1}\left(\frac{12}{5}\right)$, ratio of $\operatorname{ar} \triangle P A B$ and $\operatorname{ar} \triangle C A B=$
$x^{2}-y^{2}-2 x-4 y+4=0$

- Watch Video Solution

267. Tangent at $A(3,4)$ of circle $x^{2}+y^{2}=25$ meet x and y axis at P and Q if a circle having centre as incentre of $\triangle O P Q$ and passing through origin has radius r then r^{2} is

- Watch Video Solution

268. A triangle $A B C$ in which side $A B, B C, C A$ consist $5,3,6$ points respectively, then the number of triangle that can be formed by these points are
A. 360
B. 333
C. 396
D. 320

Answer: B

- Watch Video Solution

269. If $(p \wedge q) \otimes(p \oplus q)$ is a tautology, then
A. \otimes is \rightarrow and \oplus is \vee
B. \otimes is \wedge and \oplus is \wedge
C. \otimes is \vee and \oplus is V
D. \otimes is \vee and \oplus is \wedge

- Watch Video Solution

270. If $\sin ^{-1}\left[x^{2}+\frac{1}{3}\right]+\cos ^{-1}\left[x^{2}-\frac{2}{3}\right]=x^{2}$ then number of values of $x \in[-1,1]$ is/are (where [.] is GIF)
A. 0
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

271. If $\left|\begin{array}{ccc}3 & 4 \sqrt{2} & x \\ 4 & 5 \sqrt{2} & y \\ 5 & k & z\end{array}\right|=0$ and x, y, z are in A.P with common difference d, $x \neq 3 d$ then value of k^{2} is
A. 36
B. 72
C. 6
D. $6 \sqrt{2}$

Answer: B

- Watch Video Solution

272. Tangent at $\mathrm{A}(3,4)$ of circle $x^{2}+y^{2}=25$ meet x and y axis at P and Q if a circle having centre as incentre of $\triangle O P Q$ and passing through origin has radius r then r^{2} is
A. $\frac{625}{72}$
B. $\frac{625}{256}$
C. $\frac{625}{64}$
D. $\frac{625}{32}$

Answer: A

- Watch Video Solution

273. If curve $y(x)$ satisfied by differential equation
$2\left(x^{2}+x^{\frac{5}{4}}\right) d y-y\left(x+x^{\frac{1}{4}}\right) d x=2 x^{\frac{9}{4}} d x$ and passing through $\left(1, \frac{4}{3}-\ln 2\right)$,
then value of $y(16)$ is
A. $\frac{128}{3}-\frac{16}{3} \ln 9+\frac{4}{3} \ln 2$
B. $\frac{64}{3}-\frac{16}{3} \ln 9+\frac{2}{3} \ln 2$
C. $\frac{128}{3}+\frac{16}{3} \ln 9-\frac{4}{3} \ln 2$
D. $\frac{64}{3}+\frac{16}{3} \ln 9-\frac{2}{3} \ln 2$

- Watch Video Solution

274. If $\cos x(3 \sin x+\cos x+3) d y=d x+y \sin x(\cos x+3+3 \sin x) d x$ then $y\left(\frac{\pi}{3}\right)$ equal to
A. $2 \ln \left(\frac{1+\sqrt{3}}{1+2 \sqrt{3}}\right)$
B. $2 \ln \left(\frac{1+2 \sqrt{3}}{1+\sqrt{3}}\right)$
C. $\ln \left(\frac{2 \sqrt{3}-1}{1+\sqrt{3}}\right)$
D. $\ln \left(\frac{\sqrt{3}-1}{1+2 \sqrt{3}}\right)$

Answer: A

- Watch Video Solution

275. If image of point $A(2,3,1)$ in the lines $\frac{x-1}{2}=\frac{y-4}{1}=\frac{z+3}{-1}$ lies on the plane $\alpha x+\beta y+\gamma z=24$ also the line $\frac{x-1}{1}=\frac{1-y}{2}=\frac{z-6}{15}$ lies in the plane
then $\alpha+\beta+\gamma=$?

- Watch Video Solution

276. The number of solution of the equation
$|\cot x|=\cot x+\frac{1}{\sin x}(0 \leq x \leq 2 \pi)$ is

Watch Video Solution

277. Find the equation of the planes parallel to the planes $x-2 y+2 z=3$ which is at a unit distance from the point $(1,2,3)$.

- Watch Video Solution

278. $f(x)=\int \frac{5 x^{8}+7 x^{6}}{\left(x^{2}+1+2 x^{7}\right)^{2}} d x$, if $f(0)=0$ then find $f(1)=\frac{1}{k}$. Then k is

- Watch Video Solution

279. $f(x)=\frac{\operatorname{cosec}^{-1} x}{\sqrt{x^{2}-[x]^{2}}}$ Find the domain

- Watch Video Solution

280. $f(x)=\sqrt{x}, g(x)=\sqrt{1-x}$ find common domain of $f+g, f-g, \frac{f}{g}, \frac{g}{f}$
A. $x \in(0,1)$
B. $x \in[0,1)$
C. $x \in[0,1]$
D. $x \in(0,1]$

Answer: A

- Watch Video Solution

281. Form the differential equation, if $y^{2}=4 a(x+b)$, where a, b are arbitary constants.
A. $y\left(\frac{d y}{d x}\right)^{2}+2 x\left(\frac{d y}{d x}\right)-y=0$
B. $y\left(\frac{d y}{d x}\right)^{2}-2 x\left(\frac{d y}{d x}\right)-y=0$
C. $y\left(\frac{d y}{d x}\right)^{2}+2 x\left(\frac{d y}{d x}\right)+y=0$
D. None of these

Answer: A

- Watch Video Solution

282. If $\left(1+x+2 x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{40} x^{40} \quad$ then $a_{1}+a_{3}+a_{5}+\ldots+a_{37}=$

- Watch Video Solution

283. $\frac{1}{3^{2}-1}+\frac{1}{5^{2}-1}+\frac{1}{7^{2}-1}+\ldots+\frac{1}{201^{2}-1}$ is equal to
284. Find the value of $3+\frac{1}{}$ is equal to

$$
4+\left(\frac{1}{3+\frac{1}{4+\frac{1}{3+\ldots \infty}}}\right)
$$

A. $4+\sqrt{3}$
B. $1.5+\sqrt{3}$
C. $2+\sqrt{3}$
D. $3+2 \sqrt{3}$

Answer: B

285. The sum of all the 4-digit distibct numbers that can be formed with the digit $1,2,2$ and 3 is
286. The number of integral value of m so that the abscissa of point of intersection of lines $3 x+4 y=9$ and $y=m x+1$ is also an integers is

- Watch Video Solution

287.

M,N,O,P
are
circle
$x^{2}+y^{2}=1, x^{2}+y^{2}-2 x=0, x^{2}+y^{2}-2 y=0, x^{2}+y^{2}-2 x-2 y=0 \quad$ Centers
of thses circles are joined then shape formed is
A. rhombus
B. rectangle
C. square
D. Parallelogram

Answer: C

288. $\lim _{x \rightarrow 0} \frac{\sin ^{-1} X-\tan ^{-1} X}{3 x^{3}}=L$ then find $(6 L+1)$

- Watch Video Solution

289. Find the number of times 3 appeared in all the numbers from 1 to 1000

- Watch Video Solution

290. \vec{a} has components 3 P and 1 in rectangular cartesian system. \vec{a} is rotated counterclockwise about origin such that its components now become $\sqrt{10}$ and $P+1$ then a value of " P " is
A. $-\frac{5}{4}$
B. $\frac{4}{5}$
C. 1
D. -1

Answer: D

D Watch Video Solution

291. $f(x)=\left\{\begin{array}{ll}\frac{1}{|x|} & |x| \geq 1 \\ a x^{2}+b & |x|<1\end{array}\right.$ Find the possible value of a and b given that $f(x)$ is differentiable at $\mathrm{x}=1$

- Watch Video Solution

292. There are 25 teacher in a school, the average age of teacher is 40 . If a teacher of 60 years of age is retired than a new teacher is appointed in place of him and the average decreases to 39 . find the age of teacher appointed

- Watch Video Solution

293. If $I=\int\left(\frac{(2 x-1) \cos \left(\sqrt{4 x^{2}-4 x+6}\right)}{\sqrt{4 x^{2}-4 x+6}}\right) d x$

- Watch Video Solution

294. Let $f(x)$ and $g(x)$ be two functions satisfying $f\left(x^{2}\right)+g(4-x)=4 x^{3}, g(4-x)+g(x)=0$, then the value of $\int_{-4}^{4} f\left(x^{2}\right) d x$ is :

- Watch Video Solution

295. $x^{2}+y^{2}-10 x-10 y+41=0$ and $x^{2}+y^{2}-22 x-10 y+137=0$
A. Meet at 1 point
B. Meet at 2 points
C. Does not meet
D. have same center

- Watch Video Solution

296. The values of x in $(0, \pi)$ satisfying the equation.
$\left|\begin{array}{lll}1+\sin ^{2} x & \sin ^{2} x & \sin ^{2} x \\ \cos ^{2} x & 1+\cos ^{2} x & \cos ^{2} x \\ 4 \sin 2 x & 4 \sin 2 x & 1+4 \sin 2 x\end{array}\right|=0$, are

- Watch Video Solution

297. $100^{\alpha}-199 \beta=100(100)+99(101)+98(102)+\ldots+1(199)$. then find the slope of line with point (α, β) and origin.

- Watch Video Solution

298. If z_{1} and z_{2} are the roots of the equation $z^{2}+a z+12=0$ and z_{1}, z_{2} forms an equilateral triangle with origin. Find $|a|$
299. Find the equation of line passing through $(1,3)$ and inclined at angle $\tan ^{-1}(\sqrt{2})$ with $y=3 \sqrt{2} x+1$

Watch Video Solution

300. Let P_{1} be the plane $x-2 y+2 z=0$ and a point $A(1,2,3)$. Let there be another plane P_{2} which is parrallel to P_{1} and at unit distance from A. If P_{2}
is $a x+b y+c z+d=0$ then +ve value of $\left(\frac{b-d}{c-a}\right)$

- Watch Video Solution

301. Four points lying on the curves $x^{2} y^{2}=1$ form a square such that midpoints os sides also lies on the given curve. Find the square of area of the square
302. If $2 A+B=\left[\begin{array}{ccc}0 & 0 & 3 \\ 10 & 1 & 9 \\ -1 & 4 & 0\end{array}\right]$ and $A-2 B=\left[\begin{array}{ccc}0 & -5 & 9 \\ -5 & 3 & 2 \\ -3 & 2 & 0\end{array}\right]$ Find the value of $\left(t_{r}(A)-t_{r}(B)\right)$
A. 1
B. -2
C. -1
D. 2

Answer: D

- Watch Video Solution

303.

Let
system
of
equation
$\alpha u+\beta v+\gamma w=0, \beta u+\gamma v+\alpha w=0, \gamma u+\alpha v+\beta w=0$ has non trial solution and α, β, γ are distinct root $x^{3}+a x^{2}+b x+c=0$ then find value of $\frac{a^{2}}{b}$
A. 0
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

304. Find the missing terms in

- Watch Video Solution

305. If S_{1} is the sum of first 2 n terms and S_{2} is the sum of first 4 n term and $S_{2}-S_{1}$ is equal to 1000 then S_{3} sum of first 6 n terms of same A.P
A. 3000
B. 5000
C. 7000
D. 9000

Answer: A

- Watch Video Solution

306. $z=-1+\sqrt{3} i, \omega$ is complex number such that $|z \omega|=1, \arg (z)-\arg (w)=\frac{\pi}{2}$.Find area of triangle made

- Watch Video Solution

307. Find locus of centre of circle which touches between $x^{2}+y^{2}=9$ internally and $(x-2)^{2}+y^{2}=1$ externally

- Watch Video Solution

308. Out of 2 n terms , n terms are 'a' and rest are ' -a '. If we add ' b ' to all the terms than mean is 5 and standard deviation is 20 then $a^{2}+b^{2}=$?

- Watch Video Solution

309. $x d y-y d x=\sqrt{x^{2}-y^{2}} d x, y(1)=0$. then area curve above x-axis on $x \in\left[1, e^{\pi}\right]$ is

- Watch Video Solution

310. \vec{a} and \vec{b} are \perp vector $|\vec{a}|=|\vec{b}|=1$ then angle between $\vec{a}+\vec{b}+(\vec{a} \times \vec{b})$ and \vec{a}

- Watch Video Solution

311. $f: R \rightarrow R$ defined by $f(x) . f(y)=f(x+y) \forall x, y \in R$ and $f(x) \neq 0$ for $x \in R, \mathrm{f}$ is differential at $\mathrm{x}=0$ and $f(0)=3$ then $\lim h \rightarrow 0 \frac{1}{h}[f(h)-1]=$
312. There are 5 independent trials, probability of exactly one success is 0.4096 , probability of exactly 2 success is 0.2048 . Find probability of exactly 3 success

- Watch Video Solution

313. $\left(\frac{x+1}{x^{\frac{2}{3}}-x^{\frac{1}{3}}+1}-\frac{x-1}{x+x^{\frac{1}{2}}}\right)^{10}$ find term independent of x

- Watch Video Solution

314. $P(x)$ is a polynomial such that $P(x)=f\left(x^{3}\right)+x g\left(x^{3}\right), P(x)$ is divided by $x^{2}+x+1$ Find the value of $P(1)$.

- Watch Video Solution

315. $\frac{x^{2}}{27}+y^{2}=1$ tangent is drawn at $(3 \sqrt{3} \cos \theta, \sin \theta)$. If tangent meet $x-$ axis and y-axis at A and B. Minimumvalue of sum of intercepts is at θ
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{8}$
D. $\frac{\pi}{3}$

Answer: A

- Watch Video Solution

316. One side of equilateral triangle is $x+y=3$, centroid is $(0,0)$, then $r+R=$ (where r is inradius and R is circumradius)

- Watch Video Solution

317. 10,7,8 are sides of triangle . Find projection of side of length '10' on '7' is

- Watch Video Solution

318. $4 y^{2}=x^{2}(4-x)(x-2)$, find area bounded by curve

- Watch Video Solution

319. If $15 \sin ^{4} \alpha+10 \cos ^{4} \alpha=6$, then $27 \sec ^{6} \alpha+8 \operatorname{cosec}^{6} \alpha=$

- Watch Video Solution

320. If $P=\left[\begin{array}{ll}2 & -1 \\ 5 & -3\end{array}\right]$ and $P^{n}=5 I-8 P$ then value of n is
321. If If $g(x)=\int_{0}^{x} f(t) d t$ where $f(x)$ is a continuous functions on $[0,3]$ such that $\forall x \in[0,1], f(x)$ has ranges $\left[\frac{1}{3}, 1\right]$ and $\forall x \in(1,3], f(x)$ has ranges
$\left[0, \frac{1}{2}\right]$ Then the maximum range in which $g(x)$ can lie is
A. $\left[\frac{1}{3}, 2\right]$
B. $(1,2)$
C. $\left[\frac{5}{6}, 3\right]$
D. $\left[1, \frac{4}{3}\right]$

Answer: A

- Watch Video Solution

322. Which of the following is a tautology
A. $((p \rightarrow q) \wedge \sim q) \rightarrow p \wedge q$
B. $((p \rightarrow q) \wedge \sim q) \rightarrow p$
C. $((p \rightarrow q) \wedge \sim q) \rightarrow q$
D. $((p \rightarrow q) \wedge \sim q) \rightarrow \sim q$

Answer: D

- Watch Video Solution

323. If system of equation $4 x-\lambda y+2 z=0,2 x+2 y+z=0, \mu x+2 y+3 z=0$ has non trivial solution than
A. $\lambda=6, \mu=2$
B. $\lambda \in R, \mu=6$
C. $\lambda=5, \mu \in R$
D. None of these

Answer: B

324. Let the curve is $x^{2}-2 y^{2}=4$ Tangent drawn at $P(4, \sqrt{6})$ cuts the x axis at R and latus rectum at $Q\left(x_{1}, y_{1}\right)\left(x_{1}>0\right), \mathrm{F}$ be focus nearest to P . Then $\operatorname{ar} \triangle Q P F$
A. $2-\frac{\sqrt{6}}{7}$
B. $2-\frac{\sqrt{6}}{2}$
C. $\frac{3}{2}$
D. $\frac{\sqrt{6}}{2}$

Answer: B

- Watch Video Solution

325. If $\frac{d y}{d x}=(y+1)\left[(y+1) e^{\frac{x^{2}}{2}}-x\right], y(0)=2$ theny' (1) is equal to
A. $\frac{15}{4 \sqrt{e}}$
B. $\frac{13}{2 \sqrt{e}}$
C. $\frac{15}{7 \sqrt{e}}$
D. $\frac{17}{4 \sqrt{e}}$

Answer: A

- Watch Video Solution

326. Let A and B are two square matrix of order n. A relation R is defined such that $R=\left\{(A, B): A=P^{-1} B P\right.$ for some invertible $\left.P\right\}$, then R is
A. equivalence
B. reflexive only
C. symmetric only
D. transitive only

Answer: A

$f: R-\{3\} \rightarrow R\{1\}: f(x)=\frac{x-2}{x-3}$ and $g: R \rightarrow R, g(x)=2 x-3$ and $f^{-1}(x)+g^{-1}(x)$ then sum of all value of x is
A. 2
B. 3
C. 5
D. 7

Answer: C

- Watch Video Solution

328. In a $\triangle A B C$ whose cicumradius is 2 . A pole standing inside the $\triangle A B C$ and angle of elevation of top of the pole from points A, B, C is 60° then find height of pole
329. Image of point $(1,3, a)$ in the plane $\vec{r} .(2 \hat{i}-\hat{j}+\hat{k})-b=0 i s(-3,5,2)$ then $|a+b|$

(Watch Video Solution

330. $f(x)=\left\{\begin{array}{ll}\frac{\sin (a+1) x+\sin 2 x}{2 x} & x<0 \\ b & x=0 \\ \frac{\sqrt{x-b x^{3}}-\sqrt{x}}{b x^{\frac{5}{2}}} & x>0\end{array}, f(x)\right.$ is a continous at $x=0$ then
$|a+b|$ is equal to

- Watch Video Solution

331. $\sum_{k=0}\left(2^{k}+3\right)^{10} C_{k}=\alpha \cdot 2^{10}+\beta \cdot 3^{10}$ then value of $\alpha+\beta$
332. Let $f(x)$ be a cubic polynomial such that it has maxima at $x=-1$, min at $\mathrm{x}=1, \int_{-1}^{1} f(x) d x=18, f(2)=10$ then find the sum of coff. of $f(x)$

- Watch Video Solution

333. Total number of integral terms in $\left(4^{\frac{1}{4}}+5^{\frac{1}{6}}\right)^{120}$ is \qquad

Watch Video Solution

334. Find $\int_{-1}^{1} \ln (\sqrt{1-x}+\sqrt{1+x}) d x$

- Watch Video Solution

335. A tangent and normal are drawn to a curve $y^{2}=2 x$ at $A(2,2)$. Tangent cuts x-axis at point T and normal cuts curve again at P. Then find the value of $\triangle A T P$
336. Find the coefficient of x^{256} in $(1-x)^{101} \cdot\left(x^{2}+x+1\right)^{100}$
A. ${ }^{100} C_{15}$
B. ${ }^{100} C_{15}$
C. ${ }^{100} C_{18}$
D. ${ }^{100} C_{16}$

Answer: B

- Watch Video Solution

337. If in $\triangle A B C \cos B=\frac{3}{5}, A B=5$ and $R=5$ (R is circumradius). then find area of Δ

- Watch Video Solution

338. Let $y=m x+c, m>0$ be the focal chord of $y^{2}=-64 x$ which is tangent to $(x+10)^{2}+y^{2}=4$ then the value of $(4 \sqrt{2}(m+c)$ is $=$

Watch Video Solution

339. If the shortest distance between the lines is equal to 9
$\vec{r}_{1}=\alpha \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k}), \lambda \in R, \alpha>0$
and $\vec{r}_{2}=-4 \hat{i}-\hat{j}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k}), \mu \in R$, is a then α is

- Watch Video Solution

340. $x^{2}+3^{\frac{1}{4}} x+\sqrt{3}=0$ where α and β are roots of equation then find the value of $\alpha^{96}\left(\alpha^{12}-1\right)+\beta^{96}\left(\beta^{12}-1\right)$
A. $3^{24} \cdot 52$
B. $3^{24} \cdot 56$
C. $3^{25} \cdot 52$
D. $3^{25} \cdot 56$

Answer: A

- Watch Video Solution

341. Form a team of 15 players, 6 are bowlers, 7 are batsman , 2 are wicket keepers. Find the number of ways to form a team of 11 players having atleast 4 bowlers 5 batsman, 1 wicket keeper.

- Watch Video Solution

342. The word EXAMINATION is given then find the probability that the M is at the 4th place
343. $\vec{a}, \vec{b}, \vec{c}$ are mutually \perp unit vectors equally inclined to $\vec{a}+\vec{b}+\vec{c}$ at an angle θ then find the value of $36 \cos ^{2}(2 \theta)$

- Watch Video Solution

344. $\int_{0}^{a} e^{x-[x]} d x=10 e-9$ then find a
A. $10+\ln (1+e)$
B. $10-\ln (1+e)$
C. $10+\ln (2)$
D. $10+\ln (3)$

Answer: C

Watch Video Solution

345. $|z \cdot \omega|=1, \arg (z)-\arg (\omega)=\frac{3 \pi}{2}$. Find the $\arg \left[\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right]$
A. $\frac{\pi}{4}$
B. $-\frac{\pi}{4}$
C. $\frac{3 \pi}{4}$
D. $-\frac{3 \pi}{4}$

Answer: D

- Watch Video Solution

346. $\lim x \rightarrow 0(2-\cos x \sqrt{\cos 2 x})^{\frac{x^{2}+2}{x}}=e^{\alpha}$, then $\alpha=$

- Watch Video Solution

347. The mean of 6 number is 6.5 and its variance is 10.25 . If 4 numbers are $2,4.5$ and 7 , then find the other two
348. If $f(x)=\left\{\begin{array}{ll}\sin x-e^{x} & x<0 \\ a+[-x] & 0 \leq x<1 \\ 2 x-b & x \geq 1\end{array}\right.$ is continuous in $(-\infty, 1]$, find the value of $a+b$

- Watch Video Solution

349. The number of solution of $\tan ^{-1}(\sqrt{x(x-1)})+\sin ^{-1}\left(\sqrt{x^{2}+x+1}\right)=\frac{\pi}{2}$ are

- Watch Video Solution

350. The logical equivalence of the boolean expression $\sim(p \wedge \sim q) \vee(q \vee \sim p)$

- Watch Video Solution

351. $a_{i j}= \begin{cases}1 & i=j \\ -x & |i-j|=1, A=\left\{a_{i j}\right\}_{3 \times 3} f(x)=\operatorname{det}(A) \text {. then sum of } \\ 2 x+1 & \text { otherwise }\end{cases}$ maximum and minimum vanes of $f(x)$ is

- Watch Video Solution

352. If $f(x)=3 x-2$ and $(g \circ f)^{-1}=x-2$ then find the function of $g(x)$

- Watch Video Solution

353. Coefficient of $a^{3} b^{4} c^{5}$ in expansion of $(b c+c a+a b)^{6}$

- Watch Video Solution

354. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ be in A.P with common difference λ. If

$$
\left|\begin{array}{ccc}
x+a-c & x+b & x+a \\
x-1 & x+c & x+b \\
x-b+d & x+d & x+c
\end{array}\right|=2 \text { then } \lambda^{2}=
$$

- Watch Video Solution

355. The probabillity of selecting integers $a \in[-5,30]$, such that $x^{2}+2(a+4) x-5 a+64>0$, for all $x \in R$ is

D Watch Video Solution

356. The probabillity of selecting integers $a \in[-5,30]$, such that $x^{2}+2(a+4) x-5 a+64>0$, for all $x \in R$ is

- Watch Video Solution

357. $x \frac{d y}{d x} \cdot \tan \left(\frac{y}{x}\right)=y \tan \left(\frac{y}{x}\right)-x, y\left(\frac{1}{2}\right)=\frac{\pi}{6}$ then the area bounded by $x=0, x=\frac{1}{\sqrt{2}}, y=y(x)$
358. A continuous and differentiable function $f(x)$ is increasing in $\left(-\infty, \frac{3}{2}\right)$ and decreasing in $\left(\frac{3}{2}, \infty\right)$ then $x=\frac{3}{2}$ is
A. point if local maxima
B. point of local minima
C. point of inflection
D. None of these

Answer: A

- Watch Video Solution

359. $\vec{a} \cdot \vec{b}=|\vec{a} \times \vec{b}|$ then $|\vec{a}-\vec{b}|$ is
A. $\sqrt{a^{2}+b^{2}+\sqrt{2} a b}$
B. $\sqrt{a^{2}+b^{2}-\sqrt{2 a b}}$
C. $\sqrt{a^{2}+b^{2}+\sqrt{2 a b}}$
D. $\sqrt{a^{2}+b^{2}-\sqrt{2} a b}$

- Watch Video Solution

360. If (α, β) is the point on $y^{2}=6 x$, that is closest to $\left(3, \frac{3}{2}\right)$ then find the value of $2(\alpha+\beta)$

- Watch Video Solution

361. If

$$
f(x)=x+1
$$

$\lim _{n \rightarrow \infty} \frac{1}{n}\left(1+f\left(\frac{5}{n}\right)+f\left(\frac{10}{n}\right)+\ldots+f\left(5\left(\frac{n-1}{n}\right)\right)\right.$

- Watch Video Solution

362. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}[[x]+\sin x] d x=$?
363. $f(x)=x^{3}-3 x^{2}-\frac{3}{2} f^{\prime}(2)+f^{\prime \prime}(1)$ is double differenciation function then find the sum of all minimas

- Watch Video Solution

364. $\operatorname{Re}\left\{(1+\cos \theta+2 \sin \theta)^{-1}\right\}=4$ then find θ

- Watch Video Solution

365. If $\triangle A B C$ is right angled triangle with a, b and c and smallest angle θ. If $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are also the sides of right angled triangle then find the $\sin \theta$

- Watch Video Solution

366. If $f(x)=\frac{5 x+3}{6 x-a}$ and $f(f(x))=x$ then value of a is

- Watch Video Solution

367. If $\log _{9} \frac{1}{2} x+\log _{9} \frac{1}{3} x+\ldots$ upto 21 terms $=504$. Find x

- Watch Video Solution

368. $\lim x \rightarrow 0 \frac{\alpha e^{x}+\beta \ln (1+x)+\gamma e^{-x}}{x \sin ^{2} x}=10$ then find $(\alpha+\beta+\gamma)$

- Watch Video Solution

369. Probability of only one of A and B is $1-k$

Probability of only one of A and C is $1-2 k$

Probability of only one of C and B is $1-k$
$P(A \cap B \cap C)=k^{2}, k \in(0,1)$ then Find $P(A \cup B \cup C)$

- Watch Video Solution

370. If $a, b, 7,10,11,15$, mean $=10$, variance $=\frac{20}{3}$ and variance is then find value of a and b

Watch Video Solution

371. $g(t)=\left\{\begin{array}{ll}\max \left(t^{3}-6 t^{2}+9 t-3,0\right) & t \in[0,3] \\ 4-t & t \in(3,4)\end{array}\right.$, find the point of nondifferentiability

Watch Video Solution

372. If element of matrix A is defined as $A=\left[a_{i j}\right]_{3 \times 3}$ where
$A= \begin{cases}(-1)^{j-i} & i<j \\ 2 & i=j, \text { then the value of }\left|3 \operatorname{Adj}\left(2 A^{-1}\right)\right| \text { is } \\ (-1)^{j+i} & i>j\end{cases}$
A. 72
B. 36
C. 108
D. 48

D Watch Video Solution

373. In a $\triangle A B C$ if $|A B|=7,|B C|=5$, and $|C A|=3$. . If the projection of
$\overrightarrow{B C}$ on $\overrightarrow{C A}$ is $\frac{n}{2}$, then the value of n is

D Watch Video Solution

374. The value of $\tan \left(2 \tan ^{-1}\left(\frac{3}{5}\right)+\sin ^{-1}\left(\frac{5}{13}\right)\right)$ is
A. $\frac{220}{21}$
B. $\frac{110}{21}$
C. $\frac{55}{21}$
D. $\frac{20}{11}$
375. The value of x satisfying the equation

$$
\log _{x+1}\left(2 x^{2}+7 x+5\right)+\log _{2 x+5}(x+1)^{2}=4 \text { is }
$$

A. -2
B. 2
C. -4
D. 4

Answer: B

- Watch Video Solution

376. If $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] B=\sum_{r=1}^{2021} A^{r}$ then value of $|B|$ is
A. 2021
B. $(2021)^{2}$
C. - 2021
D. 0

Answer: A

- Watch Video Solution

377. A:if $2+4=7$, then $3+4=8$

B:if $3+5=8$,then earth is flat
C :If A and B are true then 5+4=11
A. A is true B and C are false
B. B is true A and C are false
C. C is true B and A are false
D. B is false A and C are true

Answer: D

378. If $x=a y-1=z-2$, and $x=3 y-2=b z-2$ lie in same plane then the value of a and b is
A. $a=2, b=3$
B. $a=1, b=1$
C. $b=1, a \in R-\{0\}$
D. $a=3, b=2$

Answer: C

- Watch Video Solution

379. Two circle pass through (-1,4) and their centres lie on $x^{2}+y^{2}+2 x+4 y=4$. If r_{1} and r_{2} are maximum and minimum radii and $\frac{r_{1}}{r_{2}}=a+b \sqrt{2}$ then value of $\mathrm{a}+\mathrm{b}$ is
380. The number of solution of $\sin ^{7} x+\cos ^{7} x=1, x \in[0,4 \pi]$
A. 7
B. 11
C. 9
D. 5

Answer: D

- Watch Video Solution

381. Let S_{n} denote sum of first n-terms of an A.P where $S_{10}=530, S_{5}=140$ then find $S_{20}-S_{6}$
A. 1872
B. 1842
C. 1852
D. 1862

Answer: D

- Watch Video Solution

$$
\cos ^{-1}\left(\sqrt{x^{2}-x+1}\right)
$$

382. Find the domain of $f(x)=$

$$
\sqrt{\sin ^{-1}}\left(\frac{2 x-1}{2}\right)
$$

then $\alpha+\beta$

D Watch Video Solution

383. $11^{n}>10^{n}+9^{n}$ then number of integers satisfy the relation when $n \in\{1,2,3, \ldots 100\}$
384. How many number can be formed by using digits $0,2,4,6,8$ greater then 10000 where repetition of digits are not allowed

- Watch Video Solution

385. $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$, number of matrices ' B ' which can be formed such that $A B=B A$ where B can have elements $\{1,2,3,4,5\}$

- Watch Video Solution

386. 4 dies are rolled, outcomes of dies are filled in 2×2 matrices. Find the probability that the matrices is nonsingular and all entries are different.

