# ©゙" doubtnut 

## MATHS

## BOOKS - JEE MAINS PREVIOUS YEAR

## JEE MAINS 2020

## Mathematics

1. Find the value $\left(\frac{1+\sin \left(\frac{2 \pi}{9}\right)+i \cos \left(\frac{2 \pi}{9}\right)}{1+\sin \left(\frac{2 \pi}{9}\right)-i \cos \left(\frac{2 \pi}{9}\right)}\right)^{3}$
A. $-\frac{1}{2}(\sqrt{3}-i)$
B. $-\frac{1}{2}(1-i \sqrt{3})$
C. $\frac{1}{2}(1-i \sqrt{3})$
D. $\frac{1}{2}(\sqrt{3}-i)$

## (D) Watch Video Solution

2. Let $y=y(x)$ be the solution of differential equation,
$\frac{2+\sin x}{y+1} \cdot \frac{d y}{d x}=-\cos x, y>0, y(0)=1$. If
$y(\pi)=a$ and $\frac{d y}{d x}$ at $x=\pi$ is b , then the ordered pair $(\mathrm{a}, \mathrm{b})$ is equal to :
A. $(2,1)$
B. $(1,-1)$
C. $(1,1)$
D. $\left(2, \frac{3}{2}\right)$

## Answer:

## - Watch Video Solution

3. The plane passing through the points $(1,2,1),(2,1,2)$ and parallel to the $2 x=3 y, z=1$ also passes through the point :
A. $(-2,0,1)$
B. $(0,6,-2)$
C. $(0,-6,2)$
D. $(2,0,-1)$

## Answer:

## - Watch Video Solution

4. Let S be the set of all $\lambda \in R$ for which the system of linear equations
$2 x-y+2 z=2$
$x-2 y+\lambda x=-4$
$x+\lambda y+z=4$
has no solution. Then the set S
A. contains more than two elements
B. is a singleton
C. contains exactly two element
D. is an empty set

## Answer: C

## - Watch Video Solution

5. The domain of the function $f(x)=\sin ^{-1}\left(\frac{|x|+5}{x^{2}+1}\right)$ is $(-\infty,-a] \cup[a, \infty)$. then a is equal to :
A. $\frac{\sqrt{17}}{2}+1$
B. $\frac{\sqrt{17}}{2}$
C. $\frac{1+\sqrt{17}}{2}$
D. $\frac{\sqrt{17}-1}{2}$

## Answer:

6. Let A be a $2 \times 2$ real matrix with entries from $\{0,1\}$ and $|A| \neq 0$.

Consider the following two statements :
(P) If $\mathrm{A} \neq I_{2}$ then $|\mathrm{A}|=-1$
(Q) if $|\mathrm{A}|=1$, then $\operatorname{Tr}(\mathrm{A})=2$

Where $I_{2}$ denotes $2 \times 2$ identity matrix and $\operatorname{tr}(\mathrm{A})$ denotes the sum of the diagonal entries of $A$ then :
A. both ( P ) and ( Q ) are false
B. ( $P$ ) is true and ( $Q$ ) is false
C. Both $(P)$ and $(Q)$ are true
D. $(P)$ is false and $(Q)$ is true

## Answer:

## - Watch Video Solution

7. If $P(x)$ be a polynomial of degree three that has a local maximum value 8 at $x=1$ and a local minimum value 4 at $x=2$, then $p(0)$ is equal to :
A. 12
B. 6
C. -24
D. -12

## Answer:

## - Watch Video Solution

8. IF the tangent to the curve $y=x+\sin y$ at a point $(\mathrm{a}, \mathrm{b})$ is parallel to the line joining $\left(0, \frac{3}{2}\right)$ and $\left(\frac{1}{2}, 2\right)$ then
A. $|a+b|=1$
B. $|b-a|=1$
C. $b=\frac{\pi}{2}+a$
D. $b=a$

## Answer:

## Watch Video Solution

9. The contrapostive of the statement " if I reach the station in time then I will catch the train is :
A. IF I do not reach the station in time then I will catch the train .
B. IF I do not reach the station in time then I will not catch the train .
C. If I will not catch the train, then I do not reach the station in time
D. If I will catch the train then I reach the station in time .

## Answer:

## - Watch Video Solution

10. Let $\mathrm{p}(\mathrm{h}, \mathrm{k})$ be a point on the curce $y=x^{2}+7 x+2$, nearest to the line $y=3 x-3$. then the equation of the normal to the curve at P is :

$$
\text { A. } x-3 y-11=0
$$

B. $x+3 y-62=0$
C. $x-3 y+22=0$
D. $x+3 y+26=0$

## Answer:

## - Watch Video Solution

11. If $R=\left\{(x, y): x, y, \in Z, x^{2}+3 y^{2} \leq 8\right\}$ is a relation on the set of integers Z , then the domain $R^{-1}$ is :
A. $\{-1,0,1\}$
B. $\{0,1\}$
C. $\{-2,-1,0,1,2\}$
D. $\{-2,-1,1,2\}$