- Watch Video Solution

387. If $E_{1}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b . E_{2}$ is an ellipse which touches E_{1} at the ends of major axis of E_{1} and end of major axis of E_{1} are the focii of E_{2} and the eccentricity of both the ellipse are equal then find e

- Watch Video Solution

388. Find the interval where $f(x)=\left\{\begin{array}{ll}-\frac{4}{3} x^{3}+2 x^{2}+3 x & x>0 \\ 2 x e^{x} & x \leq 0\end{array}\right.$ increasing

- Watch Video Solution

389. $\int e^{x}\left(2-x^{2}\right)$
390. $\int \frac{}{(1-x) \sqrt{1-x^{2}}} d x$

- Watch Video Solution

390. If $[x]$ denotes the greatest integer function and $\left[e^{x}\right]^{2}+\left[e^{x}+1\right]-3=0$ then $x \in$
A. $(1, e)$
B. $\left(1, \frac{1}{e}\right)$
C. $\left(\log _{e} 2, \log _{e} 3\right)$
D. $\left[0, \log _{e} 2\right)$

Answer: D

- Watch Video Solution

391. Let ω be a cube of unity. If r_{1}, r_{2}, and r_{3} be the numbers obtained on the die. Then probability of $\omega^{r_{1}}+\omega^{r_{2}}+\omega^{r_{3}}=0$ is
A. $\frac{1}{18}$
B. $\frac{1}{9}$
C. $\frac{2}{9}$
D. $\frac{1}{36}$

Answer: C

- Watch Video Solution

392. $\left(2 x^{r}+\frac{1}{x^{2}}\right)^{10}$ terms independent of x is 180 , find the value of r

- Watch Video Solution

393. If $36 x^{2}+36 y^{2}-108 x+120 y+c=0$ circle does not cut or touches the coordinate axis., : then find the range of c .
394. If $f(1)+f(2)+f(3)=3$ and $A=\{0,1,2,3, \ldots 9\}$, then find the number of bijective function $f: A \rightarrow A$ which satisfy?

Watch Video Solution

395. If a curve $y^{2}=\alpha x$ and line $2 x+y=k(\mathrm{k}<0)$, where line is a tangent to
$x^{2}-y^{2}=3$ and the curve then find the value of α
A. - 24
B. 24
C. -19
D. 19

Answer: A

396. If ' n ' is the number of solution of $z^{2}+3 \bar{z}=0$ where $z \in C$ then find
$\sum_{k=0}^{\infty} \frac{1}{n^{k}}$

- Watch Video Solution

397. The number of elements in the set $x \in R:(|x|-3)(|x+4|)=6$ is equal to
A. 3
B. 4
C. 2
D. 1

Answer: C

398. $\int_{0}^{100 \pi} \frac{\sin ^{2} x}{e\left(\frac{x}{\pi}\right)-\left[\frac{x}{\pi}\right]} d x=\frac{\alpha \cdot \pi^{3}}{1+4 \pi^{2}}, \alpha \in R$ and $[\mathrm{x}]$ is greatest integer
A. $50(e-1)$
B. $150\left(e^{-1}-1\right)$
C. $200\left(1-e^{-1}\right)$
D. $100\left(1-e^{-1}\right)$

Answer: C

Watch Video Solution

399. what is the projection of $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ on the $\vec{b}=\hat{i}+\hat{j}$

- Watch Video Solution

400. Find the value of λ and μ for which the system of equations
$x+y+z=6$
$3 x+5 y+5 z=26$
$x+2 y+\lambda z=\mu$
has no solution
A. $\lambda=2, \mu \neq 10$
B. $\lambda \neq 2, \mu=10$
C. $\lambda \neq 3, \mu=10$
D. $\lambda \neq 2, \mu \neq 10$

Answer: A

- Watch Video Solution

401. The sum of all natural number belonging to the set $\{1,2,3 \ldots 100\}$, whose H. C. F with 2304 is \qquad
A. 2449
B. 1633
C. 1449

Answer: B

- Watch Video Solution

402. $16 x^{2}-9 y^{2}+32 x+36 y-164=0$ find the focus of centroid of \triangle PSS' $^{\prime}$
where P is a point on hyperbola , $\mathrm{S}, \mathrm{S}^{\prime}$ are focus.

Watch Video Solution

403. $(p \rightarrow q) \wedge(q \rightarrow \sim p)$ is equivalent to
A. $\sim p$
B. p
C. $\sim q$
D. q
404. If $S_{3 n}=2 S_{n}$ then find the value of $\frac{S_{4 n}}{S_{2 n}}$

- Watch Video Solution

405. Area under the curve when $2 x^{2} \leq y \leq 4-2 x$

- Watch Video Solution

406. $\left(1+\frac{2}{3}+\frac{6}{3^{2}}+\frac{10}{3^{3}}+\ldots+\infty\right)^{\log _{0.25}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots+\infty\right)}$ is equal L and then find L^{2}

- Watch Video Solution

407. If the coeff. of middle term of $(1+x)^{20}$ is A and coeff. of middle term of $(1+x)^{19}$ are B and C then find the value of $\frac{A}{B+C}$

- Watch Video Solution

408. $\int_{\frac{\pi}{24}}^{\frac{5}{24}} \frac{d x}{1+\sqrt[3]{\tan 2 x}}$

- Watch Video Solution

409. $\sin x+\sin 2 x+\sin 3 x+\sin 4 x=0$. Find sum of roots that lying in $[0,2 \pi]$

- Watch Video Solution

410. In class 12 there are 8 students. In class 11 there are 6 students . In class 10 there are 5 students. Total ways of selecting 10 students, such that there are at least 2 students from each class and at most 5 students from 11 students of Class 10 and 11 combined is 100 k . Then find value of k
411. For a parabola, it's vertex is at 2 units from the origin. focus is at distances of 4 unit from the origin. A pair of tangents are drawn from origin to the parabola which meet it at P and Q . Find the area of $\triangle O P Q$ (O:origin)
A. 16
B. 32
C. $16 \sqrt{2}$
D. $32 \sqrt{2}$

Answer: A

- Watch Video Solution

412. If $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through $\left(\sqrt{\frac{3}{2}}, 1\right), e=\frac{1}{\sqrt{3}}$, circle centred at one of the focus and radius $\frac{2}{\sqrt{3}}$. these ellipse and circle intersect at two points. Find square of the distance between the two points is
A. $\frac{4}{3}$
B. $\frac{2}{3}$
C. $\frac{16}{3}$
D. $\frac{32}{3}$

Answer: C

- Watch Video Solution

413. Let $S=\left\{n \in N,\left[\begin{array}{ll}0 & i \\ i & 0\end{array}\right]^{n}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \forall a, b, c, d \in R\right.$. Find the number of 2-digit numbers in S
414. If $\left[\frac{x+1}{x^{\frac{2}{3}}+1-x^{\frac{1}{3}}}-\frac{x-1}{x+\sqrt{x}}\right]^{10}$ then find the independent of x

- Watch Video Solution

415. $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] a, b, c, d \in\{-3,-2,-1,0,1,2,3\}, f(A)=\operatorname{det}(A)$ then find the probability that $f(A)=15$

- Watch Video Solution

416.

$$
\begin{aligned}
& \text { 416. } \vec{p}=3 \hat{i}+2 \hat{j}+\hat{k}, \vec{q}=2 \hat{i}+\hat{j}+\hat{k}, \vec{r} \text { is } \perp \text { to bo } \\
& \vec{p}+\vec{q} \text { and }(\vec{p}-\vec{q}),|\vec{r}|=\sqrt{3} . \vec{r}=a \hat{i}+b \hat{j}+c \hat{k} \text {. then find }|\vec{a}|+|\vec{b}|+|\vec{c}| \text {. }
\end{aligned}
$$

- Watch Video Solution

417. $\frac{1}{a-b}+\frac{1}{a-2 b}+\frac{1}{a-3 b}+\ldots+\frac{1}{a-n b}=\alpha \cdot n+\beta n^{2}+\gamma \cdot n^{3}, \frac{b}{a}$ is smaller then $\left(\frac{b}{a}\right)^{3}$ and other higher powers are neglected . then find y

(Watch Video Solution

418. A spherical balloon of radius 16 m subtends 60° at eye of an observer on the ground. The angle of elevation of centre from the same point observation if 75°. Find the height of top most point of the balloon

- Watch Video Solution

419. $f(x)=\left\{\begin{array}{ll}\mu & x=2 \\ e\left(\frac{\tan (x-2)}{x-[x]}\right) & x<2 \\ \frac{\left|x^{2}-5 x+6\right| \lambda}{\left(-x^{2}+5 x-6\right) \cdot \mu} & x>2\end{array} f(x)\right.$ is continuous then find the value of
$\mu+\lambda$
420. if α and β are the roots of equation
$x^{2}+5 \sqrt{2} x+10=0, P_{n}=\alpha^{n}-\beta^{n}, \frac{P_{17} P_{20}+5 \sqrt{2}}{P_{18} P_{19}+5 \sqrt{2}} \frac{P_{17} P_{19}}{P_{18}^{2}}=?$

- Watch Video Solution

421. 9 different balls are to be arranged in 4 different boxes number
B_{1}, B_{2}, B_{3} and B_{4}. If the probability that B_{3} has exactly three balls is
$k\left(\frac{3}{4}\right)^{9}$ then find k

- Watch Video Solution

422. If $\frac{\sin x}{a}=\frac{\cos x}{b}=\frac{\tan x}{c}=k$ and $b c+\frac{1}{c k}+\frac{a k}{1+b k}=$?

- Watch Video Solution

423. $|z-(3 i+2)| \leq 2$ then find the min value of $|2 z-6+5 i|$

- Watch Video Solution

424. The number of real solution of equation
$e^{6 x}+e^{4 x}+2 e^{3 x}+12 e^{2 x}+e^{x}-1=0$
A. 0
B. 1
C. 6
D. 8

Answer: B

Watch Video Solution
425. A hyperbola with equation $\frac{(x-1)^{2}}{16}-\frac{(y+2)^{2}}{9}=1$ is given a triangle is formed with two vertices as the focus of the hyperbola and the third vertix lies on hyperbola . the locus of centroid of triangle is
A. $16(x-1)^{2}-9(y+2)^{2}=16$
B. $9(x-1)^{2}-16(y+2)^{2}=16$
C. $9(x-1)^{2}+16(y+2)^{2}=16$
D. $16(x-1)^{2}+9(y+2)^{2}=16$

Answer: B

D Watch Video Solution

426. If $A=\left[\begin{array}{cc}1 & 0 \\ \frac{1}{2} & 1\end{array}\right]$ then find the value of A^{50}
427. $x^{2}-|x|-12=0$ then find the number of solution
A. 1
B. 2
C. 3
D. 4
428. $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{k}, c \hat{i}+c \hat{j}+b \hat{k}$ are coplaner vector then find the relation between a, b, c and find value of c

- Watch Video Solution

429. If $|\vec{a}|=2,|\vec{b}|=5,|\vec{a} \times \vec{b}|=8$ then find value of $|\vec{a} \cdot \vec{b}|$
430. $\int_{-1}^{1} \log \left(x+\sqrt{x^{2}+1}\right) d x$

(D) Watch Video Solution

431. If $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$ then $\left|\begin{array}{ccc}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0$ then find the number of solution
432. If. ${ }^{n} P_{r}={ }^{n} P_{r+1},{ }^{n} C_{r}={ }^{n} C_{r-1}$ then find value of r

- Watch Video Solution

433. Find the value of $\cot \left(\frac{\pi}{24}\right)$
434. If $\mathrm{a}+\mathrm{b}+\mathrm{c}=1, \mathrm{ab}+\mathrm{bc}+\mathrm{ca}=-2$ and $\mathrm{abc}=1$ then find the value of $a^{4}+b^{4}+c^{4}$

- Watch Video Solution

435. $y=p(x)$ and $y=q(x)$ are lines can be written as $\left(y-p_{x}\right)\left(y-q_{x}\right)=0$ then find angle bisector of $x^{2}-4 x y-5 y^{2}=0$

- Watch Video Solution

436. Equation of circle $\operatorname{Re}\left(z^{2}\right)+2(\operatorname{img}(z))^{2}+2 \operatorname{Re}(z)=0$ where $z=x+i y \cdot \mathrm{~A}$ line passes through the vetex of parabola $x^{2}-6 x+y+13=0$ and center of circle, then the y intercept of the line is \qquad ?

- Watch Video Solution

437. If $f(x)= \begin{cases}5 x+1 & x<2 \\ \int_{0}^{x}((5+|1-t|)) d t & x \geq 2\end{cases}$
A. $f(x)$ is differentiable $\forall x \in R$
B. $f(x)$ continuous at $x=2$ but not differentiable at $x=2$
C. $f(x)$ continuous at $x=2$ but not differentiable at $x=1$
D. None of these

Answer: B

- Watch Video Solution

438. $P(0), P(J)=\left(\frac{1}{3}\right)^{j}, j=1,2,3$ then find the value of $P(J)$ when J is even and positive integer
A. $\frac{1}{8}$
B. $\frac{1}{9}$
C. $\frac{1}{64}$
D. $\frac{1}{2}$

Answer: A

- Watch Video Solution

439. Find the value of $\sum_{n=8}^{100}\left[\frac{(-1)^{n} \cdot n}{2}\right]$ where $[x]$ greatest integer function

- Watch Video Solution

440. $\frac{x-k}{1}=\frac{y-2}{2}=\frac{z-3}{1}, \frac{x+1}{1}=\frac{y+2}{2}=\frac{z+3}{1}$ coplanar then find k

- Watch Video Solution

441. The number of irrational terms in $\left(2^{\frac{1}{3}}+3^{\frac{1}{4}}\right)^{12}$
442. " We will play only if weather is good and ground isn't wet" Find the Negation of above statement

Watch Video Solution

443. Which of the following value is just greater than $\left[1+\frac{1}{10^{100}}\right]^{10^{100}}$
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

444. If a rectangle is inscribed in a equilateral triangle of side $2 \sqrt{2}$ then side of maximum area of rectangle is

- Watch Video Solution

445. If the first sample A of 100 items has the mean 15 and standard deviation 3 and second sample B has 150 items. If the combined mean and standard deviation of itmes of both the sample is 15.6 and $\sqrt{13.44}$ then then standard deviation of items of sample B is

- Watch Video Solution

446. If the function $f(x): A \rightarrow B$ and $g(x): B \rightarrow C$ are defined such that $(g(f(x)))^{-1}$ exist then $f(x)$ and $g(x)$ are
A. one-one and onto
B. many-one and onto
C. one-one and into
D. many-one and into

Answer: A

- Watch Video Solution

447. A coin is tossed n times. If the probability of getting at least one
head is greater than 0.9 then the minimum vaue of n is
A. 3
B. 5
C. 4
D. 2

Answer: C

448. If \vec{x} and \vec{y} are two vector such that $|\vec{x}|=|\vec{y}|$ and $|\vec{x}-\vec{y}|=n|\vec{x}+\vec{y}|$ then angle between \vec{x} and \vec{y}
A. $\cos ^{-1}\left(\frac{1-n}{1+n}\right)$
B. $\cos ^{-1}\left(\frac{1+n^{2}}{1-n^{2}}\right)$
C. $\cos ^{-1}\left(\frac{1+n}{n-2}\right)$
D. $\cos ^{-1}\left(\frac{1-n^{2}}{1+n^{2}}\right)$

Answer: D

- Watch Video Solution

449. If . ${ }^{n} C_{0}+3 .{ }^{n} C_{1}+5^{n} C_{2}+7^{n} C_{3}+\ldots$ till $(n+1)$ term $=2^{100} \cdot 101$ then
the value of $2\left[\frac{n-1}{2}\right]$ where [.] is G.I.I)
B. 97
C. 96
D. 100

Answer: A

D Watch Video Solution

450. If $y=f(x)$ is the solution of DIE $x d y=\left(y+x^{3} \cos x\right) d x$ and $f(\pi)=0$ then $f\left(\frac{\pi}{2}\right)$ is
A. $\frac{\pi^{2}}{4}+\frac{\pi}{6}$
B. $\frac{\pi^{2}}{4}+\frac{\pi}{2}$
C. $\frac{\pi^{2}}{6}+\frac{\pi}{4}$
D. $\frac{\pi^{2}}{6}+\frac{\pi}{6}$

Answer: B
451. If $f(x)=\frac{P(x)}{\sin (x-2)} f(x)$ is continous at $x=2$ and $f(2)=7 . P(x)$ is polynomial where $P^{\prime \prime}(x)$ is constant and $P(3)=9$ then find the value of $P(5)$.

- Watch Video Solution

452. $\left(2+\frac{x}{3}\right)^{n}$ if the coefficient of x^{7} and x^{8} is same then find value of n

(Watch Video Solution

453. Let f be defined as
$f(x)= \begin{cases}(1+|\sin x|)^{\frac{3 a}{|\sin x|}}, & -\frac{\pi}{4}<x<0 \\ b, & x=0 \\ e^{\cot 4 x / \cot 2 x}, & 0<x<\frac{\pi}{4}\end{cases}$
If f is continuous at $\mathrm{x}=0$, then the value of $6 a+b^{2}$ is equal to

Watch Video Solution

454. If the coefficient of x^{7} in $\left(x^{2}+\frac{1}{b x}\right)^{11}$ is equal to coefficient at x^{-7} in $\left(x+\frac{1}{b x^{2}}\right)^{11}$ Then find value of b

- Watch Video Solution

455. Find the probability that two digit number of the form $2^{n}-2$ is divisible by 3

- Watch Video Solution

456. $\lim n \rightarrow \infty \frac{1}{n} \sum_{j=0}^{n} \frac{(2 j-1)+8 n}{(2 j-1)+4 n}$

- Watch Video Solution

457. If $\sin \theta+\cos \theta=\frac{1}{2}$ then find the value of $16(\sin 2 \theta+\cos 4 \theta+\sin 6 \theta)$

- Watch Video Solution

458. $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{d x}{\left(1+e^{x \cos x}\right) \cdot\left(\sin ^{4} x+\cos ^{4} x\right)}$

- Watch Video Solution

459. If α, β are root of $x^{2}+20^{\frac{1}{4}} x+\sqrt{5}=0$ then find the value of $\alpha^{8}+\beta^{8}$
460. $A=\left[\begin{array}{cc}1 & 2 \\ -4 & 1\end{array}\right], A^{-1}=\alpha I+\beta A$ then find the value of $\alpha+\beta$

- Watch Video Solution

461. If $\lim x \rightarrow 2 \frac{x^{2} f(2)-4 f(x)}{x-2}$. Given that $f(2)=4, f(2)=1$

- Watch Video Solution

462. Find the value of $(\vec{a}+\vec{b}) \times[\vec{a} \times((\vec{a}-\vec{b}) \times \vec{b})]$

- Watch Video Solution

463. $\sec y\left(\frac{d y}{d x}\right)=\sin (x+y)+\sin (x-y)$ if $y(0)=0$ then find $5 y^{\prime}\left(\frac{\pi}{2}\right)$

- Watch Video Solution

464. Find the area bounded by $y=\max \{0, \ln x\}$ and $y<2^{x}$ where 1
$\overline{2}<x<1$

- Watch Video Solution

465. For the given data $6,10,7,13, a, 12, b, 12$ if the mean is 9 , variance is is $\frac{37}{4}$ then find the value of $(a-b)^{2}$

- Watch Video Solution

466. $\log _{3} 2, \log _{3}\left(2^{x}-5\right), \log _{3}\left(2^{x}-\frac{7}{2}\right)$ are in A.P. then the value of $x=$?

- Watch Video Solution

467. Let $f(x)=\left|\begin{array}{ccc}\sin ^{2} x & -2+\cos ^{2} x & \cos 2 x \\ 2+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & 1+\cos 2 x\end{array}\right|, x \in[0, \pi]$ then the maximum value of $f(x)$ is

- Watch Video Solution

468. From the point $(-1,1)$, two tangents are drawn to $x^{2}+y^{2}-2 x-6 y+6=0$ that meet the circle at $\mathrm{A} \& \mathrm{~B} . \mathrm{A}$ point D on the circle such that $A D=A B$ then find the area of $\triangle A B D$
A. 2
B. 4
C. $2+\sqrt{2}$
D. 1

- Watch Video Solution

469. $f(x)=\min \{x-[x], 1+[x]-x\} \mathrm{x}$ lies in $[0,3], p$ is the number of points where it is discontinous q is the numbers of points where it is not differentiable . then find the value of $p+q$
470. Circle with center (2,3) passes through origin . P , Q are two points on the circle such that OC is perpendicular to both CP and CQ then find the point P and Q

- Watch Video Solution

471. $\ln \left(\frac{d y}{d x}\right)=3 x+4 y$ and $y(0)=0$. then find $y\left(-\frac{2}{3} \ln 2\right)$

- Watch Video Solution

472. Let a plane p passes through the point $(3,7,-7)$ and contain the line,$\frac{x-2}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$, or distance of the plane p from the origin is d then d^{2} is

- Watch Video Solution

473. $((p \vee q) \wedge \sim p) \rightarrow q$
A. $(p \vee q)$
B. $(p \wedge q)$
C. $\sim p \vee q$
D. $p \wedge \sim q$

Answer: A

- Watch Video Solution

474. $\log _{5} \log _{4} \log _{3}\left(18 x-77-x^{2}\right)$ has domain (a, b) then
$\int^{b} \frac{\sin ^{3} x}{\sin ^{3} x+\sin ^{3}(a+b-x)} d x$

- Watch Video Solution

475.

$$
S_{1}=\left\{z:|z-3-2 i|^{2}=8\right\}, S_{2}=\{z:|z-\bar{z}|=8\} \text { and } S_{3}=\{z: r e(z) \geq 5\} \text { then } S_{1} \cap
$$ has

A. infinite many element
B. only one element
C. No element
D. two element

Answer: B

- Watch Video Solution

476. If $e^{-x} \int_{3}^{x}\left\{3 t^{2}+2 t+4 f^{\prime}(t)\right\} d t=f(x)$ and $f^{\prime}(4)=\frac{\alpha e^{\beta}-224}{\left(e^{\beta}-4\right)^{2}}$ then value of $(\alpha+\beta)$

- Watch Video Solution

477. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{c}=4 \hat{i}+3 \hat{j}+\hat{k}$ then value of

$$
((\vec{a}+\vec{b}) \times(\vec{a}-(\vec{a}-\vec{b}) \times \vec{b}))) \times \vec{c} \text { is }
$$

A. $30 \hat{i}-34 \hat{j}+36 \hat{k}$
B. $30 \hat{i}+34 \hat{j}+36 \hat{k}$
C. $30 \hat{i}+34 \hat{j}-36 \hat{k}$
D. None of these

Answer: A

- Watch Video Solution

478. $\lim x \rightarrow 0 \frac{x}{(1+\sin x)^{\frac{1}{8}}-(1-\sin x)^{\frac{1}{8}}}=$?
A. -8
B. -4
C. 0
D. 4

Answer: B

479. If $\tan \left(\frac{\pi}{9}\right), x, \tan \left(\frac{7 \pi}{18}\right)$ are in A.P. and $\tan \left(\frac{\pi}{9}\right), y, \tan \left(\frac{5 \pi}{18}\right)$ are also in A.P then find $|x-2 y|$
A. 0
B. 4
C. 1
D. 3

Answer: A

- Watch Video Solution

480. $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$, then sum of all elements in $A+A^{2}+A^{3}+\ldots+A^{26}$ is
481. Find the area between the parabola $y=x^{2}$ and a line $y+x=2$

- Watch Video Solution

482. $e^{4 x}-e^{3 x}-4 e^{2 x}-e^{x}+1=0$ then the number of solution of equation is

- Watch Video Solution

483. A and B are square matrices of same order such that $A^{5}=B^{5}$ and $A^{2} B^{3}=B^{2} A^{3}$. If $A^{2}-B^{2}$ invertible then $\operatorname{det}\left(A^{3}+B^{3}\right)=$?

- Watch Video Solution

484. For an ellipse E, centre lies at the point ($3,-4$), one of the foci is at $(4,-4)$ and one of vertices is at $(5,-4)$. If the equation of tangent on the ellipse E is $m x-y=4(m>0)$. then find the value of $5 m^{2}$

Watch Video Solution

485. $f(x)=\int_{a}^{x} g(t) d t$ and $f(x)$ has 5 roots between (a, b). Find the number of roots of $g(x) g^{\prime}(x)$ between (a, b)

- Watch Video Solution

486. If a circle touched y-axis at $(0,6)$ and x-intercept is $6 \sqrt{5}$ then find the value of radius of circle

- Watch Video Solution

487. $f(x)=\left\{\begin{array}{cc}\max (\sin t) & 0 \leq t \leq x \\ 2+\cos x & x \in[0, \pi]\end{array}\right.$ Find number of points where $f(X)$ is not continuous and differentiable

- Watch Video Solution

488. $\alpha=\min \left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$
$\beta=\max \left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$
$8 x^{2}+b x+c=0$ are the root of $\alpha^{\frac{1}{5}}$ and $\beta^{\frac{1}{5}}$ then find $c-b$

- Watch Video Solution

489. $f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}$ discontinuous at $x=\pi$. Find $f(\pi)$ so that $f(x)$ is continuous $x=\pi$

- Watch Video Solution

490. Two sides of a parallelogram having equation $4 x+5 y=0$ and $7 x+2 y=0$. One of the diagonal is $11 x+7 y=9$. Then the other diagonal will surely passes through
A. $(2,2)$
B. $(1,3)$
C. $(1,2)$
D. none

- Watch Video Solution

491. Three vectors $\vec{a}, \vec{b}, \vec{c}$ with magnitude $\sqrt{2}, 1,2$ respectively follows the relation $\vec{a}=\vec{b} \times(\vec{b} \times \vec{c})$ the acute angle between the vectors \vec{b} and $\vec{c} i s \theta$. then find the value of $1+\tan \theta$ is

- Watch Video Solution

492. If $\left(x+x^{3}\right) d y=\left(y+y x^{2}+x^{3}\right) d x$ and $y(1)=0$ then $y(2)$ is
A. $\ln \left(\frac{17}{2}\right)$
B. 0
C. $\ln \left(\frac{5}{2}\right)$
D. $\ln \left(\frac{2}{5}\right)$

Answer: C

- Watch Video Solution

493. The point $P(a, b)$ undergoes following transformation to a new co-
ordinate $P^{\prime}\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
(i) Reflection about $y=x$
(ii) Translation through 2 unit in the positive direction of x -axis
(iii)Rotation through an angle $\frac{\pi}{4}$ in anti-clockwise sense about the origin Then the value of $2 a-b$ is
A. 1
B. 7
C. 4
D. 9

- Watch Video Solution

494. For what value of x is the ninth term in the expansion of $\left.\left(3^{\log _{3} \sqrt{25^{x-1}+7}}+3^{-\frac{1}{8} \log _{3}\left(5^{x-1}+1\right.}\right)\right)^{10}$ is equal to 180
A. -1
B. 1
C. 0
D. 2

Answer: B

Watch Video Solution
495. The sum of squares of distance of point P from $(0,0)(0,1)(1,0),(1,1)=18$ then locus is at circle of diameter then find d^{2}

Watch Video Solution

496. $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{k}, \vec{a} \times \vec{c}=\vec{b}, \vec{a} \cdot \vec{c}=3$ then Find $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
A. -2
B. 2
C. 6
D. -6

Answer: A

497. A Circle centre $=(-15,0)$ and radius $=\frac{15}{2}$. Chord to circle passes through $(-30,0) \&$ tangent to $y^{2}=30 x$. Length of chord $=$

- Watch Video Solution

498. Ellipse $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ then tangent at $\mathrm{P}(2 n d$ quard) perpendicular to $x+2 d y=0$ eccentricity $=\mathrm{e}, \mathrm{SS}$ ' is foci . then find $\left(5-e^{2}\right) \cdot \Delta S P S^{\prime}$

- Watch Video Solution

499. If $\int_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}}\left(\left(\frac{x-1}{x+1}\right)^{2}+\left(\frac{x+1}{x-1}\right)^{2}-2\right)^{\frac{1}{2}} d x$

- Watch Video Solution

500. If $\ln (x+y)=4 x y$. find $\frac{d^{2} y}{d x^{2}}$
at $x=0$
501. Mean and standard deviation of 20 observations are 10 and 2.5. It is observed that one entery was taken as 25 instead of 35 , then correct mean and variance is ?
A. $10.5,26$
B. $10.5,25$
C. 11,26
D. 11,25

Answer: A

- Watch Video Solution

502. Find $\sum r^{2} .{ }^{20} C_{r}$
A. 2^{20}
B. 2^{21}
C. 210×2^{19}
D. 2^{19}

Answer: C

- Watch Video Solution

503. $a+a r+a r^{2}+\ldots+\infty=15$
$a^{2}+(a r)^{2}+\left(a r^{2}\right)^{2}+\ldots+\infty=150$.
Find $a r^{2}+a r^{4}+a r^{6}+\ldots \infty$
A. $\frac{1}{2}$
B. $\frac{2}{5}$
C. $\frac{1}{6}$
D. None
504. Find 3 digit number using digit $0,1,2,3,4,5$ where repetation is not allowed and number formed should be even number

- Watch Video Solution

505. $f(x)=\cos \left(2 \tan ^{-1}\left(\sin \left(\cot ^{-1} \sqrt{\frac{1-x}{x}}\right)\right)\right)$ then
A. $(1-x)^{2} \cdot f(x)-2(f(x))^{2}=0$
B. $(1-x)^{2} \cdot f^{\prime}(x)+2(f(x))^{2}=0$
C. $(1+x)^{2} \cdot f(x)-2(f(x))^{2}=0$
D. $(1+x)^{2} \cdot f(x)+2(f(x))^{2}=0$

Answer: B

506. Find the value of $\frac{1}{1+x}+\frac{2}{1+x^{2}}+\frac{2^{2}}{1+x^{4}}+\ldots+\frac{2^{100}}{1+x^{200}}$

- Watch Video Solution

507. In hospital 89% has disease A and 98% has disease $B, K \%$ is the numbber of patient who has both, then K can't be the subset of

- Watch Video Solution

508. $P(A)=p, P(B)=2 p, P($ exactly one out of A and B occurs $)=\frac{5}{9} \quad$ then what will be maximum value of p ?

- Watch Video Solution

509. $S=\left\{3 x^{2} \leq 4 y \leq 6 x+2 y\right\}$ find the area

- Watch Video Solution

510. $(1+y) \tan ^{2} x+\tan x \cdot \frac{d y}{d x}+y=0$.If $\lim x \rightarrow 0^{+} x \cdot y(x)=1$ then $\left(\frac{\pi}{4}\right)=$?
A. $\frac{\pi}{4}-1$
B. $\frac{\pi}{4}$
C. $-\frac{\pi}{4}$
D. None

- Watch Video Solution

511. Let $\operatorname{Arg}\left(\frac{z+1}{z-1}\right)=\frac{\pi}{4}$ then locus of z be a circle whose radius and centre respectively are ?
A. $\sqrt{2},(0,1)$
B. $\sqrt{2},(0,-1)$
C. $\sqrt{2},(0,0)$
D. 1, $(1,1)$

Answer: B

- Watch Video Solution

512. If A and B are two square matrices of order 2×2 such that
$A=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ i & 1\end{array}\right]($ where $i=\sqrt{-1})$ and $A^{T} B^{2021} A=Q$ then value of $A Q A^{T}$ is
A. $\left[\begin{array}{ll}1 & 0 \\ i & 1\end{array}\right]$
B. $\left[\begin{array}{cc}1 & 0 \\ 2021 i & 1\end{array}\right]$
C. $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}1 & 0 \\ 2020 i & 1\end{array}\right]$

Answer: B

513. Minimum value of n for which $\frac{(2 i)^{n}}{(1-i)^{n-2}}$ is positive integer

- Watch Video Solution

514. Angle between two body diagonal is $\cos ^{-1}\left(\frac{1}{5}\right)$ then find height h $\underbrace{}_{10} \underbrace{l}_{10}$

- Watch Video Solution

515. $(\sqrt{3}+i)^{100}=2^{99}(p+i q)$ then p and q are the roots of which of the following quadratic equation?
A. $x^{2}-(\sqrt{3}+1) x-\sqrt{3}=0$
B. $x^{2}-(\sqrt{3}-1) x-\sqrt{3}=0$
C. $x^{2}+(\sqrt{3}+1) x+\sqrt{3}=0$
D. None

Answer: B

- Watch Video Solution

516. $2 \sin \left(\frac{\pi}{8}\right) \sin \left(\frac{2 \pi}{8}\right) \sin \left(\frac{3 \pi}{8}\right) \sin \left(\frac{5 \pi}{8}\right) \sin \left(\frac{6 \pi}{8}\right) \sin \left(\frac{7 \pi}{8}\right)=?$

- Watch Video Solution

517. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+\sin ^{2} x}{1+\pi^{\sin x}} d x=$

- Watch Video Solution

518. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]=A$ then $A^{2025}-A^{2020}=$
A. A^{5}
B. A^{6}
C. $A^{6}-A$
D. $A^{5}-A$

Answer: C

- Watch Video Solution

519. α, β are roots of $x^{2}-x+2 \lambda=0$ and α, γ are roots of $3 x^{2}-10 x+27 \lambda=0$. Find the value of $\frac{\beta \gamma}{\lambda}=$

Watch Video Solution

520. $f(x)=\left(\frac{2}{x}\right)^{x^{2}}$. Find maximum value of $f(x)$.
521. $\lim _{x \rightarrow 2} \sum_{n=1}^{9} \frac{x}{n(n+1) x^{2}+2(2 n+1) x+4}$

D Watch Video Solution

522. Find locus of mid point of chord of $x^{2}-y^{2}=4$ such that this chord touches $y^{2}=8 x$

- Watch Video Solution

523. $\sum_{r=1}^{9} \tan ^{-1}\left(\frac{1}{2 r^{2}}\right)=$

- Watch Video Solution

524. If the line $x=2 y$ touches circle C at $(2,1) \& C$ cuts $C_{1}=x^{2}+y^{2}+2 y-5=0$ such that common chord is diameter of C_{1}. Find diameter of C .
525. $\int_{0}^{5} \frac{x+[x]}{e^{x-[x]}} d x=\alpha e^{-1}+\beta \operatorname{then}(\alpha+\beta)^{2}=$?

- Watch Video Solution

526. $a_{1}, a_{2}, a_{3}, a_{4} \ldots a_{10}$ are in A.P with $\mathrm{d}=-3$
$b_{1}, b_{2}, b_{3}, b_{4} \ldots b_{10}$ are in G.P , with $r=2$
$C_{k}=a_{-} k+b_{k}$ wherek $\in(1,10)$
$C_{2}=12, C_{3}=13$ then $\sum_{k=1}^{10} C_{k}$

- Watch Video Solution

527. If $2 x^{2} d y+\left(e^{y}-2 x\right) d x=0$ and $y(e)=1$ then find the value of $y(1)$
A. $\ln 2$
B. 2
C. 0
D. $\ln 3$

Answer: A

- Watch Video Solution

528. If A dice is rolled till 6 comes, then probability of $P\left(\frac{x \geq 5}{x \geq 2}\right)$ is
A. $\frac{1}{6}$
B. $\frac{24}{36}$
C. $\frac{25}{36}$
D. $\frac{18}{36}$

Answer: C

529. The mean and variance of the 4 observations $3,7, x, y($ where $x>y)$ is 5 and 10 respectively . the mean of the observation $4+x+y, 7+x, x+y, x-y$ will be
A. 10
B. 12
C. 8
D. 14

Answer: B

- Watch Video Solution

530. Let the plane P passes througn the point $(1,2,3)$ and it contains the line of intersection of $\vec{r} \cdot(\hat{i}+\hat{j}+4 \hat{k})=16 \operatorname{and} \vec{r} \cdot(-\hat{i}+\hat{j}+\hat{k})=6$. Then which of the following point does not lie on P?
B. $(-4,3,5)$
C. $(8,-5,1)$
D. $(-8,8,5)$

Answer: D

- Watch Video Solution

531. If the function $f(x)=2 x^{3}-6 x^{2}-18 x$ has local maxima at $x=a$ and local minima at $x=b$ and the area bounded by $y=f(x)$ from $x=a$ to $x=b$ is A. Then find the value of $4 A$

- Watch Video Solution

532. $I=\int_{6}^{16} \frac{\ln x^{2}}{\ln x^{2}+\ln (x-22)^{2}} d x$?

- Watch Video Solution

533. $I=\int \frac{d x}{\left(x^{2}+x+1\right)^{2}}=A_{\tan ^{-1}}\left(\frac{2 x+1}{\sqrt{3}}\right)+B \frac{2 x+1}{x^{2}+x+1}$ then Find the value of A and B

- Watch Video Solution

534. If $\frac{z+i}{z+2 i}$ is purely real then find the locus of z

- Watch Video Solution

20
535. $\sum_{k=0}\left(\cdot{ }^{20} C_{k}\right)^{2}=$?

- Watch Video Solution

536. $A(0,6)$ and $B(2 t, 0)$, where t is a parameter midpoint of A and B is M. perpendicular bisector of $A B$ cuts y-axis at C then Find the locus of midpoint of MC
537. A dice has probability of occurence of a number $\left(\frac{1}{6}+x\right)$ and the number opposite to it on dice is $\left(\frac{1}{6}-x\right)$ and the rest of the number has probability $\frac{1}{6}$. The probability that when the dice is rolled twice and the sum 7 is $\frac{13}{96}$ then find the value of x

- Watch Video Solution

538. If $u(n)=\prod_{r=0}^{n}\left(1+\frac{r^{2}}{n^{2}}\right)^{r}$ then $\lim n \rightarrow \infty(u)^{\frac{-4}{n^{2}}}$

- Watch Video Solution

539. $\mathrm{P}(2,-4)$ is a point on $y^{2}=8 x$. Tangent and normal at P cuts directrix at A and B respectively. If $A B P Q$ is a square then find the sum of coordinates of Q .
540. If α and β are the roots of $x^{2}+b x+c=0$ Find

$$
e^{2\left(x^{2}+b x+c\right)-1-2\left(x^{2}+b x+c\right) ~}
$$

$\lim x \rightarrow \beta$

$$
(x-\beta)^{2}
$$

- Watch Video Solution

541. $\left(\sin ^{-1} x\right)^{2}-\left(\cos ^{-1} x\right)^{2}=a$ for $o<x<1$ find $2 x^{2}-1$
A. $\sin \left(\frac{4 a}{\pi}\right)$
B. $\sin \left(\frac{2 a}{\pi}\right)$
C. $\cos \left(\frac{4 a}{\pi}\right)$
D. $\cos \left(\frac{2 a}{\pi}\right)$

Answer: A

542. If $\frac{\sin A}{\sin B}=\frac{\sin (A-C)}{\sin (C-B)}$ then
A. b^{2}, c^{2}, a^{2} are in A.P
B. a^{2}, b^{2}, c^{2} are in A.P
C. c^{2}, b^{2}, a^{2} are in A.P
D. none

Answer: A

- Watch Video Solution

543. Variance of 1 st n natural number $1,2,3, \ldots n$ is 14 then n is

- Watch Video Solution

544. Find the value of $\frac{3}{2} x^{2}+\frac{5}{3} x^{3}+\frac{7}{4} x^{4}+\ldots+\infty$ if $0<x<1$
545. If $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{4 a^{2}}=1$ and minimum area with coordinate axes of tangent is $K a b$. then the value of K is

- Watch Video Solution

546. If $2 x-y-z=3, x+y-2 z=\alpha, 3 x+3 y-\beta z=3$ has infinite many solution then find the value of $\alpha+\beta-\alpha \beta$

- Watch Video Solution

547. A wire of length 20 is cut into two parts one is made into regular hexagon of side a and other to square. Find a if combined area of square and regular hexagon is minimum

- Watch Video Solution

548. If $x^{2}+y^{2}+p x+y(1-p)=0$ is the equation of circle $r \in(0,5], q=p^{2}$ then number of integral value of (p, q) satisfy is
A. 16
B. 14
C. 19
D. 21

Answer: B

- Watch Video Solution

549. Find $y(\pi)$ if $y(0)=7$ and $\frac{d y}{d x}=2(y-2 \sin x-10) x+2 \cos x$

- Watch Video Solution

 then find the value of x and y
A. $x=10^{5}, y=8$
B. $x=10^{6}, y=9$
C. $x=10^{6}, y=8$
D. $x=10^{5}, y=9$

Answer: B

Watch Video Solution

551. Number of distinct real roots of equation $3 x^{4}+4 x^{3}-12 x^{2}+4=0$

D Watch Video Solution

552. If $A=\left[\begin{array}{cc}0 & 2 \\ x & -1\end{array}\right]$ and $A\left(A^{3}+3 I\right)=2 I$ then find value of x

- Watch Video Solution

553. Find the equation if $\frac{d y}{d x}+\frac{y}{x}=x^{2}$ passes through point $(-2,2)$

- Watch Video Solution

554. If $y^{\frac{1}{4}}+y^{-\frac{1}{4}}=2 x$ be a curve satisfying the differential equation $\frac{d^{2} y}{d x^{2}}\left(x^{2}-1\right)+\beta x \frac{d y}{d x}+\alpha y=0$ then ordered pair (α, β) is
A. (16,-1)
B. $(-16,1)$
C. (4,-1)
D. $(4,1)$

Answer: B

Watch Video Solution

555. A five digit number is formed by using the digit $\{1,2,3,4,5,6\}$. Find the total number of such numbers which are divisible by 55
A. 9
B. 10
C. 11
D. 12

Answer: D

- Watch Video Solution

556. Let $A=\{x:|x-2|>1\}, B=\left\{x: \sqrt{x^{2}-3}>1\right\}$ and $C=\{x:|x-4| \geq 2\}$. If the number of integeral value in $(A \cap B \cap C)^{\prime} \cap Z$ (where Z is set of integers) is k, then the value of k is
A. 7
B. 8
C. 9
D. 6

Answer: B

- Watch Video Solution

557. Let $\vec{A}=\hat{i}+\hat{5} j+\alpha \hat{k}, \vec{B}=\hat{i}+3 \hat{j}+\beta \hat{k}, \vec{C}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $|\vec{B} \times \vec{C}|=5 \sqrt{3}$. If \vec{A} is perpendicular to \vec{B} then the maxmimum value of $|\vec{A}|^{2}$ is

- Watch Video Solution

558. $\{(p \wedge(p \rightarrow q)) \wedge(q \rightarrow r)\} \rightarrow r$ is equal to
A. $q \rightarrow \sim r$
B. $p \rightarrow \sim r$
C. fallacy
D. tautology

Answer: D

- Watch Video Solution

559. The distance of the point ($2,1,-3$) parallel to the vector $(2 \hat{i}+3 \hat{j}-6 \hat{k})$ from the plane $2 x+y+z+8=0$ is

- Watch Video Solution

560. If point (x, y) satisfy the relation $x^{2}+4 y^{2}-4 x+3=0$ then
A. $x \in[1,3], y \in\left[-\frac{1}{3}, \frac{1}{3}\right]$
B. $x \in[1,3], y \in[1,3]$
C. $x \in[1,3], y \in\left[-\frac{1}{2}, \frac{1}{2}\right]$
D. $x \in[-2,2], y \in[-1,1]$

Answer: C

- Watch Video Solution

561. value of $\int_{0}^{1} \cot ^{-1}\left(\frac{\sqrt{1+\sin x}+(\sqrt{1-\sin x})}{(\sqrt{1+\sin x}-(\sqrt{1-\sin x}))}\right) d x$
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 0
D. $\frac{1}{8}$

Answer: A

Watch Video Solution
562. If $\sin ^{4} \theta+\cos ^{4} \theta-\sin \theta \cos \theta=0, x \in[0, \pi]$. then find the value of $\frac{8 s}{\pi}$ (where s is the sum of the solutions of the given equation)

- Watch Video Solution

563. $\lim x \rightarrow \infty\left(\sqrt{x^{2}-x+1}-a x\right)=b$ Find the value of $2(a+b)$ is
A. -3
B. -1
C. 3
D. 1

Answer: D

- Watch Video Solution

564. Image of a point $P(-1,2,3)$ in plane $x+y-z-3=0$ is Q and S is a point on this plane whose co-ordinates are $(3,2, \beta)$. Then the square of length segment QS is
A. $\sqrt{18}$
B. 16
C. 17
D. 9

Answer: C

- Watch Video Solution

565. Let a curve $P:(y-2)^{2}=x-1$ If a tangent is drawn to the curve P at the point whose ordinate is 3 then the area between the tangent, curve and x-asis is
A. 9
B. 11
C. $\frac{9}{2}$
D. $\frac{11}{2}$

Answer: A

D Watch Video Solution

566. Perpendicular tangents are drawn from an external point P to the parabola $y^{2}=16(x-3)$ Then the locus of point P is
A. $x=1$
B. $x=-1$
C. $x=\frac{1}{2}$
D. $x=2$

Answer: B

567. $(p \wedge q) \rightarrow((r \wedge q) \wedge p)$ is a
A. Tautology
B. Contradiction
C. neither contradiction nor tautology
D. None of these

Answer: C

Watch Video Solution
568. In the given figure, If $\angle A C B=\theta$ and $\tan \theta=\frac{1}{2}$ then the relation between x, a, and b is

A. $x^{2}-2 a x+a b+b^{2}=0$
B. $x^{2}-2 a x+a b+a^{2}=0$
C. $x^{2}+2 a x-a b+b^{2}=0$
D. $x^{2}+2 a x+a b+b^{2}=0$

Answer: A

- Watch Video Solution

569. There are two circles touching each other at (1,2) with equal radii 5 cm and there is common tangent for these two circles $4 x+3 y=10$. The centres of 1 st circle is (α, β) and centre of 2 nd circle is (γ, δ). Then find $|(\alpha+\beta)(\gamma+\beta)|=$?
A. 20
B. 40
C. 25
D. 35

D Watch Video Solution

570.

$\left(3 x^{2}+4 x+3\right)^{2}-(k+1)\left(3 x^{2}+4 x+2\right)\left(3 x^{2}+4 x+3\right)+k\left(3 x^{2}+4 x+2\right)^{2}=0$
. Find ' k ' for which , equation has real roots.
A. $\left(-\frac{1}{2}, 1\right)$
B. $\left(1, \frac{5}{2}\right]$
C. $\left(\frac{1}{2}, 1\right)$
D. $\left(-1, \frac{5}{2}\right]$

Answer: B

- Watch Video Solution

571. Remainder when $3 \times 7^{22}+2 \times 10^{22}-44$ is divisible by 18 is
A. 16
B. 3
C. 12
D. 15

Answer: D

- Watch Video Solution

572. The value of $\int_{0}^{1} \frac{\sqrt{x} d x}{(x+1)(3 x+1)(x+3)}$ is
A. $\frac{\pi}{8}-\frac{3 \pi}{16}$
B. $\frac{\pi}{8}+\frac{3 \pi}{16}$
C. $\frac{\pi}{4}-\frac{3 \pi}{16}$
D. 0

- Watch Video Solution

573. When $0<x<1, y=\frac{1}{2} x^{2}+\frac{2}{3} x^{3}+\frac{3}{4} x^{4}+\ldots$ Then the value of e^{1-y} at $x=\frac{1}{2}$

- Watch Video Solution

574. If $\arg \left(z_{1}-z_{2}\right)=\frac{\pi}{4}, z_{1}$ and z_{2} satisfy $|z-3|=\operatorname{Re}(z)$ Then sum of imaginary part of $z_{1}+z_{2}$ is

- Watch Video Solution

575. A plane which passes through the intersection of the planes $\vec{r} \cdot(2 \hat{i}+6 \hat{j}+\hat{k})=4$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}+6 \hat{k})=2$ and also parallel to the $y-$ axis is :
A. $2 x+11 z=0$
B. $4 x+11 z=0$
C. $x+9 z=0$
D. $x+11 z=0$

Answer: A

- Watch Video Solution

576. $\frac{3}{1^{2} 2^{2}}+\frac{5}{2^{2} 3^{2}}+\frac{7}{3^{2} 4^{2}}+\ldots$ upto 10th term

- Watch Video Solution

577. Vertex and focus of a parabola lie on x-axis and their distance from $(0,0)$ are 's' and 'r' respectively , then find the length of $L R$
578. How many words can be made by rearranging letters of VOWELS such that all consonants are not together

- Watch Video Solution

579. The mean of the first 10 terms : $7 \times 8,10 \times 10,13 \times 12, \ldots$,

- Watch Video Solution

580. A pole divided into 3:7 by a mark on it , lower part is small , this pole subtends equal angle with a point on ground at a distance 18 m from pole , find the height of pole.

- Watch Video Solution

581. $\lim x \rightarrow 0 \frac{\sin ^{2}\left(\pi \cos ^{4} x\right)}{x^{4}}$ is equal to
A. π^{2}
B. $4 \pi^{2}$
C. $2 \pi^{2}$
D. None of these

Answer: B

- Watch Video Solution

582. $I=\int_{-\frac{1}{2}}^{1}(|2 x|+|x|) d x$ Find the value of 81

- Watch Video Solution

583. $\int \frac{d x}{\sqrt[4]{(x-1)^{3}(x+2)^{5}}}=$?

Watch Video Solution
584. $e^{4 x}+2 e^{3 x}-e^{x}-6=0$ find the number of solutions

- Watch Video Solution

585. The terms independent of ' x ' in the expansions of $\left(2 x+\frac{1}{4 x^{2}}\right)^{12}$ is

- Watch Video Solution

586. $a_{r}=\left\{\cos \left(\frac{2 r \pi}{9}\right)+i \sin \left(\frac{2 r \pi}{9}\right)\right\}$ where $r \in\{1,2,3 \ldots 9\}$

Find the value of $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|$

- Watch Video Solution

587. $\arg \left(\frac{z-2}{z+2}\right)=\frac{\pi}{4}$, Find the minimum value of $|z-9 \sqrt{2}-2 i|^{2}$
588. If $|3 \vec{a}+\vec{b}|=|2 \vec{a}+3 \vec{b}|$ and angle between \vec{a} and \vec{b} is 60° and $\frac{\vec{a}}{8}$ is a unit vector then find the magnitude of \vec{b}
A. 5
B. 6
C. 8
D. 10

Answer: A

(Watch Video Solution

589. Let a quadratic equation $P(x)=x^{2}+a x+1$ If $P(x)$ is increasing in [1,2] then minimum value of a is A and if $P(x)$ is decreasing in [1,2] then maximum value of a is B then $|A-B|$ is
590. Let f be a non-negative function defined on the interval $[0,1]$. If $\int_{0}^{x} \sqrt{1-\left(f^{\prime}(t)\right)^{2}} d t=\int_{0}^{x} f(t) d t, 0 \leq x \leq 1$ and $f(0)=0$ then the value of $\lim x \rightarrow 0 \int_{0}^{x} \frac{f(t)}{x^{2}} d t$ is
A. $\frac{1}{2}$
B. $-\frac{1}{2}$
C. 2
D. 1

Answer: A

- Watch Video Solution

591. If a curve follows the diffferential equation $\frac{d y}{d x}=\frac{2^{x+y}-2^{x}}{2^{y}}$ and curve passes through the point $(0,1)$ then the value of $y(2)$ is
A. $y=\log _{2}\left(1-e^{3}\right)$
B. $y=\log _{2}\left(1+e^{3}\right)$
C. $y=\log _{2}\left(e^{3}-1\right)$
D. $y=\log _{2}\left(e^{-3}+1\right)$

Answer: B

- Watch Video Solution

592. Distance of the lines $x \operatorname{cosec} \theta+y \sec \theta=k \cot 2 \theta$ and $x \sin \theta+y \cos \theta=k \sin 2 \theta$ from origin is p and q respectively then
A. $4 q^{2}+p^{2}=k^{2}$
B. $p^{2}+q^{2}=4 k^{2}$
C. $4 p^{2}+q^{2}=k^{2}$
D. $4 p^{2}+q^{2}=4 k^{2}$

- Watch Video Solution

593. Three terms forms an increasing G.P with ratio r. If the second term of the given G.P is double then the new series are in A.P with common difference d also the 4th terms of G.P is $3 r^{2}$ then the value of $\left(r^{2}-d\right)$ is
A. $7-3 \sqrt{3}$
B. $7-\sqrt{3}$
C. $7+\sqrt{3}$
D. $7+3 \sqrt{3}$

Answer: C

- Watch Video Solution

594. The value of $\operatorname{cosec} 18^{\circ}$ is the root of which of the following quadratic equation
A. $x^{2}-2 x+4=0$
B. $x^{2}-2 x-4=0$
C. $4 x^{2}-2 x+1=0$
D. $4 x^{2}+2 x-1=0$

Answer: B

- Watch Video Solution

595. If $f(x)= \begin{cases}\log \left(\frac{1+\frac{x}{b}}{1-\frac{x}{a}}\right) & x<0 \text { is continuous at } \mathrm{x}=0 \text { then the value of } \\ \frac{x}{k} & x=0 \\ \frac{\cos ^{2} x-\sin ^{2} x-1}{\sqrt{x^{2}+1}-1} & x>0\end{cases}$
$\frac{1}{a}+\frac{1}{b}+\frac{4}{k}$ is
A. 0
B. -1
C. -5
D. 5

Answer: C

D Watch Video Solution

596.

If
the
system
of
equation
$2 x+y+z=3, x-y+z=-1$ and $x+y+a z=b$ has no solution, then
A. $a=\frac{1}{3}, b \neq \frac{7}{3}$
B. $a=\frac{1}{3}, b=\frac{7}{3}$
C. $a \neq \frac{1}{3}, b=\frac{7}{3}$
D. $a \neq \frac{1}{3}, b \neq \frac{7}{3}$

Answer: A

597. If the statement $(p * \sim q) \rightarrow\left(p_{-} q\right)$ is a tautology where $*, \quad \in(\Lambda, v)$ then correct options is
A. $*=\wedge,=v$
B. $*=\wedge,{ }_{-}=\wedge$
C. $*=\mathrm{v},{ }_{-}=\mathrm{v}$
D. $*=v,=\wedge$

Answer: A

- Watch Video Solution

598. If $S=\frac{7}{5}+\frac{9}{5^{2}}+\frac{13}{5^{3}}+\ldots$ then find value of 160 S

- Watch Video Solution

599. How many four digit number which are divisible by neither 7 nor 3

Watch Video Solution

600. $\lim x \rightarrow \frac{\pi}{4} \frac{\tan ^{3} x-\tan x}{}=\alpha$ and $\lim _{x \rightarrow 0(\cos x)^{\cot x}=} \beta$.If α and β are

$$
\cos \left(\frac{\pi}{4}+x\right)
$$

the roots of equation $a x^{2}+b x-4$ then ordered pair (a, b) is

- Watch Video Solution

601. If $[\mathrm{x}]$ denotes GIF , then value of $\pi^{2} \int_{0}^{2} \sin \left(\frac{\pi}{2} x\right)(x-[x]){ }^{[x]} d x$

- Watch Video Solution

602. $32^{\tan ^{2} x}+32^{\sec ^{2} x}=81$. Find number of solution if $0 \leq x \leq \frac{\pi}{4}$.

- Watch Video Solution

603. A function defined $g \rightarrow g$ from set $1,2,3,4,5,6 \ldots$ and it is onto then find probability that $g(3)=2 g(1)$

- Watch Video Solution

604. If $\frac{z-1}{z-i}$ is purely imaginary then find the minimum value of $|z-(3+3 i)|$

- Watch Video Solution

605. If $\alpha+\beta+\gamma=2 \pi$ and
$x+(\cos \beta) y+(\cos \gamma) z=0$,
$(\cos \beta) x+y+(\cos \alpha) z=0$
$(\cos \gamma) x+(\cos \alpha) y+z=0$ then no. of solutions are
A. Unique
B. Infinite
C. No solution
D. Exactly 2

- Watch Video Solution

606. The coefficient of $a^{7} b^{8} \mathrm{in}(a+2 b+4 a b)^{10}=k .2^{18}$. Find k.

- Watch Video Solution

607. If $\frac{a_{1}+a_{2}+\ldots .+a_{10}}{a_{1}+a_{2}+\ldots . a_{p}}=\frac{100}{p^{2}}$ and a_{i} is in A.P, find value of $\left(\frac{a_{11}}{a_{10}}\right)$

- Watch Video Solution

608. Find number of elements in $\left\{A=\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right], a, b, d \in\{-1,0,1\}\right.$ such that $\left\{(I-A)^{3}=I-A^{3}\right\}$ Iis2 $\times 2$ identity matrix

- Watch Video Solution

609. Line $\frac{x-2}{\alpha}=\frac{y-2}{-3}=\frac{z+2}{2}$ lies in $x+3 y-2 z+\beta=0$ then $\alpha+\beta=$?

- Watch Video Solution

610. The negation of the statement $(p \vee q) \Rightarrow(q \vee r)$
A. $p \wedge q \wedge r$
B. $p \wedge q \wedge \sim r$
C. $p \wedge \sim q \wedge \sim r$
D. $\sim p \wedge q \wedge r$

Answer: C

- Watch Video Solution

611. Angle between the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $x^{2}+y^{2}=a b, a>b$.

- Watch Video Solution

612.

$\int \frac{\sin x}{\sin ^{3} x+\cos ^{3} x} d x=\alpha \ln |1+\tan x|+\beta \ln \left|1-\tan x+\tan ^{2} x\right|+\gamma \tan ^{-1}\left(\frac{2 \tan ^{-1}-1}{\sqrt{3}}\right)+c$
then find $18\left(\alpha+\beta+\gamma^{2}\right)$

- Watch Video Solution

613. If tangent to the parabola $y^{2}=8 x$ at $(2,-4)$ also touches the circle $x^{2}+y^{2}=a$. then find the value of a

- Watch Video Solution

614. The mean and variance of the 7 observations is 8 and 12 resp. . If two observations are 8 and 6 . find the variance of the remaining observation
A. $\frac{132}{15}$
B. $\frac{396}{25}$
C. $\frac{396}{50}$
D. $\frac{792}{25}$

Answer: B

- Watch Video Solution

615. If $f(x)=\sin ^{-1}\left(\frac{3 x^{2}+x-1}{(x-1)^{2}}\right)+\cos ^{-1}\left(\frac{x-1}{x+1}\right)$ then the domain of $f(x)$ is
A. $\left[\frac{1}{4}, \frac{1}{2}\right]$
B. $\left[\frac{1}{4}, \frac{1}{2}\right] \cup\{0\}$
C. $\left(\frac{1}{4}, \frac{1}{2}\right)$
D. $\left(0, \frac{1}{2}\right)$

Answer: A

- Watch Video Solution

616. Let $f: N \rightarrow N$ for which $f(m+n)=f(m)+f(n) \forall m, n \in N$.lf $f(6)=18$ then the value of $f(2) \cdot f(3)$ is

- Watch Video Solution

617.

$\vec{a} \times[(\vec{r}-\vec{b}) \times \vec{a}]+\vec{b} \times[(\vec{r}-\vec{c}) \times \vec{b}]+\vec{c} \times[(\vec{r}-\vec{a}) \times \vec{c}]=0$ and \vec{a}, \vec{b} and are unit vector mutually perpendicular to each other then the \vec{r} is:
A. $\frac{\vec{a}-\vec{b}-\vec{c}}{2}$
B. $\frac{\vec{a}-\vec{b}+\vec{c}}{2}$
C. $\frac{\vec{a}+\vec{b}+\vec{c}}{2}$
D. $\frac{\vec{a}+\vec{b}-\vec{c}}{2}$

Answer: C

618. Distance of a point $P(-2,1,2)$ from the line of intersection of $x+3 y-2 z+1=0$ and $x-2 y+z=0$ is
A. $2 \times \sqrt{\frac{34}{35}}$
B. $2 \times \sqrt{\frac{35}{34}}$
C. $\sqrt{\frac{35}{34}}$
D. $\sqrt{\frac{34}{35}}$

(D) Watch Video Solution

619. If the line pass through the point $(-3,-5)$ and intersect the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ at a point A and B. Then the locus of mid point of line joining A and B is
A. $4 x^{2}+9 y^{2}+20 x+27 y=0$
B. $9 x^{2}+4 y^{2}+20 x+27 y=0$
C. $4 x^{2}+9 y^{2}+27 x+20 y=0$
D. $9 x^{2}+4 y^{2}+27 x+20 y=0$

Answer: D

- Watch Video Solution

620. Area enclosed by the curves $y=\sin x+\cos x$ and $y=|\cos x-\sin x|$ and the lines $x=0$ and $x=\frac{\pi}{2}$
621. $x^{2} d y+\left(y-\frac{1}{x}\right) d x=0$ at $y(1)=1$ then find the value of $y\left(\frac{1}{2}\right)$

- Watch Video Solution

622. $\sum_{n=1}^{20} \frac{1}{a_{n} a_{n+1}}=\frac{4}{9}, a_{1}, a_{2}, a_{3} \ldots$ are in A.P and also sum of first 21 terms of A.P is 189 then find the value of $a_{6} a_{16}$

- Watch Video Solution

623. The number of words with or without meaning that can be formed using all the letter of the words "FARMER" such that both R do not appear together is . .

- Watch Video Solution

624. $p \wedge \sim q$ is equivalent to
A. $\sim(p \rightarrow q)$
B. $\sim(q \rightarrow p)$
C. $(q \rightarrow p)$
D. $(p \rightarrow q)$

Answer: A

D Watch Video Solution

625. Find $f(x)$ which satisfies $f(x)=x+\int^{\frac{\pi}{2}} \sin x \cdot \cos y \cdot f(y) d y$

- Watch Video Solution

626. Find the probability of selecting 2 squares in chessboard who have a side in common
627. If $2 \cos x\left(4 \sin \left(\frac{\pi}{4}+x\right) \sin \left(\frac{\pi}{4}-x\right)-1\right)=1$ then for $x \in[0, \pi]$ then the number of solution s is n, and the sum of solutions is s then find the value of (n, s)

- Watch Video Solution

628. Consider 15 points $P_{1}, P_{2}, P_{3}, \ldots P_{15}$ on circle. Find the number of triangles formed by P_{i}, P_{j}, P_{k} such that $i+j+k \neq 15$

- Watch Video Solution

629. Sum of coefficient of $(x+y)^{n}=4096$ then find the highest coefficient

- Watch Video Solution

630. If the angle between $\frac{x^{2}}{9}+\frac{y^{2}}{1}=1$ and the circle $x^{2}+y^{2}=3$ at their point of intersection in 1st quadrant is θ then find value of $\tan \theta$
A. $\sqrt{3}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{2}{3}$
D. $\frac{2}{\sqrt{3}}$

Answer: D

- Watch Video Solution

631. The area of triangle formed by the lines $2 x-y+1=0,3 x-y+5=0$ and $2 x-5 y+11=0$
A. $\frac{360}{52}$
B. $\frac{361}{52}$
C. $\frac{362}{52}$
D. $\frac{363}{52}$

Answer: B

- Watch Video Solution

632. If $f(x)$ is a cubic polynomial such that $f(x)=-\frac{2}{x}$ for $x=2,3,4$ and 5 then the value of $52-f(10)$ is

- Watch Video Solution

633. The value of $\lim x \rightarrow \frac{\pi}{4} \frac{\frac{\pi}{4} \int_{2}^{\sec ^{2} x} f(x) d x}{x^{2}-\frac{\pi^{2}}{16}}$ is
A. $2 f(2)$
B. $\sqrt{2} f(2)$
C. $4 f(2)$
D. $f(\sqrt{2})$

- Watch Video Solution

634. The value of $\cos ^{-1}(\cos (-6))+\sin ^{-1}(\sin 5)-\tan ^{-1}(\tan 2)$ is
A. $\pi-1$
B. $1-\pi$
C. $3-\pi$
D. $\pi-3$

Answer: D

D Watch Video Solution

635.

$f(x)=3+\cos ^{-1}\left(\cos \left(\frac{\pi}{2}+x\right) \cos \left(\frac{\pi}{2}-x\right)+\sin \left(\frac{\pi}{2}+x\right) \sin \left(\frac{\pi}{2}-x\right)\right), x \in[0, \pi]$ then find the minimum value of $f(x)$ is
A. 4
B. -2
C. -3
D. 3

Answer: D

- Watch Video Solution

$$
\begin{aligned}
& \text { 636. } \begin{array}{c}
\text { Find } \\
f(x)=\log _{\sqrt{5}}\left(3+\cos \left(\frac{3 \pi}{4}+x\right)+\cos \left(\frac{\pi}{4}+x\right)+\cos \left(\frac{\pi}{4}-x\right)-\cos \left(\frac{3 \pi}{4}-x\right)\right)
\end{array}
\end{aligned}
$$

of
A. $(0, \sqrt{5})$
B. $\left[\frac{1}{\sqrt{5}}, \sqrt{5}\right]$
C. [-2, 2]
D. $[0,2]$

Answer: D

- Watch Video Solution

SECTION-A

1. The statement among the following that is a tautology is:
A. $A \vee(A \wedge B)$
B. $A \wedge(A \vee B)$
C. $B \rightarrow[A \wedge(A \rightarrow B)]$
D. $[A \wedge(A \rightarrow B)] \rightarrow B$

Answer: D

Watch Video Solution
2. A man on the straight line whose arithmetic mean of reciprocal of intercepts on the axes is $\frac{1}{4}$. There are 3 marbles at $\mathrm{A}(1,1), \mathrm{B}(2,2), \mathrm{C}(4,4)$. Then which marble lie on its path
A. A only
B. C only
C. All the three
D. B only

Answer: D

- Watch Video Solution

3. The equation of the plane passing through the point $(1,2,-3)$ and perpendicular to the planes $3 x+y-2 z=5$ and $2 x-5 y-z=7$, is
A. $3 x-10 y-2 z+11=0$
B. $6 x-5 y-2 z-2=0$
C. $11 x+y+17 z+38=0$
D. $6 x-5 y+2 z+10=0$

Answer: C

- Watch Video Solution

4. The population $p(t)$ at time t of a certain mouse species satisfies the differential equation $\frac{d p(t)}{d t}=0.5 p(t)-450$ If $p(0)=850$, then the time at which the population becomes zero is (1) $2 \ln 18$ (2) $\ln 9(3) \frac{1}{2} \ln 18(4) \ln 18$
A. $\log _{e} 18$
B. $\log _{e} 99$
C. $\frac{1}{2} \log _{e} 18$
D. $2 \log _{e} 18$

Answer: D

5. The system of linear equation
$3 x-2 y-k z=10$
$2 x-4 y-2 z=6$
$x+2 y-z=5 m$
is in-consistent if:
A. $k=3, m=\frac{4}{5}$
B. $k \neq 3, m \in R$
C. $k \neq 3, m \neq \frac{4}{5}$
D. $k=3, m \neq \frac{4}{5}$

Answer: B

- Watch Video Solution

6. If $f: R \rightarrow R$ is function defined by $f(x)=[x-1] \cos \left(\frac{2 x-1}{2}\right) \pi$, where [.] denotes the greatest integer function, then f is :
A. discontinuous at all integral values of x except at $x=1$
B. Continuous only at $x=1$
C. continous for every real x
D. discontinuous only at $\mathrm{x}=1$

Answer: C

- Watch Video Solution

7. The distance of the point $(1,1,9)$ from the point of intersection of the line $\frac{x-3}{1}=\frac{y-4}{2}=\frac{z-5}{2}$ and plane $x+y+z=17$
A. $2 \sqrt{19}$
B. $19 \sqrt{2}$
C. 38
D. $\sqrt{38}$

Watch Video Solution

8. Tangent is drawn to $y=x^{3}$ at $P\left(t, t^{3}\right)$, it intersects curve again at Q.Find ordinate of point which divide PQ internally in 1:2
A. $-2 t^{3}$
B. 0
C. $-t^{3}$
D. $2 t^{3}$

Answer: A

- Watch Video Solution

9. If $\int \frac{\cos x-\sin x}{\sqrt{8-\sin 2 x}} d x=a \sin ^{-1}\left(\frac{\sin x+\cos x}{b}\right)+c$, where c is a constant of integration, then the ordered pair (a, b) is equal to :
A. $(-1,3)$
B. $(3,1)$
C. $(1,3)$
D. $(1,-3)$

Answer: C

- Watch Video Solution

10.

Value
of
${ }_{-15} C_{1}+2 . .{ }^{15} C_{2}-3 .{ }^{15} C_{3}+\ldots . . .-15 .{ }^{15} C_{15}+{ }^{15} C_{1}+{ }^{15} C_{2}+\ldots . .{ }^{15} C_{14}$ is
A. $2^{16}-1$
B. $2^{13}-14$
C. 2^{14}
D. $2^{13}-13$

Answer: B

11. $f(x)=\frac{4 x^{3}-3 x^{2}}{6}-2 \sin x+(2 x-1) \cos x$, then $f(x)$ is
A. increases in $\left[\frac{1}{2}, \infty\right)$
B. increases in $\left(-\infty, \frac{1}{2}\right]$
C. decreases in $\left[\frac{1}{2}, \infty\right)$
D. decreases in $\left(-\infty, \frac{1}{2}\right]$

Answer: A

- Watch Video Solution

12. Let $f: R \rightarrow R$ be fefined as $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-1$ and $g: R-\{1\} \rightarrow R$ be defined as
$g(x)=\frac{x-\frac{1}{2}}{x-1}$ Then the composition function $f(g(x))$ is :
A. onto but not one-one
B. both one-one and onto
C. one-one but not onto
D. neither one-one nor onto

Answer: C

- Watch Video Solution

13. An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is :
A. $\frac{1}{32}$
B. $\frac{5}{16}$
C. $\frac{3}{16}$
D. $\frac{1}{2}$

Answer: D

14. A committee has to be formed from 6 Indians and 8 foreignera such that the number of Indians should be atleast two and foreigners should be double that of Indians. In how many ways can it be formed
A. 1625
B. 575
C. 560
D. 1050

Answer: A

- Watch Video Solution

15. The area (in sq, units) of the part of the circle $x^{2}+y^{2}=36$, which is outside the parabola $y^{2}=9 x$, is
A. $24 \pi+3 \sqrt{3}$
B. $12 \pi-3 \sqrt{3}$
C. $24 \pi-3 \sqrt{3}$
D. $12 \pi+3 \sqrt{3}$

Answer: C

- Watch Video Solution

16. If $p, q>0, p+q=2$ and $p^{4}+q^{4}=272$, then p and q are roots of
A. $x^{2}-2 x+2=0$
B. $x^{2}-2 x+8=0$
C. $x^{2}-2 x+136=0$
D. $x^{2}-2 x+16=0$

Answer: D

17. Two vertical poles are 150 m apart and the height of one is three times that of the other if from the middle point of the line joining their feet, an observer finds the angles of elvation of their tops ot be complememntary then the height of the shorter pole (in meters) is :
A. $20 \sqrt{3}$
B. $25 \sqrt{3}$
C. 30
D. 25

Answer: B

- Watch Video Solution

$\int_{0}^{x^{2}} \sin \sqrt{t} d t$
18. Evaluate : $\lim x \rightarrow 0 \frac{x^{3}}{}$
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. 0
D. $\frac{1}{15}$

Answer: A

- Watch Video Solution

19. If $e^{\left(\cos ^{2} x+\cos ^{4} x+\cos ^{6} x+\ldots \ldots \infty\right) \log _{e} 2}$ satisfies the equation $t^{2}-9 t+8=0$, then the value of $\frac{2 \sin x}{\sin x+\sqrt{3} \cos x}\left(0<x<\frac{\pi}{2}\right)$ is
A. $2 \sqrt{3}$
B. $\frac{3}{2}$
C. $\sqrt{3}$
D. $\frac{1}{2}$

Answer: D

20. The locus of the midpoint of the segment joining the focus to a moving point on the parabola $y^{2}=4 a x$ is another parabola with directrix $y=0(\mathrm{~b}) x=-a x=0(\mathrm{~d})$ none of these
A. $x=-\frac{a}{2}$
B. $x=\frac{a}{2}$
C. $x=0$
D. $x=a$

Answer: C

- Watch Video Solution

21. A missile fires a target. The probability of getting intercepted is $\frac{1}{3}$ and if it is not intercepted then probability of hitting the target is $\frac{3}{4}$. Three independent missiles are fired . Find the probability of all three hit.
A. $\frac{1}{27}$
B. $\frac{3}{4}$
C. $\frac{1}{8}$
D. $\frac{3}{8}$

Answer: C

D Watch Video Solution

22.

$$
0<\theta, \phi<\frac{\pi}{2}, x=\sum_{n=0}^{\infty} \cos ^{2 n} \theta, y=\sum_{n=0}^{\infty} \sin ^{2 n} \phi \quad \text { and }
$$

∞
$z=\sum_{n=0} \cos ^{2 n} \theta \cdot \sin ^{2 n} \phi$ then :
A. $x y-z=(x+y) z$
B. $x y+y z+z x=z$
C. $x y z=4$
D. $x y+z=(x+y) z$
23. $f(x+1)=f(x)+f(1), f(x), g(x): N \rightarrow N$
$g(x)=$ any arbitrary function and $f \circ g(x)$ is one-one
A. If fog is one-one, then g is one-one
B. If f is onto, then $f(n)=n \forall n \in N$
C. f is one-one
D. If g is onto, then fog is one-one

Answer: D

- Watch Video Solution

24. The equation of the line through the point $(0,1,2)$ and perpendicular to the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{-2}$ is:
A. $\frac{x}{3}=\frac{y-1}{4}=\frac{z-2}{3}$
B. $\frac{x}{3}=\frac{y-1}{-4}=\frac{z-2}{3}$
C. $\frac{x}{3}=\frac{y-1}{4}=\frac{z-2}{-3}$
D. $\frac{x}{-3}=\frac{y-1}{4}=\frac{z-2}{3}$

Answer: D

D Watch Video Solution

25. Let α be the angle between the lines whose direction cosines satisfy the equation $l+m-n=0$ and $l^{2}+m^{2}-n^{2}=0$ then value of $(\sin \alpha)^{4}+(\cos \alpha)^{4}$ is
A. $\frac{3}{4}$
B. $\frac{3}{8}$
C. $\frac{5}{8}$
D. $\frac{1}{2}$
26. The value of the integral
$\sin \theta \cdot \sin 2 \theta\left(\sin ^{6} \theta+\sin ^{4} \theta+\sin ^{2} \theta\right) \sqrt{2 \sin ^{4} \theta+3 \sin ^{2} \theta+6}$
$\int-1-\cos 2 \theta$ is :
(where c is a constant of integration)
A. $\frac{1}{18}\left[11-18 \sin ^{2} \theta+9 \sin ^{4} \theta-2 \sin ^{6} \theta\right]^{\frac{3}{2}}+c$
B. $\frac{1}{18}\left[9-2 \cos ^{6} \theta-3 \cos ^{4} \theta-6 \cos ^{2} \theta\right]^{\frac{3}{2}}+c$
C. $\frac{1}{18}\left[9-2 \sin ^{6} \theta-3 \sin ^{4} \theta-6 \sin ^{2} \theta\right]^{\frac{3}{2}}+c$
D. $\frac{1}{18}\left[11-18 \cos ^{2} \theta+9 \cos ^{4} \theta-2 \cos ^{6} \theta\right]^{\frac{3}{2}}+c$

Answer: D

(Watch Video Solution

27. The value of $\int_{-1}^{1} x^{2} e e^{\left[x^{3}\right]} d x$, where [t] denotes the greatest integer $\leq t$, is :
A. $\frac{e-1}{3 e}$
B. $\frac{e+1}{3}$
C. $\frac{e+1}{3 e}$
D. $\frac{1}{3 e}$

Answer: C

- Watch Video Solution

28. A man is observing, from the top of a tower, a boat speeding towards the tower from a certain point A , with uniform speed. At that point, angle of depression of the boat with the man's eye is 30° (Ignore man's height). After sailing for 20 seconds, towards the base of the tower (which is at the level of water), the boat has reached a point B, where the angle of depression is 45°. Then the time taken (in seconds) by the boat from B to reach the base of the tower is:
A. 10
B. $10 \sqrt{3}$
C. $10(\sqrt{3}+1)$
D. $10(\sqrt{3}-1)$

Answer: C

- Watch Video Solution

29. A tangent is drawn to the parabola $y^{2}=6 x$ which is perpendicular to the line $2 x+y=1$. Which of the following points does NOT lie on it?
A. $(-6,0)$
B. $(4,5)$
C. $(5,4)$
D. $(0,3)$

Answer: C

30. All possible values of $\theta \in[0,2 \pi]$ for which $\sin 2 \theta+\tan 2 \theta>0$ lie in :
A. $\left(0, \frac{\pi}{2}\right) \cup\left(\pi, \frac{3 \pi}{2}\right)$
B. $\left(0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\pi, \frac{7 \pi}{6}\right)$
C. $\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\frac{3 \pi}{2}, \frac{11 \pi}{6}\right)$
D. $\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\pi, \frac{5 \pi}{4}\right) \cup\left(\frac{3}{2}, \frac{7 \pi}{4}\right)$

Answer: D

- Watch Video Solution

31. Let the lines $(2-i) z=(2+i) \bar{z}$ and $(2+i) z+(i-2) \bar{z}-4 i=0$, (here $i^{2}=-1$) be normal to a circle C . If the line $i z+\bar{z}+1+i=0$ is tangent to this circle C, then its radius is :
A. $\frac{3}{\sqrt{2}}$
B. $\frac{1}{2 \sqrt{2}}$
C. $3 \sqrt{2}$
D. $\frac{3}{2 \sqrt{2}}$

Answer: D

Watch Video Solution

32. The image of the point $(3,5)$ in the line $x-y+1=0$, lies on :
A. $(x-2)^{2}+(y-2)^{2}=12$
B. $(x-4)^{2}+(y+2)^{2}=16$
C. $(x-4)^{2}+(y-4)^{2}=8$
D. $(x-2)^{2}+(y-4)^{2}=4$

Answer: D

33. If the cuves, $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$ and $\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$ intersect each other at an angle of 90°, then which of the following relations is TRUE?
A. $a+b=c+d$
B. $a-b=c-d$
C. $a-c=b+d$
D. $a b=\frac{c+d}{a+b}$

Answer: B

D Watch Video Solution

34. $\lim _{n \rightarrow \infty}\left(1+\frac{1+\frac{1}{2}+\ldots \ldots \ldots+\frac{1}{n}}{n^{2}}\right)^{n}$ is equal to :
A. $\frac{1}{2}$
B. 0
C. $\frac{1}{e}$
D. 1

Answer: D

- Watch Video Solution

35. The coefficients a, b and c of the quadratic equation, $a x^{2}+b x+c=0$ are obtained by throwing a dice three times. The probability that this equation has equal roots is:
A. $\frac{1}{72}$
B. $\frac{5}{216}$
C. $\frac{1}{36}$
D. $\frac{1}{54}$

Answer: B

36. The total number of positive integral solutions (x, y, z) such that $x y z=$ 24 is :
A. 36
B. 24
C. 45
D. 30

Answer: D

- Watch Video Solution

37. Integral value of k for which $x^{2}-2(3 k-1) x+8 k^{2}-7>0$
A. 3
B. 2
C. 0
D. 4

Answer: A

- Watch Video Solution

38. If a curve passes through the origin and the slope of the tangent to it at any point (x, y) is $\frac{x^{2}-4 x+y+8}{x-2}$, then this curve also passes through the point:
A. $(5,4)$
B. $(4,5)$
C. $(4,4)$
D. $(5,5)$

Answer: D

39. The statement $A \rightarrow(B \rightarrow A)$ is equivalent to :
A. $A \rightarrow(A \wedge B)$
B. $A \rightarrow(A \rightarrow B)$
C. $A \rightarrow(A \leftrightarrow B)$
D. $A \rightarrow(A \vee B)$

Answer: D

- Watch Video Solution

40. If Rolle's theorem holds for the function
$f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ with $f\left(\frac{4}{3}\right)=0$, then ordered pair (a, b) is equal to :
A. $(5,8)$
B. $(-5,8)$
C. $(5,-8)$
D. $(-5,-8)$

Answer: A

- Watch Video Solution

41. If the vectors \vec{a} and \vec{b} are mutually perpendicular, then $\vec{a} \times\{\vec{a} \times\{\vec{a} \times\{\vec{a} \times \vec{b}\}\}$ is equal to:
A. $\overrightarrow{0}$
B. $\frac{1}{2}|\vec{a}|^{4} \vec{b}$
C. $\vec{a} \times \vec{b}$
D. $|\vec{a}|^{4} \vec{b}$

Answer: D

- Watch Video Solution

42. A fair coin is tossed fixed times. The probability of getting 7 heads is equal to probability of getting 9 heads. Then find the probability of getting 2 heads
A. $\frac{15}{2^{13}}$
B. $\frac{15}{2^{12}}$
C. $\frac{15}{2^{8}}$
D. $\frac{15}{2^{14}}$

Answer: A

- Watch Video Solution

43. A is 2×2 symmetric such that trace of A^{2} is 1 .How many such matrices are possible with integer entries ?
A. 4
B. 1
C. 6
D. 12

Answer: A

D Watch Video Solution

44. In a increasing geometric series, the sum of the second and the sixth term is $\frac{25}{2}$ and the product of the third and fifth term is 25 . then, the sum of $4^{\text {th }}, 6^{\text {th }}$ and $8^{\text {th }}$ terms to
A. 30
B. 26
C. 35
D. 32

Answer: C

45. The value of $\sum_{n=1} \int_{n-1}^{n} e^{x-[x]} d x=$
A. $100(e-1)$
B. $100(1-e)$
C. $100 e$
D. $100(1+e)$

Answer: A

Watch Video Solution
46. In the circle given below. Let $\mathrm{OA}=1$ unit, $\mathrm{OB}=13$ unit and $\mathrm{PQ} \perp \mathrm{OB}$.

Then the area of the triangle PQB (in square units)is

A. $24 \sqrt{2}$
B. $24 \sqrt{3}$
C. $26 \sqrt{3}$
D. $26 \sqrt{2}$

Answer: B

- Watch Video Solution

47. Sum of series $1+\frac{2}{3}+\frac{7}{3^{2}}+\frac{12}{3^{3}}+\ldots \ldots \infty$
A. $\frac{13}{4}$
B. $\frac{9}{4}$
C. $\frac{15}{4}$
D. $\frac{11}{4}$

Answer: A

- Watch Video Solution

48. $\lim h \rightarrow 02\left(\frac{\sqrt{3} \sin \left(h+\frac{\pi}{6}\right)-\cos \left(h+\frac{\pi}{6}\right)}{h(\sqrt{3} \cosh -\sinh)}\right)$
A. $\frac{4}{3}$
B. $\frac{2}{\sqrt{3}}$
C. $\frac{3}{4}$
D. $\frac{2}{3}$

D Watch Video Solution

49. Find maximum value of term independent of " t " in $\left(t x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{t}\right)^{10}, x \in(0,1)$
A. $\frac{10!}{\sqrt{3}(5!)^{2}}$
B. $\frac{2.10!}{3 \sqrt{3}(5!)^{2}}$
C. $\frac{2.10!}{2(5!)^{2}}$
D. $\frac{10!}{3(5!)^{2}}$

Answer: B

D Watch Video Solution

50. Growth of bacteria is directly proportional to number of bacteria. At $\mathrm{t}=0$, number of bacteria $=1000$ and after 2 hours population is increased by 20%. After this population becomes 2000 where $t=\frac{k}{\square}$. Find $\ln \left(\frac{6}{5}\right)$
value of $\left(\frac{k}{\ln 2}\right)^{2}$
A. 4
B. 8
C. 2
D. 16

Answer: A

- Watch Video Solution

51. If $(1,5,35),(7,5,5),(1, \lambda, 7)$ and $(2 \lambda, 1,2)$ are coplanar then the sum of all possible values of λ is

39
A. $\frac{3}{5}$
B. $-\frac{39}{5}$
C. $\frac{44}{5}$
D. $-\frac{44}{5}$

Answer: C

- Watch Video Solution

52. $\frac{\sin ^{-1} X}{a}=\frac{\cos ^{-1} X}{b}=\frac{\tan ^{-1} y}{c}$ value of $\cos \left(\frac{\pi c}{a+b}\right)$
A. $\frac{1-y^{2}}{y \sqrt{y}}$
B. $1-y^{2}$
C. $\frac{1-y^{2}}{1+y^{2}}$
D. $\frac{1-y^{2}}{2 y}$

Answer: C

53. The number of seven digit integers, with sum of the digits equal to 10 and formed by using the digits 1,2 and 3 only, is
A. 42
B. 82
C. 77
D. 35

Answer: C

- Watch Video Solution

54. Let f be any function defined on R and let it satisfy the condition :
$|f(x)-f(x)| \leq(x-y)^{2}, \forall(x, y) \in R$ if $f(0)=1$, then :
A. $f(x)$ can take any value in R
B. $f(x)<0, \forall x \in R$
C. $f(x)=0, \forall x \in R$
D. $f(x)>0, \forall x \in R$

Answer: D

- Watch Video Solution

55. $y=\frac{1}{2} x^{4}-5 x^{3}+18 x^{2}-19 x$ what will be max. value of slope at
A. $(2,2)$
B. $(0,0)$
C. $(2,9)$
D. $\left(3, \frac{21}{2}\right)$

Answer: A

56. The intersection of three lines
$x-y=0, x+2 y=3$ and $2 x+y=6$ is a
A. right angled triangle
B. Equilateral triangle
C. Isosceles triangle
D. None of the above

Answer: C

- Watch Video Solution

57. Consider the three planes
$P_{1}: 3 x+15 y+21 z=9$,
$P_{2}: x-3 y-z=5$, and
$P_{3}: 2 x+10 y+14 z=5$
then , which one of the following is true ?
A. P_{1} and P_{2} are parallel
B. P_{1} and P_{3} are parallel
C. P_{2} and P_{3} are parallel
D. P_{1}, P_{2} and P_{3} all are parallel

Answer: B

- Watch Video Solution

58. The value of $\left|\begin{array}{lll}(a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3) & a+3 & 1 \\ (a+3)(a+4) & a+4 & 1\end{array}\right|$ is
A. $(a+2)(a+3)(a+4)$
B. -2
C. $(a+1)(a+2)(a+3)$
D. 0
59. The value of $\int_{-\pi / 2}^{\pi / 2} \frac{\cos ^{2} x}{1+3^{x}} d x$ is
A. $\frac{\pi}{4}$
B. 4π
C. $\frac{\pi}{2}$
D. 2π

Answer: A

Watch Video Solution

60. Let $P(x, y)$ be a point which is a constant distance from the origin.

Then equivalence relation of $(1,-1)$ is
A. $S=\left\{(x, y) \mid x^{2}+y^{2}=4\right\}$
B. $S=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$
C. $S=\left\{(x, y) \mid x^{2}+y^{2}=\sqrt{2}\right\}$
D. $S=\left\{(x, y) \mid x^{2}+y^{2}=2\right\}$

Answer: D

- Watch Video Solution

61. For the statements p and q, consider the following compound statements:
(a) $(\sim q \wedge(p \rightarrow q)) \rightarrow \sim p$
(b) $((p \vee q) \wedge \sim p) \rightarrow q$

Then which of the following statements is correct?
A. (a) and (b) both are not tautologies.
B. (a) and (b) both are tautologies.
C. (a) is a tautology but not (b).
D. (b) is a tautology but not (a).

Answer: B

62. Let $a, b \in R$. If the mirror image of the point $\mathrm{P}(\mathrm{a}, 6,9)$ with respect to the line $\frac{x-3}{7}=\frac{y-2}{5}=\frac{z-1}{-9}$ is (20, $\left.b,-a-9\right)$, then $|a+b|$ is equal to :
A. 88
B. 86
C. 84
D. 90

Answer: A

Watch Video Solution

63. Equation of plane through $(1,0,2)$ and line of intersection of planes
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1$ and $\vec{r} \cdot(\hat{i}-2 \hat{j})=-2$
A. $\vec{r} \cdot(\hat{i}+7 \hat{j}+3 \hat{k})=\frac{7}{3}$
B. $\vec{r} \cdot(3 \hat{i}+7 \hat{j}+3 \hat{k})=7$
C. $\vec{r} \cdot(\hat{i}+7 \hat{j}+3 \hat{k})=7$
D. $\vec{r} \cdot(\hat{i}-7 \hat{j}+3 \hat{k})=\frac{7}{3}$

Answer: C

- Watch Video Solution

64. If P is a point on the parabola $y=x^{2}+4$ which is closest to the straight line $y=4 x-1$, then the co-ordinates of P are :
A. $(3,13)$
B. $(1,5)$
C. $(-2,8)$
D. $(2,8)$

Answer: D

65. The angle of elevation of a jet plane from a point A on the ground is 60°. After a flight of 20 seconds at the speed of $432 \mathrm{~km} /$ hour, the angle of elevation changes to 30°. If the jet plane is flying at a constant height, then its height is :
A. $1800 \sqrt{3} \mathrm{~m}$
B. $3600 \sqrt{3} \mathrm{~m}$
C. $2400 \sqrt{3} \mathrm{~m}$
D. $1200 \sqrt{3}$

Answer: D

- Watch Video Solution

66. If $n \geq 2$ is a positive integer, then the sum of the series ${ }^{n+1} C_{2}+2\left({ }^{2} C_{2}+3 C_{2}+4 C_{2}+\ldots+n C_{2}\right)$ is:
A. $\frac{n(n-1)(2 n+1)}{6}$
B. $\frac{n(n+1)(2 n+1)}{6}$
C. $\frac{n(2 n+1)(3 n+1)}{6}$
D. $\frac{n(n+1)^{2}(n+2)}{12}$

Answer: B

- Watch Video Solution

67. Let $f(x)= \begin{cases}-55 x & x<-5 \\ 2 x^{3}-3 x^{2}-120 x & -5 \leq x<4 \\ 2 x^{3}-3 x^{2}-36 x+10 & x \geq 4\end{cases}$

Then interval in which $f(x)$ is monotonically increasing is
A. $(-\infty,-5) \cup(4, \infty)$
B. $(-5, \infty)$
C. $(-\infty,-5) \cup(-4, \infty)$
D. $(-5,-4) \cup(4, \infty)$

- Watch Video Solution

68. Let f be a twice differentiable function defined on R such that $f(0)=1$,
$f^{\prime}(0)=2$ and $f^{\prime}(x) \neq 0$ for all $x \in R$. If $\left|\begin{array}{cc}f(x) & f^{\prime}(x) \\ f^{\prime}(x) & f^{\prime \prime}(x)\end{array}\right|=0$, for all $x \in R$, then the value of $f(1)$ lies in the interval:
A. $(9,12)$
B. $(6,9)$
C. $(0,3)$
D. $(3,6)$

Answer: B

D Watch Video Solution

69. For which of the following curves, the line $x+\sqrt{3} y=2 \sqrt{3}$ is the tangent at the point $\left(\frac{3 \sqrt{3}}{2}, \frac{1}{2}\right)$?
A. $x^{2}+y^{2}=7$
B. $y^{2}=\frac{1}{6 \sqrt{3}} x$
C. $2 x^{2}-18 y^{2}=9$
D. $x^{2}+9 y^{2}=9$

Answer: D

- Watch Video Solution

70. The value of the integral, $\int_{1}^{3}\left[x^{2}-2 x-2\right] d x$, where $[x]$ denotes the greatest integer less than or equal to x, is :
A. $-\sqrt{2}-\sqrt{3}+1$
B. $-\sqrt{2}-\sqrt{3}-1$
C. -5
D. -4

Answer: B

- Watch Video Solution

71. Evaluate $\tan \left(\frac{1}{4} \cdot \sin ^{-1}\left(\frac{\sqrt{63}}{8}\right)\right)$
A. $\frac{1}{\sqrt{7}}$
B. $2 \sqrt{2}-1$
C. $\sqrt{7}-1$
D. $\frac{1}{2 \sqrt{2}}$

Answer: A

72. The negative of the statement $\sim p \vee(p \wedge q)$ is
A. $\sim p \vee q$
B. $p \vee \sim q$
C. $\sim p \wedge q$
D. $p \wedge \sim q$

Answer: D

- Watch Video Solution

73. A curve $y=a x^{2}+b x+c$ passing through the point $(1,2)$ has slope of tangent at orign equal to 1 , then ordered triplet (a, b, c) may be
A. $a=\frac{1}{2}, b=\frac{1}{2}, c=1$
B. $a=1, b=0, c=1$
C. $a=1, b=1, c=0$
D. $a=-1, b=1, c=1$

D Watch Video Solution

74. The area of the region : $R=\left\{(x, y): 5 x^{2} \leq y \leq 2 x^{2}+9\right\}$ is:
A. $11 \sqrt{3}$ square units
B. $12 \sqrt{3}$ square units
C. $9 \sqrt{3}$ square units
D. $6 \sqrt{3}$ square units

Answer: B

D Watch Video Solution

75. Given $y=y(x)$ passing through $(1,2)$ such that $x \frac{d y}{d x}+y=b x^{4}$ then find b if $\int_{1}^{2} f(x) d x=\frac{62}{5}$
A. 5
B. 10
C. $\frac{62}{5}$
D. $\frac{31}{5}$

Answer: B

- Watch Video Solution

76. $f(0)=1, f(2)=e^{2}, f^{\prime}(x)=f^{\prime}(2-x)$, then find the value of $\int_{0}^{2} f(x) d x$
A. $1-e^{2}$
B. $1+e^{2}$
C. $2\left(1-e^{2}\right)$
D. $2\left(1+e^{2}\right)$

Answer: B

77. If A is symmetric matrix and B is skew symmetric matrix of order 3×3, then consider $\left(A^{2} B^{2}-B^{2} A^{2}\right) X=0$, where X is a matrix of unknown variable of 3×1 and O is a null matrix of 3×1, then system of linear equation has
A. no solution
B. exactly two solutions
C. infinitely many solutions
D. a unique solution

Answer: C

- Watch Video Solution

78. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be in arithmetic progression. Let the centroid of the triangle with vertices (a, e), (2, b) and (a, b) be $\left(\frac{10}{3}, \frac{7}{3}\right)$. If α, β are the roots of the
equation $a x^{2}+b x+1=0$, then the value of $\alpha^{2}+\beta^{2}-\alpha \beta$ is :
A. $\frac{71}{256}$
B. $\frac{69}{256}$
C. $-\frac{69}{256}$
D. $-\frac{71}{256}$

Answer: D

- Watch Video Solution

79. For the system of linear equations :
$x-2 y=1, x-y+k z=-2, k y+4 z=6, k \in R$, consider the following statements:
(A) The system has unique solution if $k \neq 2, \quad k \neq-2$.
(B) The system has unique solution if $\mathrm{k}=-2$.
(C) The system has unique solution if $\mathrm{k}=2$.
(D) The system has no-solution if $\mathrm{k}=2$.
(E) The system has infinite number of solutions if $k \neq 2$.

Which of the following statements are correct?
A. (C) and (D) only
B. (B) and (E) only
C. (A) and (E) only
D. (A) and (D) only

Answer: D

- Watch Video Solution

80. The probability that two randomly selected subsets of the set $\{1,2,3$,
$4,5\}$ have exactly two elements in their intersection, is :
A. $\frac{65}{2^{7}}$
B. $\frac{65}{2^{8}}$
C. $\frac{135}{2^{9}}$
D. $\frac{35}{2^{7}}$

Answer: C

- Watch Video Solution

81. Let $\hat{i}+y \hat{j}+z \hat{k}$ and $x \hat{i}-\hat{j}+\hat{k}$ are parallel then unit vector parallel to $x \hat{i}+y \hat{j}+z \hat{k}$
A. $\frac{1}{\sqrt{2}}(-\hat{j}+\hat{k})$
B. $\frac{1}{\sqrt{2}}(\hat{i}-\hat{j})$
C. $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}-\hat{k})$
D. $\frac{1}{\sqrt{3}}(\hat{i}-\hat{j}-\hat{k})$

Answer: D

- Watch Video Solution

82. Let $A=\{1,2,3, \ldots . .10\}$ and $f: A \rightarrow A$ be defined as
$f(k)= \begin{cases}k+1 & \text { if } k \text { is odd } \\ k & \text { if } \mathrm{k} \text { is even }\end{cases}$
Then the number of possible functions $\mathrm{g}: A \rightarrow A$ such that gof=f is
A. 10^{5}
B. ${ }^{10} C_{5}$
C. 5^{5}
D. 5 !

Answer: A

- Watch Video Solution

83. Let $f: R \rightarrow R$ be defined as $f(x)= \begin{cases}2 \sin \left(-\frac{\pi x}{2}\right), & \text { if } x<-1 \\ \left|a x^{2}+x+b\right|, & \text { if }-1 \leq x \leq 1 \\ \sin (\pi x), & \text { if } x>1\end{cases}$

If $f(x)$ is continuous on R, then $a+b$ equals
A. -3
B. -1
C. 3
D. 1

Answer: B

D Watch Video Solution

84. $f(x)=\int_{1}^{x} \frac{\ln t}{1+t} d t, f(e)+f\left(\frac{1}{e}\right)=$
A. 1
B. -1
C. $\frac{1}{2}$
D. 0

Answer: C
85. The prime factorization of a number ' n ' is given as $n=2^{x} \times 3^{y} \times 5^{z}, y+z=5$ and $y^{-1}+z^{-1}=\frac{5}{6}$. Find out the odd divisors of n including 1
A. 11
B. 6
C. 6 x
D. 12

Answer: D

Watch Video Solution

86. Let $f(x)=\sin ^{-1} x$ and $g(x)=\frac{x^{2}-x-2}{2 x^{2}-x-6}$. If $g(2)=\lim x \rightarrow 2 g(x)$ then the domain of the function fog is
A. $(-\infty,-2] \cup\left[-\frac{3}{2}, \infty\right)$
B. $(-\infty,-2] \cup[-1, \infty)$
C. $(-\infty,-2] \cup\left[-\frac{4}{3}, \infty\right)$
D. $(-\infty,-1] \cup[2, \infty)$

Answer: C

- Watch Video Solution

87. The triangle of maximum area that can be inscribed in a given circle of radius ' r ' is
A. An isoscles triangle with base equal to $2 r$
B. An equilateral of height $\frac{2 r}{3}$
C. an equilateral trianlge having each of its side of length $\sqrt{3} r$
D. 'A right angle triangle having two of its sides of length $2 r$ and r.

Answer: C

Watch Video Solution

88. Let L be a line obtained from the intersection of two planes $x+2 y+z=6$ and $\mathrm{y}+2 \mathrm{z}=4$. If point $P(\alpha, \beta, \gamma)$ is the foot of perpendicular from $(3,2,1)$ on L then the value of $21(\alpha+\beta+\gamma)$ equals.
A. 142
B. 68
C. 136
D. 102

Answer: D

- Watch Video Solution

89.

A. F_{1} and F_{2} both are tautologies
B. F_{1} is tautology but F_{2} is not a tautology
C. F_{1} is not tautology but F_{2} is a tautology
D. Both F_{1} and F_{2} are not talutogies

Answer: C

- Watch Video Solution

90. The slope of the tangent to curve is $\frac{x y^{2}+y}{x}$ and it intersects the line $x+2 y=4$ at $x=-2$. If(3,y) lies on the curve then y is
A. $\frac{18}{35}$
B. $-\frac{4}{3}$
C. $-\frac{18}{19}$
D. $-\frac{18}{11}$

Answer: C

91. Locus of the mid-point of the line joining $(3,2)$ and point on $\left(x^{2}+y^{2}=1\right)$ is a circle of radius r. Find r
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: B

(D) Watch Video Solution

92. Consider the following system of equations:
$x+2 y-3 z=a$
$2 x+6 y-11 z=b$
$x-2 y+7 z=c$,
where a, b and c are real constant. Then the system of eqations :
A. has a unique solution when $5 a=2 b+c$
B. has infinite number of solutions when $5 a=2 b+c$
C. has no solution for all a, b and c
D. has a unique solutions for all a, b and c

Answer: B

- Watch Video Solution

93. If $0<a, b<1$ and $\tan ^{-1} a+\tan ^{-1} b=\frac{\pi}{4}$, then the value of
$(a+b)-\left(\frac{a^{2}+b^{2}}{2}\right)+\left(\frac{a^{3}+b^{3}}{3}\right)-\left(\frac{a^{4}+b^{4}}{4}\right)+\ldots$ is :
A. $\log _{e} 2$
B. $e^{2}-1$
C.e
D. $\log _{e}\left(\frac{e}{2}\right)$

- Watch Video Solution

94. The sum of the series $\sum_{n=1}^{\infty} \frac{n^{2}+6 n+10}{(2 n+1)!}$ is equal to
A. $\frac{41}{8} e+\frac{19}{8} e^{-1}-10$
B. $\frac{41}{8} e-\frac{19}{8} e^{-1}-10$
C. $\frac{41}{8} e+\frac{19}{8} e^{-1}+10$
D. $-\frac{41}{8} e+\frac{19}{8} e^{-1}-10$

Answer: B

Watch Video Solution

95. $f(x)$ is differentiable function at $x=a$ such that $f^{\prime}(a)=2, f(a)=4$. Find $\lim _{x \rightarrow a} \frac{x f(a)-a f(x)}{x-a}$
A. $2 a+4$
B. 4-2a
C. 2a-4
D. $a+4$

Answer: B

- Watch Video Solution

96. Let $A(1,4)$ and $B(1,-5)$ be two points let p be the point on $(x-1)^{2}+(y-1)^{2}=1$. Find maximum value of $(P A)^{2}+(P B)^{2}$
A. a straight line
B. a hyperbole
C. an ellipse
D. a parabola
97. Mirror image of point $(1,3,5)$ w.r.t plane $4 x-5 y+2 z=8$ is (α, β, γ) then $5(\alpha+\beta+\gamma)$
A. 47
B. 43
C. 39
D. 41

Answer: A

- Watch Video Solution

98. $f(x)=\int_{0}^{x} e^{t} f(t) d t+e^{x}, f(x)$ is a differentiable function on $x \in R$ then $f(x)=$
A. $2 e^{\left(e^{x}-1\right)}-1$
B. $e^{e^{x}}-1$
C. $2 e^{x}-1$
D. $e\left(e^{x}-1\right)$

Answer: A

- Watch Video Solution

99. If A_{1} is area between the curve $y=\sin x, y=\cos x$ and y-axis in 1st quadrant and A_{2} is area between $y=\sin x, y=\cos x x=\frac{\pi}{2}$ and x-axis in 1st quadrant. Then find $\frac{A_{2}}{A_{1}}$
A. $A_{1}: A_{2}=1: \sqrt{2}$ and $A_{1}+A_{2}=1$
B. $A_{1}=A_{2}$ and $A_{1}+A_{2}=\sqrt{2}$
C. $2 A_{1}=A_{2}$ and $A_{1}+A_{2}=1+\sqrt{2}$
D. $A_{1}: A_{2}=1: 2$ and $A_{1}+A_{2}=1$

Watch Video Solution

100. A seven digit number is formed using digits $3,3,4,4,4,5,5$. The probability, that number so formed is divisble by 2 , is:
A. $\frac{6}{7}$
B. $\frac{1}{7}$
C. $\frac{3}{7}$
D. $\frac{4}{7}$

Answer: C

- Watch Video Solution

SECTION-B

1. If the least and the largest real values of α, for which the equation $\mathrm{z}+\alpha|\mathrm{z}-1|+2 i=0(\mathrm{z} \in \mathrm{C}$ and $1=\sqrt{-1})$ has a solution, are p and q
respectively, then $4\left(p^{2}+q^{2}\right)$ is equal to \qquad

- Watch Video Solution

2. If $\int_{-a}^{a}(|x|+|x-2|) d x=22,(a>2)$ and $[x]$ denotes the greatest integer $\leq \mathrm{x}$, then $\int_{-a}^{a}(x+[x]) d x$ is equal to \qquad

- Watch Video Solution

3. Let $A=\{n \in N: \mathrm{n}$ is a 3-digit number $\}$
$B=\{9 k+2: k \in N\}$
and $C=\{9 k+l: K \in N\}$ for some $l(0<l<9)$ if the sum of all the elements of the set $A \cap(B \cup C)$ is 274×400, then I is equal to \qquad .

- Watch Video Solution

4. Let a matrix M of order 3×3 has elements from the set $\{0,1,2\}$. How many matrices are possible whose sum of diagonal elements is 7 of
matrix $M^{T} \cdot M$

- Watch Video Solution

5. v37

- Watch Video Solution

6. Find the minimum value of α where $\frac{4}{\sin x}+\frac{1}{1-\sin x}=\alpha$

- Watch Video Solution

7. $\lim x \rightarrow \infty \tan \left\{\sum_{r=1}^{n} \tan ^{-1}\left(\frac{1}{1+r+r^{2}}\right)\right\}$ is equal to
8. Let three vectors \vec{a}, \vec{b} and \vec{c} be such that \vec{c} is coplanar with \vec{a} and $\vec{b}, \vec{a} . \vec{c}=7$ and \vec{b} is perpendicular to \vec{c}, where $\vec{a}=-\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+\hat{k}$, then the value of $2|\vec{a}+\vec{b}+\vec{c}|^{2}$ is \qquad .

- Watch Video Solution

9. Of the three independent events E_{1}, E_{2} and E_{3}, the probability that only E_{1} occurs is α, only E_{2} occurs is β and only E_{3} occurs is γ. Let the probability p that none of events E_{1}, E_{2} and E_{3} occurs satisfy the equations $(\alpha-2 \beta), p=\alpha \beta$ and $(\beta-3 \gamma) p=2 \beta \gamma$. All the given probabilities probabilityofourrenceof ${ }_{1}$ are assumed to lie in the interval $(0,1)$. Then, $\frac{\text { probabilityofourrenceof } E_{3}}{}$ is equal to

- Watch Video Solution

10. Let $P=\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0\end{array}\right]$, where $\alpha \in R$. Suppose $Q=\left[q_{i j}\right]$ is a matrix satisfying $P Q=K I_{3}$ for some non - zero $K \in R$. If $q_{23}=-\frac{K}{8}$ and $|Q|=\frac{1}{2}$, then $\alpha^{2}+k^{2}$ is equal to \qquad .

- Watch Video Solution

11. If $p(x)$ is a polynomial of degree 6 with coefficient of x^{6} equal to 1 . If extreme value occur at $\mathrm{x}=1$ and $\mathrm{x}=-1, \lim x \rightarrow o\left(\frac{f(x)}{x^{3}}\right)=1$ then $5 f(2)=$

- Watch Video Solution

12. The number of points, at which the function $f(x)=|2 x+1|-3|x+2|+\left|x^{2}+x-2\right|, x \in R$ is not differentiable, is \qquad .

- Watch Video Solution

13. The graphs of sine and cosine functions, intersect each other at a number of points and between two consecutive points of intersection, the two graphs enclose the same area A . Then A^{4} is equal to \qquad .

- Watch Video Solution

14. Let A_{1}, A_{2}, A_{3}, be squares such that for each $n \geq 1$, the length of the side of A_{n} equals the length of diagonal of A_{n+1}. If the length of A_{1} is 12 cm , then the smallest value of n for which area of A_{n} is less than one, is
\qquad .

- Watch Video Solution

15. Let $A=\left[\begin{array}{lll}x & y & z \\ y & z & x \\ z & x & y\end{array}\right]$, where x, y and z are real numbers such that $x+y+z>0$ and $x y z=2$. If $A^{2}=I_{3}$, then the value of $x^{3}+y^{3}+z^{3}$ is \qquad .
16. $\mathrm{A}=\left[\begin{array}{cc}0 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 0\end{array}\right]$ and $(I+A)(I-A)^{-1}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$. Find $13\left(a^{2}+b^{2}\right)$

- Watch Video Solution

17. Find the total number of number lying between 100 and 1000 formed using $1,2,3,4,5$ and divisible by either 3 or 5

- Watch Video Solution

18. Let $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}, \vec{b}=\hat{i}-\hat{j}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{a}=\vec{c} \times \vec{a}$ and $\vec{r} \cdot \vec{b}=0$, then $\vec{r} \cdot \vec{a}$ is equal to
19. If the system of equations
$k x+y+2 z=1$
$3 x-y-2 z=2$
$-2 x-2 y-4 z=3$
has infinitely many solutions, then k is equal to \qquad .

- Watch Video Solution

20. The locus of the point of intersection of the lines $(\sqrt{3}) k x+k y-4 \sqrt{3}=0$ and $\sqrt{3} x-y-4(\sqrt{3}) k=0 \quad$ is a conic, whose eccentricity is \qquad .

- Watch Video Solution

21. The difference between degree and order of a differential equation that represents the family of curves given by $y^{2}=a\left(x+\frac{\sqrt{a}}{2}\right), a>0$ is
22. The number of integral values of ' k ' for which the equation $3 \sin x+4$ $\cos x=k+1$ has a solution, $k \in R$ is

- Watch Video Solution

23. Find no. of solutions $\log _{2}(x-3)=\log _{4}(x-1)$

- Watch Video Solution

24. The sum of $162^{\text {nd }}$ power of the root of the equation $x^{3}-2 x^{2}+2 x-1=0$ is

- Watch Video Solution

25. Let

$$
m, n \in N \text { and } \operatorname{gcd}(2, n)=1 .
$$

$30\binom{30}{0}+\binom{30}{1}+\ldots .+2\binom{30}{28}+1\binom{30}{29}=n .2^{m}$
then $n+m$ is equal to
(here $\binom{n}{k}={ }^{n} C_{K}$)

- Watch Video Solution

26. If $y=y(x)$ is the solution of the equation $e^{\sin y} \cos y \frac{d y}{d x}+e^{\sin y} \cos x=\cos x, y(0)=0$, then
$1+y\left(\frac{\pi}{6}\right)+\frac{\sqrt{3}}{2} y\left(\frac{\pi}{3}\right)+\frac{1}{\sqrt{2}} y\left(\frac{\pi}{4}\right)$ is equal to

- Watch Video Solution

27. Let $(\lambda, 2,1)$ be a point on the plane which passes through the point
$(4,-2,2)$. If the plane is perpendicular to the line joining the points
$(-2,-21,29)$ and $(-1,-16,23)$, then $\left(\frac{\lambda}{11}\right)^{2}-\frac{4 \lambda}{11}-4$ is equal to

- Watch Video Solution

28. The area bounded by the lines $y=||x-1|-2|$ and x axis is

- Watch Video Solution

29. The value of the integral $\int_{0}^{\pi}|\sin 2 x| d x$ is

- Watch Video Solution

30. If $\sqrt{3}\left(\cos ^{2} x\right)=(\sqrt{3}-1) \cos x+1$, the numbers of solution of the given equation when $x \in\left[0, \frac{\pi}{2}\right]$ is

- Watch Video Solution

31. For integers n and r , let $\binom{n}{r}=\left\{\begin{array}{ll}{ }^{n} C_{r} & \text { if } n \geq r \geq 0 \\ 0 & \text { otherwise }\end{array}\right.$. The maximum value of k for which the sum $\sum_{i=0}^{k}\binom{10}{i}\binom{15}{k-i}+\sum_{i=0}^{k+1}\binom{12}{i}\binom{13}{k+1-i}$ exists,
\qquad .

- Watch Video Solution

32. Let λ be an interger. If the shortest distance between the lines
$x-\lambda=2 y-1=-2 z$ and $x=y+2 \lambda=z-\lambda$ is $\frac{\sqrt{7}}{2 \sqrt{2}}$, then the value of $|\lambda|$ is
\qquad .

D Watch Video Solution

33. If $a+\alpha=1, b+\beta=2$ and $a f(n)+\alpha f\left(\frac{1}{n}\right)=b n+\frac{\beta}{n}$, then find the value $o f \frac{f(n)+f\left(\frac{1}{n}\right)}{1}$

- Watch Video Solution

34. Let a point P be such that its distance from the point $(5,0)$ is thrice the distance of P from the point $(-5,0)$. If the locus of the point P is a circle of radius r, then $4 r^{2}$ is equal to \qquad .

- Watch Video Solution

35. If the area of the triangle formed by the positive x-axis, the normal and the tangent to the circle $(x-2)^{2}+(y-3)^{2}=25$ at the point $(5,7)$ is A , then 24 A is equal to \qquad .

- Watch Video Solution

36. The variance of 10 natural numbers $1,1,1,1 \ldots k$ is less then 10 . Find maximum value of k

- Watch Video Solution

37. Sum of first four terms of GP is $\frac{65}{12}$, sum of their reciprocals is $\frac{65}{18}$.Product of their first 3 terms is 1 and if 3 rd term is α then find 2α

(Watch Video Solution

38. $S_{1}, S_{2}, \ldots, S_{10}$ are 10 students, in how many ways they can be divided in 3 groups A, B and C such that all groups have atleast one student and C has maximum 3 students.

- Watch Video Solution

39. Let $i=\sqrt{-1}$. If $\frac{(-1+i \sqrt{3})^{21}}{(1-i)^{24}}+\frac{(1+i \sqrt{3})^{21}}{(1+i)^{24}}=k$, and $n=[|\mathrm{k}|]$ be the greatest integral part of $|\mathrm{k}|$. Then $\sum_{j=0}(j+5)^{2}-\sum_{j=0}(j+5)$ is equal to
40. The number of the real roots of the equation $(x+1)^{2}+|x-5|=\frac{27}{4}$ is
\qquad .

- Watch Video Solution

41. IF $z(z \in C)$ satisfy $|z+5| \leq 5$ and $z(1+i)+\bar{z}(1-i) \geq-10$.If the maximum value of $|z+1|^{2}$ is $\alpha+\sqrt{2} \beta$ then find $\alpha+\beta$

- Watch Video Solution

42. Let the normals at all the points on a given curve pass through a fixed point (a,b). If the curve passes through $(3,-3)$ and $(4,-2 \sqrt{2})$, and given that $a-2 \sqrt{2} b=3$, then $\left(a^{2}+b^{2}+a b\right)$ is equal to \qquad

- Watch Video Solution

43. $P_{n}=\alpha^{n}+\beta^{n}, \alpha+\beta=1, \alpha \cdot \beta=-1, P_{n-1}=11, P_{n+1}=29$, then $P_{n}^{2}=$
44. If $I_{m, n}=\int 0 x^{m-1}(1-x)^{n-1} d x$ for $m, n \geq 1 \quad$ and $1 x^{m-1}+x^{n-1}$
$\int 0 \frac{x}{(1+x)^{m+n}} d x=\alpha I_{m, n}, \alpha \in R$ then α equals \qquad

- Watch Video Solution

45. If the arithmetic mean and geometric mean of the $p^{t h}$ and $q^{\text {th }}$ terms of the sequence $-16,8,-4,2, \ldots$... satisfy the equation $4 x^{2}-9 x+5=0$, then $\mathrm{p}+\mathrm{q}$ is equal to \qquad

Watch Video Solution

46. The total number of 4-digit number whose greatest common divisor with 18 is 3 , is \qquad

- Watch Video Solution

47. Let L be a common tangent line to the curves $4 x^{2}+9 y^{2}=36$ and $(2 x)^{2}+(2 y)^{2}=31$. Then the square of the slope of the line L is \qquad

- Watch Video Solution

48. If all the zeros of polynomial function $f(x)=2 x^{5}+5 x^{4}+10 x^{3}+10 x^{2}+10 x+10$ lies in $(a, a+1)$ where $a \in I$ then find $|a|$

- Watch Video Solution

49. Let $X_{1}, X_{2}, \ldots, X_{18}$ be eighteen observations such that $\sum_{i=1}^{18}\left(X_{i}-\alpha\right)=36$ and $\sum_{i=1}^{18}\left(X_{i}-\beta\right)^{2}=90$, where α and β are distinct real number. If the standard deviation of these observations is 1 then the value of $|\alpha-\beta|$ is \qquad

D Watch Video Solution

50. If $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & -1\end{array}\right]$ and $A^{20}+\alpha A^{19}+\beta A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$ Find the value of $(\alpha+\beta)$

- Watch Video Solution

(SECTION - A)

1. If A is 3×3 matrix and $|A|=4$. Operation $R_{2} \rightarrow 2 R_{2}+5 R_{3}$ is applied on $2 A$ to get new matrix B.Find $|B|$
A. 16
B. 80
C. 128
D. 64

Answer: D

2. $\int \frac{e^{3 \log _{e}(2 x)}+5 e^{2 \log _{e}(2 x)}}{e^{4 \log _{e}(x)}+5 e^{3 \log _{e}(x)}-7 e^{2 \log _{e}(x)}} \cdot d x, x>0$
A. $\log _{e}\left|x^{2}+5 x-7\right|+c$
B. $4 \log _{e}\left|x^{2}+5 x-7\right|+c$
C. $\frac{1}{4} \log _{e}\left|x^{2}+5 x-7\right|+c$
D. $\log _{e} \sqrt{x^{2}+5 x-7}+c$

Answer: B

Watch Video Solution

3. The shortest distance between the line $x-y=1$ and the curve $x^{2}=2 y$ is:
A. $\frac{1}{2}$
B. $\frac{1}{2 \sqrt{2}}$
c. $\frac{1}{\sqrt{2}}$
D. 0

Answer: B

- Watch Video Solution

4. If $z^{2}+\alpha z+\beta$ has one root $1-2 i$, then find the value of $\alpha-\beta(\alpha, \beta, \in R)$
A. -3
B. -7
C. 7
D. 3

Answer: B

5. If a hyperbola passes through the focus of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ and its transverse and conjugate gate axis coincides with the major and minor axis of the ellipse, and product of their eccentricities is 1 , then
A. $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$
B. $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
C. $x^{2}-y^{2}=9$
D. $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$

Answer: B

- Watch Video Solution

6. If $\cos x+\cos y-\cos (x+y)=\frac{3}{2}$, then
A. $\frac{1}{2}$
B. $\frac{1+\sqrt{3}}{2}$
c. $\frac{\sqrt{3}}{2}$
D. $\frac{1-\sqrt{3}}{2}$

Answer: B

- Watch Video Solution

7. A plane passes through the points $A(1,2,3), B(2,3,1)$ and $C(2,4,2)$. If O is the origin and P is $(2,-1,1)$, then the projection of $O P$ on the plane is of length :
A. $\sqrt{\frac{2}{7}}$
B. $\sqrt{\frac{2}{3}}$
C. $\sqrt{\frac{2}{11}}$
D. $\sqrt{\frac{2}{5}}$

Answer: C

8. In a group of 400 people, 160 are smokers and non-vegetarian, 100 are smokers and vegetarian and the remaining 140 are non-smokers and vegetarian. Their chances of getting a particular chest disorder are 35%, 20% and 10% respectively. A person is chosen from the group at random and is found to be suffering from the chest disorder. The probability that the selected person is a smoker and non-vegetarian is :
A. $\frac{7}{45}$
B. $\frac{14}{45}$
C. $\frac{28}{45}$
D. $\frac{8}{45}$

Answer: C

9. $\operatorname{cosec}\left[2 \cot ^{-1}(5)+\cos ^{-1}\left(\frac{4}{5}\right)\right]$ is equal to
A. $\frac{56}{33}$
B. $\frac{65}{56}$
C. $\frac{65}{33}$
D. $\frac{75}{56}$

Answer: B

- Watch Video Solution

10. If the curve $x^{2}+2 y^{2}=2$ intersects the line $x+y=1$ at two points P and Q , then the angle subtended by the line segment PQ at the origin is :
A. $\frac{\pi}{2}+\tan ^{-1}\left(\frac{1}{3}\right)$
B. $\frac{\pi}{2}-\tan ^{-1}\left(\frac{1}{3}\right)$
C. $\frac{\pi}{2}-\tan ^{-1}\left(\frac{1}{4}\right)$
D. $\frac{\pi}{2}+\tan ^{-1}\left(\frac{1}{4}\right)$

Answer: D

(Watch Video Solution

11. The contrapositive of the statement "If you will work, you will earn money" is :
A. You will earn money, if you will not work
B. If you will earn money, you will work
C. If you will not earn money, you will not work
D. To earn money, you need to work

Answer: C

12. Let $f(x)=\frac{5^{x}}{5^{x}+5}$ Then find the value of
$f\left(\frac{1}{20}\right)+f\left(\frac{2}{20}\right)+f\left(\frac{3}{20}\right)+\ldots+f\left(\frac{39}{20}\right)$
A. $\frac{19}{2}$
B. $\frac{49}{2}$
C. $\frac{29}{2}$
D. $\frac{39}{2}$

Answer: D

(Watch Video Solution

13. If for the matrix, $A=\left[\begin{array}{cc}1 & -\alpha \\ \alpha & \beta\end{array}\right], A A^{T}=I_{2}$, then the value of $\alpha^{4}+\beta^{4}$ is:
A. 4
B. 2
C. 3
D. 1

Answer: D

- Watch Video Solution

14. Minimum value at $a^{a x}+a^{1-a x} ; a>0$ and $x \in R$, is
A. $2 a$
B. $2 \sqrt{a}$
C. $a+\frac{1}{a}$
D. $a+1$

Answer: B

- Watch Video Solution

15. $I_{n}=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\left(\cot ^{n} x\right) d x$, then :
A. $\frac{1}{I_{2}+I_{4}}, \frac{1}{I_{3}+I_{5}}, \frac{1}{I_{4}+I_{6}}$ are in G.P.
B. $I_{2}+I_{4}, I_{3}+I_{5}, I_{4}+I_{6}$ are in A.P.
C. $I_{2}+I_{4},\left(I_{3}+I_{5}\right)^{2}, I_{4}+I_{6}$ are in G.P.
D. $\frac{1}{I_{2}+I_{4}}, \frac{1}{I_{3}+I_{5}}, \frac{1}{I_{4}+I_{6}}$ are in A.P.

Answer: D

- Watch Video Solution

16. $\lim N \rightarrow \infty\left[\frac{1}{n}+\frac{n}{(n+1)^{2}}+\frac{n}{(n+2)^{2}}+\ldots+\frac{n}{(2 n-1)^{2}}\right]$
A. $\frac{1}{2}$
B. 1
C. $\frac{1}{3}$
D. $\frac{1}{4}$
17. A number is selected from 4 digit numbers of the form $5 n+2$ where n belongs to N containing exactly one digit as 7 . Find the probability that number when divided by 5 leaves remainder 2 .
A. $\frac{2}{9}$
B. $\frac{122}{297}$
C. $\frac{97}{297}$
D. $\frac{1}{5}$

Answer: C

- Watch Video Solution

18. If α and β be root of $x^{2}-6 x-2=0$ with $\alpha>\beta$ if $a_{n}=\alpha^{n}-\beta^{n}$ for $n \geq 1$ then the value of $\frac{a_{10}-2 a_{8}}{3 a_{9}}$
A. 2
B. 1
C. 4
D. 3

Answer: A

- Watch Video Solution

19. Set A contain 3 elements, set B contain 5 elements, number of oneone function from $A \rightarrow B$ is "x" and number of one-one functions from $A \rightarrow A \times B$ is "y" then relation between x and y
A. $y=273 x$
B. $2 y=91 x$
C. $y=91 x$
D. $2 y=273 x$

Answer: B

D Watch Video Solution

20. The following system of linear equations
$2 x+3 y+2 z=9$
$3 x+2 y+2 z=9$
$x-y+4 z=8$
A. has a solution (α, β, γ) satisfying $\alpha+\beta^{2}+\gamma^{3}=12$
B. has infinitely many solutions
C. does not have any solution
D. has a unique solution

Answer: D

1. Total number of two digit number n What is the value of n such that $\left(3^{n}+7^{n}\right)$ is divisible by 10

- Watch Video Solution

2. $f(x)= \begin{cases}\min \left\{|x|, 2-x^{2}\right\}, & -2 \leq x \leq 2 \\ {[|x|],} & 2<|x| \leq 3\end{cases}$
where $[\mathrm{x}]$ denotes the greatest integer $\leq x$. The number of points, where f is not differentiable in $(-3,3)$ is \qquad .

- Watch Video Solution

3. Let $\vec{a}=\hat{i}+\alpha \hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}-\alpha \hat{j}+\hat{k}$. If the area of the parallelogram whose adjacent sides are represented by the vectors \vec{a} and \vec{b} is $8 \sqrt{3}$ square, then $\vec{a} . \vec{b}$ is equal to \qquad .
4. When x is divided by 4 leaves remainder 3 then $(2022+x)^{2022}$ is divisided by 8 , remainder is

- Watch Video Solution

5. If the curves $x=y^{4}$ and $\mathrm{xy}=\mathrm{k}$ cut at right angles, then $(4 k)^{6}$ is equal to
\qquad .

- Watch Video Solution

6. A line is a common tangent to the circle $(x-3)^{2}+y^{2}=9$ and the parabola $y^{2}=4 x$. If the two points of contact (a, b) and (c, d) are distinct and lie in the first quadrant, then $2(a+c)$ is equal to \qquad .

- Watch Video Solution

$$
a x-\left(e^{4 x}-1\right)
$$

7. $\lim _{x \rightarrow 0}=b$. Find $a-2 b$

$$
a x\left(e^{4 x}-1\right)
$$

- Watch Video Solution

8. If the curve, $y=y(x)$ represented by the solution of the differential equation $\left(2 x y^{2}-y\right) d x+x d y=0$, passes through the intersection of the lines, $2 x-3 y=1$ and $3 x+2 y=8$, then $|y(1)|$ is equal to \qquad .

- Watch Video Solution

9. $I=\int_{-2}^{2}\left|3 x^{2}-3 x-6\right| d x$. Find the value of I

- Watch Video Solution

10. A line 'l' passing through the origin is perpendicular to the lines
$l_{1}:(3+t) \hat{i}+(-1+2 t) \hat{j}+(4+2 t) \hat{k}$
$I_{2}:(3+2 s) \hat{i}+(3+2 s) \hat{i}+(3+2 s) \hat{j}+(2+s) \hat{k}$,
Then the coordinate(s) of the point(s) on l_{2} at a distance of $\sqrt{17}$ from the point of intersection of l and l_{1} is (are) (a, b, c) then $18(a+b+c)$ is equal to

- Watch Video Solution

MATHEMATICS (SECTION A)

1. The number of elements in the set $\{x \in R:(|x|-3)|x+4|=6\}$ is equal to : then 'a' must be greater then :
A. $-\frac{1}{2}$
B. $\frac{1}{2}$
C. 1
D. -1
2. A card from a pack 52 cards is lost. From the remaining cards, two cards are drawn and are found to be speades. Find the probability that missing card is also a spade.
A. $\frac{52}{867}$
B. $\frac{22}{425}$
c. $\frac{39}{50}$
D. $\frac{3}{4}$

- Watch Video Solution

3. The locus of the midpoints of the chord of the circle, $x^{2}+y^{2}=25$ which is tangent to the hyperbola, $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ is :
A. $\left(x^{2}+y^{2}\right)^{2}-16 x^{2}+9 y^{2}=0$
B. $\left(x^{2}+y^{2}\right)^{2}-9 x^{2}+144 y^{2}=0$
C. $\left(x^{2}+y^{2}\right)^{2}-9 x^{2}+16 y^{2}=0$
D. $\left(x^{2}+y^{2}\right)^{2}-9 x^{2}-16 y^{2}=0$

- Watch Video Solution

4. The number of elements in the set $\{x \in R:(|x|-3)|x+4|=6\}$ is equal to :
A. 3
B. 1
C. 4
D. 2
5. Consider three observations a, b and c such that $\mathrm{b}=\mathrm{a}+\mathrm{c}$. If the standard deviation of $a+2, b+2, c+2$ is d, then which of the following is true ?
A. $b^{2}=3\left(a^{2}+c^{2}\right)+9 d^{2}$
B. $b^{2}=\left(a^{2}+c^{2}\right)-9 d^{2}$
C. $b^{2}=\left(a^{2}+c^{2}+d^{2}\right)$
D. $b^{2}=a^{2}+c^{2}+3 d^{2}$

- Watch Video Solution

6. Let a vector $a \hat{i}+\beta \hat{j}$ be obtained by rotating the vector $\sqrt{3} \hat{i}+\hat{j}$ by an angle 45° about the origin in counterclockwise direction in the first quadrant. Then the area of triangle having vertices $(\alpha, \beta),(0, \beta)$ and $(0,0)$ is equal to:
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{\sqrt{2}}$
D. $2 \sqrt{2}$

- Watch Video Solution

7. LetA $=\left[\begin{array}{cc}i & -i \\ -i & i\end{array}\right], i \sqrt{-i}$ Then, the system of linear equations
$A^{8}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}8 \\ 64\end{array}\right]$ has:
A. No solution
B. Exactly two solutions
C. Infinitely many solutions
D. A unique solution
8. The number of roots of the equation,
$(81)^{\sin ^{2} x}+(81)^{\cos ^{2} x} x=30$
in the interval $[0, \pi]$ is equal to :
A. 3
B. 4
C. 8
D. 2

- Watch Video Solution

9. Let the functions $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined as:
$f(x)=\left\{\begin{array}{ll}x+2 & x<0 \\ x^{2} & x>0\end{array}\right.$ and $g(x)= \begin{cases}x^{3} & x<1 \\ 3 x-2 & x>1\end{cases}$
Then, the number of points in R where $(\mathrm{fog})(\mathrm{x})$ is NOT differentiable is equal to :
B. 3
C. 2
D. 1
10. If $y=y ı r)$ is the solution of the differential equation, $\frac{d y}{d x}+2 y \tan x=\sin x, y\left(\frac{\pi}{3}\right)=0$, then the maximum value of the function $y(x)$ over R is equal to :
A. $\frac{1}{2}$
B. $-\frac{15}{4}$
C. 8
D. $\frac{1}{8}$
11. Let a complex number $z|z|=1$, . satisfy $\log \frac{1}{\sqrt{2}}\left(\frac{|z|+11}{(|z|-1)^{2}}\right) \leq 2$. Then, the largest value of $|z|$ is equal to \qquad
A. 8
B. 6
C. 7
D. 5

- Watch Video Solution

12. $\operatorname{Let}_{K}=\sum_{r=1}^{k} \tan ^{-1}\left(\frac{6^{r}}{2^{2 r+1}+3^{2 r+1}}\right)$. Then $\lim k \rightarrow \infty S_{k}$ is equal to :
A. $\frac{\pi}{2}$
B. $\tan ^{-1}(3)$
C. $\tan ^{-1}\left(\frac{3}{2}\right)$
D. $\cot ^{-1}\left(\frac{3}{2}\right)$

D Watch Video Solution

13. The range of a R for which the function
$f(x)=(4 a-3)\left(x+\log _{e} 5\right)+2(a-7) \cot \left(\frac{x}{2}\right) \sin ^{2}\left(\frac{x}{2}\right), x \neq 2 n \pi, n \in N \quad$ has critical points, is :
A. $[1, \infty)$
B. $\left[-\frac{4}{3}, 2\right]$
C. $(-3,1)$
D. $(-\infty,-1]$
14. If $\log _{10} \sin x+\log _{10} \cos x=-1$ and $\log _{10}(\sin x+\cos x)=\frac{\left(\log _{10} n\right) n-1}{2}$ then the value of n is \qquad
A. 9
B. 20
C. 12
D. 16

D Watch Video Solution

15.

If
for
$x \in\left(0, \frac{\pi}{2}\right), \log _{10} \sin x+\log _{10} \cos x=-1$ and $\log _{10}(\sin x+\cos x)=\frac{1}{2}\left(\log _{10} n-1\right)$
then the value of n is equal to :
A. 1
B. 12
C. 2^{n-1}
D. n

- Watch Video Solution

16. Let the position vectors of two points P and Q be $3 \hat{i}-\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}-4 \hat{k}$, respectively. Let Rand S be two points such that the direction ratios of lines $P R$ and $Q S$ are (4, $-1,2$) and ($-2,1,-2$), respectively. Let lines $P R$ and $Q S$ intersect at T. If the vector $T A$ is perpendicular to both $\overrightarrow{P R}$ and $\overrightarrow{Q S}$ and the length of vector $\overrightarrow{T A i s} \sqrt{5}$ units, then the modulus of a position vector of A, is:
A. $\sqrt{5}$
B. $\sqrt{171}$
C. $\sqrt{227}$
D. $\sqrt{482}$

- Watch Video Solution

17. If for $a>0$, the feet of perpendiculars from the points $\mathrm{A}(\mathrm{a},-2 \mathrm{a}, 3)$ and $B(0,4,5)$ on the plane $I x+m y+n z=0$ are points $c(0,-a,-1)$ and D respectively, then the length of line segment $C D$ is equal to :
A. $\sqrt{55}$
B. $\sqrt{41}$
C. $\sqrt{66}$
D. $\sqrt{31}$

- Watch Video Solution

18. Let P be a plane $\mathrm{Ix}+\mathrm{my}+\mathrm{nz}=0$ containing the line, $\frac{1-x}{1}=\frac{y+4}{2}=\frac{z+2}{3}$. If plane P divides the line segment $A B$ joining points $A(-3,-6,1)$ and $B(2,4$,
-3) in ratio k : 1 then the value of k is equal to:
A. 3
B. 4
C. 1.5
D. 2
19. If n is the number of irrational terms in the expansion of $\left(3^{1 / 4}+5^{1 / 8}\right)^{60}$, then $(n-1)$ is divisible by :
A. 8
B. 26
C. 30
D. 7
20. Which of the following Boolean expression is a tautology ?
A. $(p \wedge q) \wedge(p \rightarrow q)$
B. $(p \wedge q) \vee(p \vee q)$
C. $(p \wedge q) \rightarrow(p \rightarrow q)$
D. $(p \wedge q) \vee(p \rightarrow q)$

- Watch Video Solution

21. The system of equations $k x+y+z=1, x+k y+z=k$ and $x+y+z k=k^{2}$ has no solution if k is equal to :
A. -1
B. 1
C. -2
D. 0

- Watch Video Solution

22. If the fourth term in the expansion of $\left(x+x^{\log _{2} x}\right)^{7}$ is 4480 , then the value of x where $\mathrm{x} \in N$ is equal to :
A. 4
B. 2
C. 1
D. 3
23. If the Boolean expression $(p \Rightarrow q) \Leftrightarrow(\sim q * p)$ is a tautology, then the Boolean expression $p *(\sim q)$ is equivalent to :
A. $q \Rightarrow p$
B. $p \Rightarrow q$
C. $p \Rightarrow \sim q$
D. $\sim q \Rightarrow p$

- Watch Video Solution

24. Which of the following is true for $y(x)$ that satisfies the differential equation $\frac{d y}{d x}=x y-1+x-y, y(0)=0$:
A. $y(1)=e^{\frac{1}{2}}-e^{-\frac{1}{2}}$
B. $y(1)=e^{\frac{1}{2}-1}$
C. $y(1)=e^{-\frac{1}{2}}-1$
D. $y(1)=1$

(Watch Video Solution

25. Choose the incorrect statement about the two circles whose equations are given below :
$x^{2}+y^{2}-10 x-10 y+41=0$ and
$x^{2}+y^{2}-16 x-10 y+80=0$
A. Distance between two centres is the average of radii of both the circles
B. Circles have two intersection points.
C. Both circles' centres lie inside regio of one another.
D. Both circles pass through the centre of each other.
26. If $A=\left(\begin{array}{ll}0 & \sin \alpha \\ \sin \alpha & 0\end{array}\right)$ and $\operatorname{det}\left(A^{2}-\frac{1}{2} I\right)=0$, then a possible value of α is :
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{4}$
27. If $\cot ^{-1}(\alpha)=\cot ^{-1}(2)+\cot ^{-1}(8)+\cot ^{-1}(18)+\cot ^{-1}(32)+\ldots \ldots \ldots$. upto 100 terms, then α is :
A. 1.00
B. 1.01
C. 1.03
D. 1.02

- Watch Video Solution

28. Two dices are rolled. If both dices have six faces numbered 1,2,3,5,7 and 11 , then the probability that the sum of the numbers on the top faces is less than or equal to 8 is :
A. $\frac{4}{9}$
B. $\frac{1}{2}$
C. $\frac{17}{36}$
D. $\frac{5}{12}$
29. In a triangle $P Q R$, the co-ordinates of the points P and Q are $(-2,4)$ and $(4,-2)$ respectively. If the equation of the perpendicular bisector of $P R$ is $2 x-y+2=0$, then the centre of the circumcircle of the $\triangle P Q R$ is :
A. $(1,4)$
B. (-2,-2)
C. $(0,2)$
D. (-1, 0)

- Watch Video Solution

30. Which of the following statements is incorrect for the function $g(\alpha)$
for $x \in R$ sucth that $g(\alpha)=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin ^{\alpha} x}{\cos ^{\alpha} x+\sin ^{\alpha} x} d x$
A. $g(\alpha)$ is a strictly increasing function
B. $g(\alpha)$ is an even function
C. $g(\alpha)$ is a strictly decreasing function
D. $g(\alpha)$ has an inflection point at $\alpha=-\frac{1}{2}$

- Watch Video Solution

31. What is the inverse of the function $y=5^{\log x}$?
A. $x=y^{\frac{1}{\log 5}}$
B. $x=y^{\log 5}$
C. $x=5^{\frac{1}{\log y}}$
D. $x=5^{\log y}$
32. Team 'A' consists of 7 boys and n girls and Team 'B' has 4 boys and 6 girls. If a total of 52 single matches can be arranged between these two teams when a boy plays against a boy and a girl plays against a girl, then n is equal to :
A. 6
B. 5
C. 4
D. 2

- Watch Video Solution

33. Let $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $\vec{b}=7 \hat{i}+\hat{j}-6 \hat{k}$. If
$\vec{r} \times \vec{a}=\vec{r} \times \vec{b}, \vec{r} \cdot(\hat{i}+2 \hat{j}+\hat{k})=-3$, then $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+\hat{k})$ is equal to :
A. 13
B. 10
C. 12
D. 8

- Watch Video Solution

34. In a school, there are three types of games to be played. Some of the students play two types of games, but none play all the three games. Which Venn diagrams can justify the above statement ?

P

Q

R
A. P and Q
B. None of these
C. Q and R
D. P and R

- Watch Video Solution

35. The value of $4+\frac{1}{5+\frac{1}{4+\frac{1}{5+\frac{1}{4+\ldots, \infty}}}}$ is
A. $2+\frac{4}{\sqrt{5}} \sqrt{30}$
B. $5+\frac{2}{5} \sqrt{30}$
C. $4+\frac{4}{\sqrt{5}} \sqrt{30}$
D. $2+\frac{2}{5} \sqrt{30}$
36. Area of the triangle formed by the complex number z, iz and $z+i z$ is
A. $\frac{1}{2}|z||i z|^{2}$
B. 1
C. $\frac{1}{2}$
D. $\frac{1}{2}|z|^{2}$
37. The sum of possible values of x for
$\tan ^{-1}(x+1)+\cot ^{-1}\left(\frac{1}{x-1}\right)=\tan ^{-1}\left(\frac{8}{31}\right)$ is :
A. $-\frac{31}{4}$
B. $-\frac{32}{4}$
C. $-\frac{30}{4}$
D. $-\frac{33}{4}$
38. The equation of the plane which contains the y-axis and passes through the point ($1,2,3$) is :
A. $x+3 z=0$
B. $3 x-z=0$
C. $3 x+z=6$
D. $x+3 z=10$

- Watch Video Solution

39. The line $2 x-y+1=0$ is tangent to the circle at the point $(2,5)$ and the center of the circle lies on $x-2 y=4$. The radius of the circle is
A. $3 \sqrt{5}$
B. $4 \sqrt{5}$
C. $5 \sqrt{4}$
D. $5 \sqrt{3}$

- Watch Video Solution

40. The value of $\lim x \rightarrow 0^{+}$
denotes the greatest integer $\leq x$ is :
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. 0
D. π
41. Let $f: R-\{3\} \rightarrow R-\{1\}$ be defined by $\mathrm{f}(\mathrm{x})=\frac{x-2}{x-3}$

Let $g: R \rightarrow R$ be given as $g(x)=2 x-3$. Then, the sum of all the values of x for which $f^{-1}(x)+g^{-1}(x)=\frac{13}{2}$ is equal to
A. 2
B. 7
C. 3
D. 5

- Watch Video Solution

42. Let $f: R \rightarrow R$ be a function defined as
$f(x)= \begin{cases}\frac{\sin (a+1) x+\sin 2 x}{2 x} & \text { if } x<0 \\ b & \text { if } x=0 \\ \frac{\sqrt{x+b x^{3}}-\sqrt{x}}{b x^{\frac{5}{2}}} & \text { if } x>0\end{cases}$

If f is continuous at $x=0$ then the value of $a+b$ is equal to :
A. -3
B. -2
C. $-\frac{3}{2}$
D. $-\frac{5}{2}$

- Watch Video Solution

43. Let S_{1} be the sum of first 2 n terms of an arithmetic progression. Let S_{2} be the sum first 4 n terms of the same arithmeti progression. If $\left(S_{2}-S_{1}\right)$ is 1000 , then the sum of the first $6 n$ term of the arithmetic progression is equal to :
A. 3000
B. 5000
C. 1000
D. 7000

- Watch Video Solution

44. Let in a series of $2 n$ observations, half of them are equal to a and remaining half are equal to -a . Also by adding $\mathrm{a} b$ in each of these observation, the mean and standard deviation of a new set become 5 and 20 respectively. Then the value of $a^{2}+b^{2}$ is equal to :
A. 650
B. 425
C. 925
D. 250
45. Let \vec{a} and \vec{b} be two non-zero vectors perpendicular to each other and $|\vec{a}|=|\vec{b}|$. If $|\vec{a} \times \vec{b}|=|\vec{a}|$, then the angle between the vectors $(\vec{a}+\vec{b}+(\vec{a} \times \vec{b}))$ and \vec{a} is equal to :
A. $\sin ^{-1}\left(\frac{1}{\sqrt{6}}\right)$
B. $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
C. $\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
D. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$

- Watch Video Solution

46. Let a complex number be $w=1-\sqrt{3}$, Let another complex number z be such that $|z \mathrm{w}|=1$ and $\arg (\mathrm{z})-\arg (\mathrm{w})=\frac{\pi}{2}$. Then the area of the triangle with vertices origin, z and w is equal to :
A. 2
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. 4
47. Consider a hyperbola $H: x^{2}-2 y^{2}=4$. Let the tangent at a point $P(4, \sqrt{6})$ meet the x-axis at Q and latus rectum at $R\left(x_{1}, y_{1}\right), x_{1}>0$. If F is a focus of H which is nearer to the point P , then the area of $\triangle Q F R$ is equal to
A. $4 \sqrt{6}-1$
B. $\sqrt{6}-1$
C. $\frac{7}{\sqrt{6}}-2$
D. $4 \sqrt{6}$

- Watch Video Solution

48. Let $g(x)=\int_{0}^{x} f(t) d t$, where f is continuous function in $[0,3]$ such that $\frac{1}{3} \leq f(t) \leq 1$ for all $t \in[0,1]$ and $0 \leq f(t) \leq \frac{1}{2}$ for all $t \in(1,3]$. The largest possible interval in which $\mathrm{g}(3)$ lies is:
A. $\left[-1,-\frac{1}{2}\right]$
B. $[1,3]$
C. $\left[\frac{1}{3}, 2\right]$
D. $\left[-\frac{3}{2},-1\right]$

- Watch Video Solution

49. Let the centroid of an equilateral triangle $A B C$ be at the origin. Let one of the sides of equilateral triangle be along the straight line $x+y=3$. If
R and r be the radius of circumcircle and incircle respectively of $\triangle A B C$, then $(R+r)$ is equal to :
A. $2 \sqrt{2}$
B. $7 \sqrt{2}$
c. $\frac{9}{\sqrt{2}}$
D. $3 \sqrt{2}$

- Watch Video Solution

50. In a triangle $A B C$, if $|\overrightarrow{B C}|=8,|\overrightarrow{C A}|=7,|\overrightarrow{A B}|=10$, then the projection of the $A B$ on $A C$ is equal to :
A. $\frac{127}{20}$
B. $\frac{25}{4}$
C. $\frac{85}{14}$
D. $\frac{115}{16}$

D Watch Video Solution

51. Let the system of linear equations
$4 x+\lambda y+2 z=0$
$2 x-y+z=0$
$\mu x+2 y+3 z=0, \lambda, \mu \in R$
has a non-trivial solution. Then which of the following is true?
A. $\lambda=3, \mu \in R$
B. $\lambda=2, \mu \in R$
C. $\mu=-6, \lambda \in R$
D. $\mu=6, \lambda \in R$
52. If $15 \sin ^{4} \alpha+10 \cos ^{4} \alpha=6$, some $\alpha \in R$, then the value of $27 \sec ^{6} \alpha+8 \operatorname{cosec}^{6} \alpha$ is equal to
A. 250
B. 400
C. 350
D. 500

- Watch Video Solution

53. Let a tangent be drawn to the ellipse
$\frac{x^{2}}{27}+y^{2}=1$ at $(3 \sqrt{3} \cos \theta, \sin \theta)$, where $\theta \in\left(0, \frac{\pi}{2}\right)$, Then the value of θ such that the sum of intercepts on axes made by this tangent is minimum is equal to :
A. $\frac{\pi}{6}$
B. $\frac{\pi}{8}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$
54. The area bounded by the curve $4 y^{2}=x^{2}(4-x)(x-2)$ is equal to :
A. $\frac{3 \pi}{8}$
B. $\frac{3 \pi}{2}$
C. $\frac{\pi}{8}$
D. $\frac{\pi}{16}$
55. Define a relation R over a class of $n \times n$ real matrices A and B as $A R B$ iff there exists a non-singular matrix P such that $A=P^{-1} B P$ Then which of the following is true?
A. R is symmetric, transitive but not reflexive
B. R is reflexive, transitive but not symmetric
C. R is an equivalence relation
D. R is reflecxive, symmetric but not transitive

- Watch Video Solution

56. Let in a Binomial distribution, consisting of 5 independent trials, probalitiies of exactly 1 and 2 sucesses be 0.4096 and 0.2048 resepectively. Then the probability of getting exactly 3 sucesses is equal to :
B. $\frac{32}{625}$
C. $\frac{128}{625}$
D. $\frac{80}{243}$
57. Let $S_{1}: x^{2}+y^{2}=9$ and $S_{2}:(x-2)^{2}+y^{2}=1$. Then the locus of centre of a variable circle S which touches S_{1} internally and S_{2} externally always passes through the points:
A. $\left(2, \pm \frac{3}{2}\right)$
B. $(0, \pm \sqrt{3})$
C. $(1, \pm 2)$
D. $\left(\frac{1}{2}, \pm \frac{\sqrt{5}}{2}\right)$
58. A pole stands vertically inside a triangular park ABC. Let the angle of elevation of the top of the pole from corner of the park be $\frac{\pi}{3}$. If the radius of the circumcircle of $\triangle A B C$ is 2 . then the height of the pole is equal to :
$2 \sqrt{3}$
A. $\frac{}{3}$
B. $\frac{1}{\sqrt{3}}$
C. $\sqrt{3}$
D. $2 \sqrt{3}$

- Watch Video Solution

59. If P and Q are two statements, then which of the following compound statement is a tautology?

$$
\text { A. }(P \Rightarrow Q) \wedge \sim Q) \Rightarrow Q
$$

B. $(P \Rightarrow Q) \wedge \sim Q) \Rightarrow P$
C. $(P \Rightarrow Q) \wedge \sim Q) \Rightarrow(P \wedge Q)$
D. $(P \Rightarrow Q) \wedge \sim Q) \Rightarrow \sim P$

- Watch Video Solution

60. Let $y=y(x)$ be the solution of the differential equation
$\frac{d y}{d x}=(y+1)\left((y+1) e^{\frac{x^{2}}{2}}-x\right), 0<x<2.1$, with $y(2)=0$. Then the value of $\frac{d y}{d x}$ at $x=1$ is equal to .
A. $-\frac{2 e^{2}}{\left(1+e^{2}\right)^{2}}$

$$
\left(1+e^{2}\right)^{2}
$$

B. $\frac{5 e^{\frac{1}{2}}}{\left(e^{2}+1\right)^{2}}$
C. $\frac{-e^{\frac{3}{2}}}{\left(e^{2}+1\right)^{2}}$
D.

$$
\left(1+e^{2}\right)^{2}
$$

- Watch Video Solution

MATHEMATICS (SECTION B)

1. The total number of 3×3 matrices A having entries from the set $\{0,1,2,3\}$ such that the sum of all the diagonal entries $A^{T} A$ is 9 , is equal to \qquad

- Watch Video Solution

2. Let $F:(0,2) \rightarrow R$ be defined as $f(x)=\log _{2}\left(1+\tan \left(\frac{\pi x}{4}\right)\right)$.

Then $\lim n \rightarrow \infty \frac{2}{n}\left(f\left(\frac{1}{n}\right)+f\left(\frac{2}{n}\right)+\ldots+f(1)\right)$ is equal to
3. Let $A B C D$ be a square of side of unit length. Let a circle C_{1} centered at A with unit radius is drawn. Another circle C_{2} which touches C_{1} and the lines $A D$ and $A B$ are tangent to it, is also drawn. Let a tangent line from the point to the circle C_{2} meet the side $A B$ at E. If the length of $E B$ is $\alpha+\sqrt{3} \beta$, where α, β are integers, then $\alpha+\beta$ is equal to \qquad

- Watch Video Solution

4. Let the curve $y=y(x)$ be the solution of the differential equation, $\frac{d y}{d x}=2(x+1)$. If the numerical value of area bounded by the curve $y=y(x)$ $4 \sqrt{8}$ and x-axis is $\frac{}{3}$, then the value of $y(1)$ is equal to \qquad

(Watch Video Solution

5. Let z and w be two complex number such that $w=z \vec{z}-2 z+2,\left|\frac{z+i}{z-3 i}\right|=1$ and $\operatorname{Re}(w)$ has minimum value. Then the
minimum value of $n \in N$ for which w^{n} is real, is equal to \qquad .

- Watch Video Solution

6. Let $f: R \rightarrow R$ be continuous function such that $f(x)+f(x+1)=2$, for all $x \in R . \operatorname{IfI} I_{1} \int_{0}^{8} f(x) d x$ and $I_{2}=\int_{-1}^{3} f(x) d x$, then the value of $I_{2}+2 I_{2}$ is equal to \qquad

D Watch Video Solution

7. Consider an arithmetic series and a geometric series having four initial terms from the set $\{11,8,21,16,26,32,4\}$. If the last terms of these series are the maximum possible four digit numbers, then the number of common terms in these two series is equal to \qquad

- Watch Video Solution

8.

$P=\left[\begin{array}{lll}-30 & 20 & 56 \\ 90 & 140 & 112 \\ 120 & 60 & 14\end{array}\right]$ and $A=\left[\begin{array}{lll}2 & 7 & \omega^{2} \\ -1 & -\omega & 1 \\ 0 & -\omega & -\omega+1\end{array}\right]$ where $\omega=\frac{-1+\sqrt{3}}{2}$, and I_{3} be the identity matrix of order 3 . If the determinate of the matrix $\left(P^{-1} A P-I_{3}\right)^{2}$ is $a \omega^{2}$, then the value of α is equal to \qquad .

- Watch Video Solution

9. If the normal to the curve $y(x)=\int_{0}^{2}\left(2 t^{2}-15 t+10\right) \mathrm{dt}$ at a point (a, b) is parallel to the line $x+3 y=5, a>1$, then the value of $|a+6 b|$ is equal to

- Watch Video Solution

10. If $\lim x \rightarrow 0 \frac{a e^{x}-b \cos x+c e^{-x}}{x \sin x}=2$, then $a+b+c$ is equal to
11. If [.] represents the greatest integer function, then the value of $\left|\int_{0} \delta^{\frac{\pi}{2}}\left[\left[x^{2}\right]-\cos x\right] d x\right|$ is

- Watch Video Solution

12. The maximum value of z in the following equation $z=6 x y+y^{2}$, where $3 x+4 y \leq 100$ and $4 x+3 y \leq 75$ for $x \geq 0$ and $y \geq 0$ is \qquad

- Watch Video Solution

13. The minimum distance between any two points P_{1} and P_{2} while considering point P_{1} on one circle and point P_{2} on the other circle for the given circles equations
$x^{2}+y^{2}-10 x-10 y+41=0$
$x^{2}+y^{2}-24 x-10 y+160=0$ is \qquad
14. If $A=\left[\begin{array}{cc}2 & 3 \\ 0 & -1\end{array}\right]$, then the value of $\left.\operatorname{det}\left(A^{4}\right) \mid \operatorname{det}\left(A^{10}-\operatorname{Adj}(2 A)\right)^{10}\right)$ is equal to \qquad .

- Watch Video Solution

15. If the function $f(x)=\frac{\cos (\sin x)-\cos x}{x^{4}}$ is continuous at each point in its domain and $f(0)=\frac{1}{K}$, then k is \qquad .

- Watch Video Solution

16. If $f(x)=\sin \left(\cos ^{-1}\left(\frac{1-2^{2 x}}{1+2^{2 x}}\right)\right)$ and its fist derivative with respect to x is b
$-\frac{-}{a} \log _{e} 2$ when $\mathrm{x}=1$, where a and b are integers, then the minimum value of $\left|a^{2}-b^{2}\right|$ is \qquad .
17. If the eqution of the plane passing through the line of intersection of planes $2 x-7 y+4 z-3=0,3 x-5 y+4 z+11=0$ and the point $(-2,1,3)$ at $a x+b y+c z-7=0$, then the value of $2 a+b+c-7$ is \qquad .

- Watch Video Solution

18. If $(2021)^{3762}$ is divided by 17 , then the remainder is \qquad .

- Watch Video Solution

19. If $\vec{a}=\alpha \hat{i}+\beta \hat{j}+3 \hat{k}$,
$\vec{b}=-\beta \hat{i}-\alpha \hat{j}-\hat{k}$ and
$\vec{c}=\hat{i}-2 \hat{j}-\hat{k}$
such that $\vec{a} \cdot \vec{b}=1$ and $\vec{b} \cdot \vec{c}=-3$ then $\frac{1}{3}((\vec{a} \times \vec{b}) \cdot \vec{c})$ is equal to
\qquad .
20. Of the three independent event E_{1}, E_{2} and E_{3}, the probability that only E_{1} occurs is α, only E_{2} occurs is β and only E_{3} occurs is γ. If the probavvility p that none of events E_{1}, E_{2} or E_{3} occurs satisfy the equations $(\alpha-2 \beta) p=\alpha \beta$ and $(\beta-3 \gamma) p=2 \beta \gamma$. All the given probabilities are probability of occurrence of E_{1} assumed to lie in the interval $(0,1)$. Then, $\overline{\text { probability of occurrence of } E_{3}}$ is equal to

- Watch Video Solution

21. Let P be a plane containing the line $\frac{x-1}{3}=\frac{y+6}{4}=\frac{z+5}{2}$ and parallel to the line $\frac{x-3}{4}=\frac{y-2}{-3}=\frac{z+5}{7}$. If the point (1, $\left.-1, \alpha\right)$ lies on the plane P , then the value of $|5 \alpha|$ is equal to \qquad

- Watch Video Solution

10
22. If $\sum_{r=1 r!}\left(r^{3}+6 r^{2}+2 r+5\right)=\alpha(11!)$, then the value of α is equal to

(D) Watch Video Solution

23. Let the miror image of the point $(1,3, a)$ with respect to the plane $\vec{r}(2 \hat{i}-\hat{j}+\hat{k})-b=0$ be $(-3,5,2)$. Then the value of $|\mathrm{a}+\mathrm{b}|$ is equal to

- Watch Video Solution

24. Let $y=y(x)$ be the solution of the differential equation $x d y-y d x=\sqrt{x^{2}-y^{2}} d x, x \geq 1$, with $y(1)=0$. If the area bounded by the lin $\mathrm{x}=1, x=e^{\pi}, y=0$ and $y=y(x)$ is $\alpha e^{2 \pi}+\beta$, then the value of $10(\alpha+\beta)$ is equal to

Watch Video Solution

25. Let $P(x)$ be a real polynomial of degree 3 which vanishes at $x=-3$. Let 1
$P(x)$ have local minima at $x=1$, local maximum at $x=-1$ and $\int-1 P(x) d x=-18$, then the sum of all the coefficients of the polynomical $P(x)$ is equal to
26. Let I be an identity matrix of order 2×2 and $P=\left[\begin{array}{ll}2 & -1 \\ 5 & -3\end{array}\right]$. Then the value of $n \in N$ for which $P^{n}=5 I-8 P$ is equal to

Watch Video Solution

27. The term independent of x in the expansion of

$$
\left[\frac{x+1}{x^{\frac{2}{3}}-x^{\frac{1}{3}}+1}-\frac{x-1}{x-x^{\frac{1}{2}}}\right]^{10}, x \neq 1 \text { is equal to........... }
$$

- Watch Video Solution

28. If $f(x)$ and $g(x)$ are two polynomials such that the polynomial $P(x)=f\left(x^{3}\right)+g\left(x^{3}\right)$ is divisible by $x^{2}+x+1$, then $\mathrm{P}(1)$ is equal to
29. Let $f: R \rightarrow R$ satisfy the equation $f(x+y)=f(x)$, $f(y)$ for all $x, y \in R$ and $f(x) \neq 0$ for any $x \in R$. If the function f is differentiable at $\mathrm{x}=0$ and $\mathrm{f}^{\prime}(0)=3$, then $\lim h \rightarrow 0 \frac{1}{h}(f(h)-1)$ is equal to

- Watch Video Solution

30. Let ${ }^{n} C_{r}$ denote the binomial coefficient of x^{r} in the expansion of 10
$(1+x)^{n}$. If $\sum_{k=0}\left(2^{2}+3 k\right)^{n} C_{k}=\alpha 3^{10}+\beta .2^{10}, \alpha, \beta \in R$ then $\alpha+\beta$ is equal to

- Watch Video Solution

MATHEMATICS SECTION A

1. $\frac{1}{3^{2}-1}+\frac{1}{5^{2}-1}+\frac{1}{7^{2}-1}+\ldots \ldots+\frac{1}{(201)^{2}-1}$ is equal to
A. $\frac{99}{400}$
B. $\frac{25}{101}$
C. $\frac{101}{408}$
D. $\frac{101}{404}$
2. The values of x in $(0, \pi)$ satisfying the equation.
$\left|\begin{array}{lll}1+\sin ^{2} x & \sin ^{2} x & \sin ^{2} x \\ \cos ^{2} x & 1+\cos ^{2} x & \cos ^{2} x \\ 4 \sin 2 x & 4 \sin 2 x & 1+4 \sin 2 x\end{array}\right|=0$, are
A. $\frac{\pi}{12}, \frac{\pi}{6}$
B. $\frac{7 \pi}{12}, \frac{11 \pi}{12}$
C. $\frac{5 \pi}{12}, \frac{7 \pi}{12}$
D. $\frac{\pi}{6}, \frac{5 \pi}{6}$
3. If $f(x)=\left\{\begin{array}{ll}\frac{1}{|x|} & |x| \geq 1 \\ a x^{2}+b & |x|<1\end{array}\right.$ is differentiable at every point of the domain,then the values of a and b are respectively :
A. $\frac{1}{2},-\frac{3}{2}$
B. $\frac{5}{2},-\frac{3}{2}$
C. $\frac{1}{2}, \frac{1}{2}$
D. $-\frac{1}{2}, \frac{3}{2}$

- Watch Video Solution

$$
(2 x-1) \cos \sqrt{(2 x-1)^{2}+5}
$$

4. The integral $\int \frac{\sqrt{4 x^{2}-4 x+6}}{} d x$ is equal to :(where c is constant of integration)

$$
\text { A. } \frac{1}{2} \sin \sqrt{(2 x+1)^{2}+5}+c
$$

B. $\frac{1}{2} \sin \sqrt{(2 x-1)^{2}+5}+c$
C. $\frac{1}{2} \cos \sqrt{(2 x-1)^{2}+5}+c$
D. $\frac{1}{2} \cos \sqrt{(2 x+1)^{2}+5}+c$

- Watch Video Solution

5. Choose the correct statement about two circles whose equations are given below :
$x^{2}+y^{2}-10 x-10 y+41=0$
$x^{2}+y^{2}-22 x-22 y+137=0$
A. circles have two meeting points
B. circles have no meeting point
C. circles have same centre
D. circles have only one meeting point
6. The equation of one of the straight lines which passes through the point $(1,3)$ and makes an angle $\tan ^{-1}(\sqrt{2})$ with the straight line, $y+1=3 \sqrt{2} x$ is :
A. $4 \sqrt{2} x+5 y-(15+4 \sqrt{2})=0$
B. $4 \sqrt{2} x-5 y-4 \sqrt{2}=0$
C. $5 \sqrt{2} x-4 y-(15+4 \sqrt{2})=0$
D. $4 \sqrt{2} x-5 y-(15+4 \sqrt{2})=0$

- Watch Video Solution

7. The number of integral values of m so the abscissa of point of intersection of lines $3 x+4 y=9$ and $y=m x+1$ is also an integer, is :
A. 1
B. 3
C. 2
D. 0

- Watch Video Solution

8. Let α, β, γ are the real roots of the equation $x^{3}+a x^{2}+b x+c=0(a, b, c \in$ Rand $a \neq 0)$ If the system of equations $(\in u, v$, andw $)$ given by $\alpha u+\beta v+\gamma w=0 \beta u+\gamma v+\alpha w=0 \gamma u+\alpha v+\beta w=0$ has non-trivial solutions then the value of a^{2} / b is \qquad .
A. 0
B. 3
C. 5
D. 1
9. The real valued function $f(x)=\frac{\operatorname{cosec}^{-1} x}{\sqrt{x-[x]}}$, where $[x]$ denotes the greatest integer less than or equal to x , is definde for all x belonging to :
A. all reals except integers
B. all integers except 0,-1,1
C. all reals except the interval $[-1,1]$
D. all non-integers except the interval $[-1,1]$

is equal to
A. $4+\sqrt{3}$
B. $3+2 \sqrt{3}$
C. $1.5+\sqrt{3}$
D. $2+\sqrt{3}$
10. Let $A+2 B=\left[\begin{array}{ccc}1 & 2 & 0 \\ 6 & -1 & 3 \\ -5 & 3 & 1\end{array}\right]$ and $2 A-B=\left[\begin{array}{ccc}2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2\end{array}\right]$, then find
$\operatorname{tr}(A)-\operatorname{tr}(B)$.
A. 1
B. 3
C. 0
D. 2

- Watch Video Solution

12. If $\lim x \rightarrow 0 \frac{\sin ^{-1} x-\tan ^{-1} x}{3 x^{3}}$ is equal to L, then the value of $(6 L+1)$ is :
A. 6
B. $\frac{1}{6}$
C. 2
D. $\frac{1}{2}$

- Watch Video Solution

13. A vector \vec{a} has components $3 p$ and 1 with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense. If, with respect to new system, \vec{a} has components $\mathrm{p}+1$ and $\sqrt{10}$ then a value of p is equal to :
A. -1
B. $\frac{4}{5}$
C. 1
D. $-\frac{5}{4}$
14. If α, β are natural numbers such that $100^{\alpha}-199 \beta=(100)(100)+(99)(101)+(98)(102)+\ldots .+(1)(199)$, then the slope of the line passing through (α, β) and origin is :
A. 540
B. 550
C. 510
D. 530

- Watch Video Solution

15. If the equation $a|z|^{2}+\bar{\alpha} z+\alpha \bar{z}+d=0$ represents a circle where a, d are real constants, then which of the following condition is correct ?
A. $|\alpha|^{2}-a d>0$ and $a \in R-\{0\}$
B. $|\alpha|^{2}-a d \neq 0$
C. $|\alpha|^{2}-a d \geq 0$ and $a \in R$
D. $\alpha=0, a, d \in R^{+}$

- Watch Video Solution

16. The differential equation satisfied by the system of parabolas $y^{2}=4 a(x+a)$ is :
A. $y\left(\frac{d y}{d x}\right)+2 x\left(\frac{d y}{d x}\right)+y=0$
B. $y\left(\frac{d y}{d x}\right)^{2}-2 x\left(\frac{d y}{d x}\right)+y=0$
C. $y\left(\frac{d y}{d x}\right)^{2}-2 x\left(\frac{d y}{d x}\right)-y=0$
D. $y\left(\frac{d y}{d x}\right)^{2}+2 x\left(\frac{d y}{d x}\right)-y=0$
$\left(1+x+2 x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{40} x^{40}$. Then, $a_{1}+a_{3}+a_{5} \ldots .+a_{37}$ is equal to :
A. $2^{20}\left(2^{20}+21\right)$
B. $2^{19}\left(2^{20}+21\right)$
C. $2^{20}\left(2^{20}-21\right)$
D. $2^{20}\left(2^{20}-21\right)$

- Watch Video Solution

18. The sum of all the 4 -digit distinct numbers that can be formed with the digits $1,2,2$ and 3 is :
A. 22264
B. 122234
C. 26664
D. 122664

- Watch Video Solution

19. If the functions are defined as $f(x)=\sqrt{x}$ and $g(x)=\sqrt{1-x}$, then what is the common domain of the following functions : $f+g, f / g, g / f, f-g$ where $(f \pm g)(x)=f(x) \pm g(x),(f / g)(x)=\frac{f(x)}{g(x)}$
A. $0 \leq x<1$
B. $0 \leq x \leq 1$
C. $0<x<1$
D. $0<x \leq 1$
20. For the four circles M, N, O and P, following four equations are given :

Circle $M: x^{2}+y^{2}=1$
Circle $\mathrm{N}: x^{2}+y^{2}-2 x=0$
Circle $0: x^{2}+y^{2}-2 x-2 y+1=0$
Circle P: $x^{2}+y^{2}-2 y=0$
If the centre of circle M is joined with centre of the circle N, further centre of circle N is joined with centre of the circle O, centre of circle O is joined with the centre of circle P and lastly, centre of circle P is joined with centre of circle M, then these lines form the sides of a :
A. Square
B. Rectangle
C. Rhombus
D. Parallelogram
21. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in arithmetic progression with common difference $\mathrm{d}, \mathrm{x} \neq 3 d$, and the determinant of the matrix $\left[\begin{array}{ccc}3 & 4 \sqrt{2} & x \\ 4 & 5 \sqrt{2} & y \\ 5 & k & z\end{array}\right]$ is zero, then the value of K^{2} is:
A. 6
B. 72
C. 36
D. 12

- Watch Video Solution

$$
\tan \left(\pi \cos ^{2} \theta\right)
$$

$$
\sin \left(2 \pi \sin ^{2} \theta\right)
$$

A. $-\frac{1}{2}$
B. $-\frac{1}{4}$
C. $\frac{1}{4}$
D. 0
23. Let S_{1}, S_{2} and S_{3} be three sets defined as
$S_{1}=\{z \in \mathbb{C}:|z-1| \leq \sqrt{2}\}$
$S_{2}=\{z \in \mathbb{C}: \operatorname{Re}((1-i) z) \geq 1\}$
$S_{3}=\{z \in \mathbb{C}: \operatorname{Im}(z) \leq 1\}$
Then the set $S_{1} \cap S_{2} \cap S_{3}$
A. has exactly three elements
B. is a singleton
C. has infinitely many elements
D. has exactly two elements

Watch Video Solution

24. Let L be a tangent line to the parabola $y^{2}=4 x-20$ at (6, 2). If L is also a tangent to the ellipse
$\frac{x^{2}}{2}+\frac{y^{2}}{b}=1$, then the value of b is equal to:
A. 20
B. 16
C. 11
D. 14

- Watch Video Solution

25. Let the tangent to the circle $x^{2}+y^{2}=25$ at the point $R(3,4)$ meet x axis and y-axis at points P and Q, respectively. If r is the radius of the circle
passing through the origin O and having centre at the incentre of the triangle OPQ , then r^{2} is equal to :
A. $\frac{625}{72}$
B. $\frac{125}{72}$
C. $\frac{585}{66}$
D. $\frac{529}{64}$

- Watch Video Solution

26. If the sides $A B, B C$ and $C A$ of a triangle $A B C$ have 3,5 and 6 interior points respectively, then the total number of triangles that can be constructed using these points as vertices, is equal to :
A. 240
B. 333
C. 360

- Watch Video Solution

27.

Let
0
be
the
origin.
Let
$\overrightarrow{O P}=x \hat{i}+y \hat{i}-\hat{k}$ and $\overrightarrow{O Q}=-\hat{i}+2 \hat{j}+3 x \hat{k}, x y \in R, x>0$, be such that $|\overrightarrow{P Q}|=\sqrt{20}$ and the vector $\overrightarrow{O P}$ is perpendicular to $\overrightarrow{O Q}$. If $O R=3 \hat{i}+z \hat{j}-7 \hat{k}, z \in R$, is coplanar with $\overrightarrow{O P}$ and $\overrightarrow{O Q}$, then the value of $x^{2}+y^{2}+z^{2}$ is equal to :
A. 1
B. 7
C. 9
D. 2
28. If the curve $y=y(x)$ is the solution of the differential equation $2\left(x^{2}+x^{5 / 4}\right) d y-y\left(x+x^{1 / 4}\right) d x=2 x^{9 / 4} d x, x>0$ which passes through the point $\left(1,1-\frac{4}{3} \log _{e} 2\right)$, then the value of $y(16)$ is equal to :
A. $4\left(\frac{31}{3}-\frac{8}{3} \log _{e^{3}} 3\right)$
B. $\left(\frac{31}{3}+\frac{8}{3} \log _{e} 3\right)$
C. $4\left(\frac{31}{3}+\frac{8}{3} \log _{e} 3\right)$
D. $\left(\frac{31}{3}-\frac{8}{3} \log _{e} 3\right)$

- Watch Video Solution

29. The value of $\lim _{n \rightarrow \infty} \frac{[r]+[2 r]+\ldots .+[n r]}{n^{2}}$, where r is a non-zero real number and $[r]$ denotes the greatest integer less than or equal to r, is equal to :
A. $\frac{r}{2}$
B. 0
C. $2 r$
D. r

- Watch Video Solution

30. Let $y=y(x)$ be the solution of the differential equation $\cos x(3 \sin x+\cos x+3) d y=(1+y \sin (3 \sin x+\cos x+3)) d x, 0 \leq x \leq \frac{\pi}{2}, y(0)=0$
.Then, $y\left(\frac{\pi}{3}\right)$ is equal to :
A. $2 \log _{e}\left(\frac{2 \sqrt{3}+9}{6}\right)$
B. $2 \log _{e}\left(\frac{3 \sqrt{3}-8}{4}\right)$
C. $2 \log _{e}\left(\frac{\sqrt{3}+7}{2}\right)$
D. $2 \log _{e}\left(\frac{2 \sqrt{3}+10}{11}\right)$

- Watch Video Solution

31. If the Boolean expression $(p \wedge q) \otimes(p \oplus q)$ is a tautology ,then \otimes and \oplus are respectively given by:
A. \wedge, v
B. \wedge, \rightarrow
C. \rightarrow, \rightarrow
D. v, \rightarrow
32. The number of solutions of the equation
$\sin ^{-1}\left[x^{2}+\frac{1}{3}\right]+\cos ^{-1}\left[x^{2}-\frac{2}{3}\right]=x^{2}$, for $x \in[-1,1]$, and $[x]$ denotes the greatest less than or equal to x , is :
A. 4
B. 2
C. Infinite
D. 0

- Watch Video Solution

33. If the integral $\int_{0}^{10} \frac{[\sin 2 \pi x]}{e^{x-[x]}} d x=\alpha e^{-1}+\beta e^{-\frac{1}{2}}+\gamma$, where α, β, γ are integers and $[\mathrm{x}]$ denotes the greatest integer less than or equal to x , then the value of $\alpha+\beta+\gamma$ is equal to :
A. 0
B. 25
C. 20
D. 10

Watch Video Solution

34. Consider the function $f: R \rightarrow R$ defined by
$f(x)=\left\{\begin{array}{ll}\left(2-\sin \left(\frac{1}{x}\right)\right)|x| & , \quad x \neq 0 \\ 0 & , \quad x=0\end{array}\right.$.Then f is :
A. monotonic on $(0, \infty)$ only
B. monotonic on ($-\infty, 0$) only
C. not monotonic on $(-\infty, 0)$ and $(0, \infty)$
D. monotonic on $(-\infty, 0) \cup(0, \infty)$
35. The number of solutions of the equation $x+2 \tan x=\frac{\pi}{2}$ in the interval $[0,2 \pi]$ is:
A. 5
B. 2
C. 4
D. 3

- Watch Video Solution

36. Let $f: R \rightarrow R$ be defined as $f(x)=e^{-x} \sin x$. If $F:[0,1] \rightarrow R$ is a differentiable function such that $F(x)=\int_{0}^{x} f(t) d t$, then the vlaue of $\int_{0}^{1}\left(F^{\prime}(x)+f(x)\right) e^{x} d x$ lies in the interval
A. $\left[\frac{330}{360}, \frac{331}{360}\right]$
B. $\left[\frac{327}{360}, \frac{329}{360}\right]$
c. $\left[\frac{335}{360}, \frac{336}{360}\right]$
D. $\left[\frac{331}{360}, \frac{334}{360}\right]$

- Watch Video Solution

$$
6
$$

37. The value of $\sum_{r=0}\left({ }^{6} C_{r} \cdot{ }^{6} C_{6-4}\right)$ is equal to:
A. 924
B. 1024
C. 1324
D. 1124
38. Let a computer program generate only the digits 0 and 1 to form a string of binary numbers with probability of occurrence of 0 at even places be $\frac{1}{2}$ and probability of occurrence of 0 at the odd place be $\frac{1}{3}$. Then the probability that ' 10 ' is followed by '01' is equal to :
A. $\frac{1}{18}$
B. $\frac{1}{3}$
C. $\frac{1}{9}$
D. $\frac{1}{6}$

- Watch Video Solution

39. Two tangents are drawn from a point P to the circle $x^{2}+y^{2}-2 x-4 y+4=0$, such that the angle between these tangents is $\tan ^{-1}\left(\frac{12}{5}\right)$, where $\tan ^{-1}\left(\frac{12}{5}\right) \in(0, \pi)$. If the centre of the circle is denoted by C and these tangents touch the circle at points A and B , then the ratio of the areas of $\triangle P A B$ and $\triangle C A B$ is :
A. $9: 4$
B. $3: 1$
C. $2: 1$
D. $11: 4$
40. If the equation of plane passing through the mirror image of a point
$(2,3,1)$ with respect to line $\frac{x+1}{2}=\frac{y-3}{1}=\frac{z+2}{-1}$ and containing the line $\frac{x-2}{3}=\frac{1-y}{2}=\frac{z+1}{1}$ is $\alpha x+\beta y+\gamma z=24$, then $\alpha+\beta+\gamma$ is equal to :
A. 21
B. 18
C. 19
D. 20

MATHEMATICS SECTION B

1. Let the plane $a x+b y+c z+d=0$ bisect the line joining the points (4, $-3,1$) and (2, 3, -5) at the right angles If a, b, c, d are integers, then the minimum value of $\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$ is \qquad .

- Watch Video Solution

2. The mean age of 25 teachers in a school is 40 years। A teacher retires at the age of 60 years and a new teacher is appointed in his placel If the mean age of the teachers in this school now is 39 years, then the age (in years) of the newly appointed teacher is \qquad .

(Watch Video Solution

3. The number of times the digit 3 will be written when listing the integers from 1 to 1000 is \qquad .

Watch Video Solution

4. A square $A B C D$ has all its vertices on the curve $x^{2} y^{2}=1$. The midpoints of its sides also lie on the same curve. Then, the square of area of $A B C D$ is
\qquad .
5. The missing value in the following figurs is \qquad .

- Watch Video Solution

6. The equation of the planes parallel to the plane $x-2 y+2 z-3=0$ which are at unit distance from the point $(1,2,3)$ is $a x+b y+c z+d=0$. If $(b-d)=K(c-a)$, then the positive value of K is \qquad .

- Watch Video Solution

7. The number of sotutions of the equation $|\cot x|=\cot x+\frac{1}{\sin x}$ in the interval $[0,2 \pi]$ is \qquad .

- Watch Video Solution

8. Let $f(x)$ and $g(x)$ be two functions satisfying $f\left(x^{2}\right)+g(4-x)=4 x^{3}, g(4-x)+g(x)=0$, then the value of $\int_{-4}^{4} f\left(x^{2}\right) d x$ is :

- Watch Video Solution

9. Let z_{1}, z_{2} be the roots of the equation $z^{2}+a z+12=0$ and z_{1}, z_{2} form an equilateral triangle with origin. Then, the value of $|a|$ is \qquad .

- Watch Video Solution

10. If $f(x)=\int \frac{5 x^{8}+7 x^{6}}{\left(x^{2}+1+2 x^{7}\right)^{2}} d x,(x \geq 0), f(0)=0$ and $f(1)=\frac{1}{K}$, then the value of K is \qquad .
11. Let the coefficients of third, fuurth and fifth terms in the expansion of
$\left(x+\frac{a}{x^{2}}\right)^{n}, x \neq 0$ be in the ratio 12:8:3. Then the term independent of x in the expansion, is equal to \qquad .

(Watch Video Solution

12. Let \vec{x} be a vector in the plane containing vectors $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-\hat{k}$. If the vector \vec{x} is perpendicular to $(3 \hat{i}+2 \hat{j}-\hat{k})$ and its projection on \vec{a} is $\frac{17 \sqrt{6}}{2}$, then the value of $|\vec{x}|^{2}$ is equal to \qquad .

- Watch Video Solution

13. Let $I_{n}=\int_{1}^{e} x^{19}(\log |x|)^{n} d x$, where $n \in N$. If $(20) I_{10}=\alpha I_{9}+\beta I_{8}$, for natural numbers α and β, then $\alpha-\beta$ equals to \qquad .

Watch Video Solution

14. Let $\tan \alpha, \tan \beta$ and $\tan \gamma, \alpha, \beta, \gamma \neq \frac{(2 n-1) \pi}{2}, n \in N$ be the slopes of three line segments $O A, O B$ and $O C$, respectively, where O is origin. If circumcentre of $\triangle A B C$ coincides with origin and its orthocontre lies on y axis, then the value of $\left(\frac{\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma}{\cos \alpha \cos \beta \cos \gamma}\right)^{2}$ is equal to \qquad .

- Watch Video Solution

15. Let $f:[-3,1] \rightarrow R$ be given as
$f(x)=\left\{\begin{array}{ll}\min \left\{(x+6), x^{2}\right\}, & -3 \leq x \leq 0 \\ \max \left\{\sqrt{x}, x^{2}\right\}, & 0 \leq x \leq 1\end{array}\right.$.
If the area bounded by $y=f(x)$ and x-axis is A, then the value of $6 A$ is equal to \qquad .

Watch Video Solution

16. If $1, \log _{10}\left(4^{x}-2\right)$ and $\log _{10}\left(4^{x}+\frac{18}{5}\right)$ are in arithmetic progression for a real number x, then the value of the determinant

$$
\left|\begin{array}{ccc}
2\left(x-\frac{1}{2}\right) & x-1 & x^{2} \\
1 & 0 & x \\
x & 1 & 0
\end{array}\right| \text { is equal to: }
$$

- Watch Video Solution

17. Let P be an arbitrary point having sum of the squares of the distances from the planes $x+y+z=0, l x-n z=0$ and $x-2 y+z=0$, equal to 9 . If the locus of the point P is $x^{2}+y^{2}+z^{2}=9$, then the value of $l-n$ is equal to \qquad .
18. Consider a set of $3 n$ numbers having variance 4 . In this set, the mean of first $2 n$ numbers is 6 and the mean of the remaining n numbers is 3 . A new set is constructed by adding 1 into each of first 2 n numbers, and subtracting 1 from each of the remaining n numbers. If the variance of the new set is k, then $9 k$ is equal to \qquad .

- Watch Video Solution

19. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $B=\left[\begin{array}{l}\alpha \\ \beta\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0\end{array}\right]$ such that $\mathrm{AB}=\mathrm{B}$ and $a+d=2021$, then the value of $a d-b c$ is equal to \qquad .

- Watch Video Solution

20. Let $f:[-1,1] \rightarrow R$ be defined as $f(x)=a x^{2}+b x+c$ for all $x \in[-1,1]$, where $a, b, c \in R$ such that $f(-1)=2, f^{\prime}(-1)=1$ and for $x \in(-1,1)$ the maximum value of $f^{\prime \prime}(x)$ is $\frac{1}{2}$. If $f(x) \leq \alpha, x \in[-1,1]$, then the least value of α is equal to \qquad .

- Watch Video Solution

Mathematic section A

1. Let C be the locus of the mirror image of a point on the parabola $y^{2}=4 x$ with respect to the line $\mathrm{y}=\mathrm{x}$. Then the equation of tangent to C at $P(2,1)$ is :
A. $x-y=1$
B. $2 x+y=5$
C. $x+3 y=5$
D. $x+2 y=4$
2. Let $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k} \quad$ and $\quad \vec{b}=2 \hat{i}-3 \hat{j}+5 \hat{k}$.
$\vec{r} \times \vec{a}=\vec{b} \times \vec{r}, \vec{r} .(\alpha \hat{i}+2 \hat{j}+\hat{k})=3$ and $\vec{r} .(2 \hat{i}+5 \hat{j}-\alpha \hat{k})=-1, a \in R$, then the value of $\alpha+|\vec{r}|^{2}$ is equal to :
A. 15
B. 11
C. 9
D. 13

- Watch Video Solution

3. Let (x, y, z) be an arbitrary point lying on a plane P which passes through the points $(42,0,0),(0,42,0)$ and $(0,0,42)$, then the value of the expression

$$
3+\frac{x-11}{(y-19)^{2}(z-12)^{2}}+\frac{y-19}{(x-11)^{2}(z-12)^{2}}+\frac{z-12}{(x-11)^{2}(y-19)^{2}}-\frac{x+y+z}{14(x-11)(y-19)(}
$$ is equal to :

A. 0
B. 39
C. 3
D. -45

- Watch Video Solution

4. Let f be a real valued function, defined on $R-\{-1,1\}$ and given by
$f(x)=3 \log _{e}\left|\frac{x-1}{x+1}\right|-\frac{2}{x-1}$
Then in which of the following intervals, function $f(x)$ is increasing ?
A. $\left(-1, \frac{1}{2}\right]$
B. $(-\infty,-1) \cup\left(\left[\frac{1}{2}, \infty\right)-\{1\}\right)$
C. $(-\infty, \infty)-\{-1,1\}$
D. $\left(-\infty, \frac{1}{2}\right]-\{-1\}$
5. Let A denote the event that a 6 -digit integer formed by $0,1,2,3,4,5,6$ without repetitions, be divisible by 3 . Then probability of event A is equal to :
A. $\frac{9}{56}$
B. $\frac{11}{27}$
C. $\frac{4}{9}$
D. $\frac{3}{7}$

- Watch Video Solution

6. Let C, be the curve obtained by the solution of differential equation $\frac{d y}{d x}+(\tan x) y=\sin x, 0 \leq x \leq \frac{\pi}{3}$, with $y(0)=0$, then $y\left(\frac{\pi}{4}\right)$ equal to :
A. $\log _{e} 2$
B. $\frac{1}{4} \log _{e} 2$
C. $\frac{1}{2} \log _{e^{2}}$
D. $\left(\frac{1}{2 \sqrt{2}}\right) \log _{e} 2$

- Watch Video Solution

7. The least value of $|z|$ where z is complex number which satisfies the inequality $\exp \left(\frac{(|z|+3)(|z|-1)}{|z|+1 \mid} \log _{e} 2\right)>\log _{\sqrt{2}}|5 \sqrt{7}+9 i|, i=\sqrt{-1}$ is equal to :
A. 8
B. $\sqrt{5}$
C. 2
D. 3
8. Let C_{1} be the curve obtained by the solution of differential equation $2 x y \frac{d y}{d x}=y^{2}-x^{2}, x>0$ Let the curve C_{2} be the solution of $\frac{2 x y}{x^{2}-y^{2}}=\frac{d y}{d x}$. If both the curves pass through (1,1), then the area enclosed by the curves C_{1} and C_{2} is equal to :
A. $\frac{\pi}{2}-1$
B. $\frac{\pi}{4}+1$
C. $\pi-1$
D. $\pi+1$

- Watch Video Solution

9. Let $\mathrm{A}(-1,1), \mathrm{B}(3,4)$ and $\mathrm{C}(2,0)$ be given three points. A line $y=m x, m>0$, intersects lines AC and BC at point P and Q respectively. Let A_{1} and A_{2} be
the areas of $\triangle A B C$ and $\triangle P Q C$ respectively, such that $A_{1}=3 A_{2}$, then the value of m is equal to :
A. $\frac{4}{15}$
B. 1
C. 3
D. 2

- Watch Video Solution

10. Let $f: S \rightarrow S$ where $S=(0, \infty)$ be a twice differentiable function such that $f(x+1)=f(x)$. If $g: S \rightarrow R$ be defined as $g(x)=\log _{e} f(x)$, then the value of $\left|g^{\prime \prime}(5)-g^{\prime \prime}(1)\right|$ is equal to :
A. $\frac{197}{144}$
B. $\frac{187}{144}$
C. 1
D. $\frac{205}{144}$

- Watch Video Solution

11. Let the lengths of intercepts on x-axis and y-axis made by the circle $x^{2}+y^{2}+a x+2 a y+c=0,(a<0)$ be $2 \sqrt{2}$ and $2 \sqrt{5}$, respectively. Then the shortest distance from origin to a tangent to this circle which is perpendicular to the line $x+2 y=0$ is equal to :
A. $\sqrt{7}$
B. $\sqrt{6}$
C. $\sqrt{10}$
D. $\sqrt{11}$
12. Given that the inverse trigonometric functions take principal values only. Then, the number of real values of x which satisfy $\sin ^{-1}\left(\frac{3 x}{5}\right)+\sin ^{-1}\left(\frac{4 x}{5}\right)=\sin ^{-1} x$ is equal to :
A. 1
B. 0
C. 3
D. 2

- Watch Video Solution

13. If the foot of the perpendicular from point $(4,3,8)$ on the line $L_{1}: \frac{x-a}{l}=\frac{y-2}{3}=\frac{z-b}{4}, l \neq 0(3,5,7)$ then the shortest distance between the line L_{1} and line $L_{2}: \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$ is equal to :
A. $\frac{1}{\sqrt{3}}$
B. $\sqrt{\frac{2}{3}}$
C. $\frac{1}{2}$
D. $\frac{1}{\sqrt{6}}$

- Watch Video Solution

14. Let $A=(1,2,3,4,5, \ldots, 30)$ and \cong be an equivalence relation on $A \times A$, defined by $(a, b) \cong(c, d)^{\prime}$ if and only if $a d=b c$. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair $(4,3)$ is equal to :
A. 8
B. 5
C. 7
D. 6
15. Consider a rectangle ABCD having 5, 7, 6, 9 points in the interior of the line segments $\mathrm{AB}, \mathrm{CD}, \mathrm{BC}, \mathrm{DA}$ respectively. Let α be the number of triangles having these points from different sides as vertices and β be the number of quadrilaterals having these points from different sides as vertices. Then $(\beta-\alpha)$ is equal to :
A. 795
B. 1173
C. 717
D. 1890

- Watch Video Solution

16. Let $P(x)=x^{2}+b x+c$ be a quadratic polynomial with real coefficients such that $\int_{0}^{1} P(x) d x=1$ and $\mathrm{P}(\mathrm{x})$ leaves remainder 5 when it is divided by (x
$-2)$. Then the value of $9(b+c)$ is equal to:
A. 15
B. 7
C. 9
D. 11
17. Consider the integral $I=\int_{0}^{10} \frac{[x] e^{[x]}}{e^{x-1}} d x$, where $[\mathrm{x}]$ denotes the greatest integer less than or equal to x. Then the value of I is equal to :
A. 45 (e-1)
B. $45(\mathrm{e}+1)$
C. $9(\mathrm{e}+1)$
D. $(\mathrm{e}-1)$
18. Let $\alpha \in R$ be such that the function
$f(x)= \begin{cases}\frac{\cos ^{-1}\left(1-\{x\}^{2}\right) \sin ^{-1}(1-\{x\})}{\{x\}-\{x\}^{3}}, & x \neq 0 \text { is continuous at }=0 \text { where } \\ \alpha & x=0\end{cases}$
$[x]=x-\{x\} .\{x\}$ is the greatest integer less than or equal to x. The :
A. $\alpha=0$
B. $\alpha=\frac{\pi}{4}$
C. no such α exists
D. $\alpha=\frac{\pi}{\sqrt{2}}$
19. The maximum value of $f(x)=\left|\begin{array}{ccc}\sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x\end{array}\right|, x \in R$ is :
A. $\sqrt{5}$
B. $\frac{3}{4}$
C. $\sqrt{7}$
D. 5

- Watch Video Solution

20. If the points of intersections of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the circle $x^{2}+y^{2}=4 b, b>4$ lie on the curve $y^{2}=3 x^{2}$, then b is equal to :
A. 12
B. 5
C. 6
D. 10

- Watch Video Solution

Mathematic section B

1. If the distance of the point $(1,-2,3)$ from the plane $x+2 y-3 z+10=0$ measured parallel to the line, $\frac{x-1}{3}=\frac{2-y}{m}=\frac{z+3}{1}$ is $\sqrt{\frac{7}{2}}$ then the value of $|m|$ is equal to

D Watch Video Solution

2. Let $\frac{1}{16}$ a and b in G.P $\frac{1}{a}, \frac{1}{b} 6$ be in A.P., where $a, b>0$. Then $72(\mathrm{a}+\mathrm{b})$ is equal to \qquad
3. Consider the statistics of two sets of observations as follows:

Size Mean Variance
$\begin{array}{llll}\text { Observation I } & 10 & 2 & 2\end{array}$
$\begin{array}{llll}\text { Observation II } & n & 3 & 1\end{array}$
If the variance of the combined set of these observations is $\frac{17}{9}$ then the value of n is equal to....

- Watch Video Solution

4. For real numbers α, β, γ and δ, if

$$
\left(x^{2}-1\right)+\tan ^{-1}\left(\frac{x^{2}+1}{x}\right)
$$

$\int \longrightarrow d x$
$\left(x^{4}+3 x^{2}+1\right) \tan ^{-1}\left(\frac{x^{2}+1}{x}\right)$
$=\alpha \log _{e}\left(\tan ^{-1}\left(\frac{x^{2}+1}{x}\right)\right)+\beta \tan ^{-1}\left(\frac{y\left(x^{2}-1\right)}{x}\right)+\delta \tan \left(\frac{x^{2}+1}{x}\right)+C$
where is an arbitrary constant, then the value of $10(\alpha+\beta \gamma+\delta)$ is equal to \qquad
5.
$S_{n^{X}}=\log _{a 1 / 2^{X}}+\log _{a 1 / 3^{X}}+\log _{a 1 / 6^{X}}+\log _{a 1 / 11^{X}+\log _{a 1 / 18^{X}}+\log _{a 1 / 27}+\ldots . .}$. up to n-terms.

Where $a>1$. If $S_{24}(x)=1093$ and $S_{12}=265$ then value of a is equl to....

D Watch Video Solution

6. Let $f: R \rightarrow R$ and $g, R \rightarrow R$ be defined as
$f(x)=\left\{\begin{array}{ll}x+a, & x<0 \\ |x-1|, & x \geq 0\end{array}\right.$ and $g= \begin{cases}x+1, & x<0 \\ (x-1)^{2}+b, & x>0\end{cases}$
where a, b are non-negative real numbers. If $(g o f)(x)$ is continuous for all $x \in R$, then $a+b$ is equal to......

D Watch Video Solution

7. $\triangle A B C$ the lengths of sides $A C$ and $A B$ are 12 cm and 5 cm , respectively. If the area of $\triangle A B C$ is 30 cm 2 and R and r are respectively the radii of
circumcircle and incircle of $\triangle A B C$ then the value of $2 R+r($ in cm$)$ is equal to......

- Watch Video Solution

8. Let \vec{r} be a vector perpendicular to the vertors $\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$. If \vec{c}. $(\hat{i}+\hat{j}+3 \hat{k})=8$ then the value of $\vec{c} .(\vec{a} \times \vec{b})$ is equal to...

- Watch Video Solution

9. Let $A=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$ and $B=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$ be two 2×1 matricews with real entires
such that $A=X B$, where $\quad x=\frac{1}{\sqrt{3}}\left[\begin{array}{ll}1 & -1 \\ 1 & k\end{array}\right]$, and $k \in R$. If $a_{1}^{2}+a_{2}^{2}=\frac{2}{3}\left(b_{1}^{2}+b_{2}^{2}\right)$ and $\left(k^{2}+1\right) b_{2}^{2} \neq-2 b_{1} b_{2}$ then the value of k is.....

- Watch Video Solution

10.

Let
$A=\sum_{k=0}^{n}(-1)^{k n} C_{k}\left[\left(\frac{1}{2}\right)^{k}+\left(\frac{3}{4}\right)^{k}+\left(\frac{7}{8}\right)^{k}+\left(\frac{15}{16}\right)+\left(\frac{31}{32}\right)^{k}\right]$
If $63 A=1-\frac{1}{2^{30}}$ then n is equal to

- Watch Video Solution