## Answer:

12. Box I contains 30 cards numbered 1 to 30 and box II contains 20 cards numbered 31 to 50 A box is selected at random and a card is drawn from to be a non - prime number the probabilty that the card was drawn from Box $I$ is :
A. $\frac{2}{3}$
B. $\frac{4}{17}$
C. $\frac{8}{17}$
D. $\frac{2}{5}$

## Answer:

## - Watch Video Solution

13. Let $X=\{x \in N: 1 \leq x \leq 17\}$ and $Y=\{a x+b: x \in X$ and $a, b, \in R, a>0\}$. If mean and variance of elements of $Y$ are 17 and 216 respectively then $a+b$ is equal to
A. 9
B. 7
C. -7
D. -27

## Answer:

## - Watch Video Solution

14. Let $\alpha$ and $\beta$ be the roots of the equation $5 x^{2}+6 x-2=0$. if $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3 \ldots$ then :
A. $5 S_{6}-6 S_{5}=2 S_{4}$
B. $6 S_{6}+5 S_{5}=2 S_{4}$
C. $5 S_{6}+6 S_{5}=2 S_{4}$
D. $6 S_{6}+5 S_{5}+2 S_{4}=0$

## Answer: C

15. The sum of the first three terms of a G.P is $S$ and their product is 27 . Then all such S lie in :
A. $(-\infty, 9]$
B. $[-3, \infty)$
C. $(-\infty,-9] \cup[, \infty)$
D. $(-\infty,-3] \cup[9, \infty)$

## Answer: D

## - Watch Video Solution

16. If $|x|<1$ and $|y|<1$, find the sum of infinity of the following series:
$(x+y)+\left(x^{2}+x y+y^{2}\right)+(x+y)+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+$
A. $\frac{x+y+x y}{(1+x)(1+y)}$
B. $\frac{x+Y-x y}{(1-x)(1-y)}$
C. $\frac{x+y-x y}{(1+x)(1+Y)}$
D. $\frac{x+Y-x y}{(1+x)(1+y)}$

## Answer:

## - Watch Video Solution

17. Area ( in , sq units ) of the region outside $\frac{|x|}{2}+\frac{|y|}{3}=1$ and inside the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ is :
A. $6(\pi-2)$
B. $6(4-\pi)$
C. $3(\pi-2)$
D. $3(\pi-2)$

## Answer: C::D

18. Let $\alpha>\beta>0$ be such that $\alpha^{3}+\beta^{2}=4$. if the maximum value of the term independent x in the binomial expansion of $\left(a x^{\frac{1}{9}}+\beta x^{-\frac{1}{6}}\right)^{10}$ is 10 K , then k is equal to
A. 352
B. 336
C. 84
D. 176

## Answer:

## - Watch Video Solution

19. A line parallel to the straight line $2 x-y=0$ is tangent to the hypernola $\frac{x^{2}}{4}-\frac{y^{2}}{2}=1$ at the point $\left(x_{1}, y_{1}\right)$ Then $x_{1}^{2}+5 y_{1}^{2}$ is equal to : A. 10
B. 8
C. 5
D. 6

## Answer:

## - Watch Video Solution

20. If a function $f(x)$ defined by
$f(x)= \begin{cases}a e^{X}+b e^{-x} & -1 \leq x<1 \\ c x^{2} & 1 \leq x \leq 3 \\ a x^{2}+2 c x & 3<x \leq 4\end{cases}$
be continuous for some a,b,c $\in \mathrm{R}$ and $f^{\prime}(0)+F^{\prime}(2)=e$ then the
value of $a$ is :
A. $\frac{e}{e^{2}-3 e-13}$
B. $\frac{e}{e^{2}-3 e+13}$
C. $\frac{1}{e^{2}-3 e+13}$
D. $\frac{e}{e^{2}+3 e+13}$

## Answer:

## - Watch Video Solution

21. If the letters of the word 'MOTHER' be permuted and all the words so formed (with or without meaning) be listed as in a dictionary, then the position of the word 'MOTHER' is

## ( Watch Video Solution

22. The integral $\int_{0}^{2}| | x-1|-x| d x$ is equal to

## - Watch Video Solution

23. The number of intergral values of k for which the line, $3 x+4 y=k$ intersects the circle, $x^{2}+y^{2}-2 x-4 y+4=0$ at two district points is
24. Let $\vec{a}, \vec{b}$ and $\vec{c}$ be three unit vectors such that $|\vec{a}-\vec{b}|^{2}+|\vec{a}-\vec{c}|^{2}=8$. Then $|\vec{a}+2 \vec{b}|^{2}+|\vec{a}+2 \vec{c}|^{2}$ is equal to $\qquad$ .

## - Watch Video Solution

25. If $\lim _{x \rightarrow 1} \frac{x^{1}+x^{2}+x^{3}+\ldots+x^{n}-n}{x-1}=820,(n \in N)$
then the value of n is equal to

## - Watch Video Solution

26. Let $R_{1}$ and $R_{2}$ be two relation defined as follows : $R_{1}=\left\{(a, b) \in R^{2}, a^{2}+b^{2} \in Q\right\}$ and $R_{2}=\left\{(a, b) \in R^{2}, a^{2}+b^{2} \not \subset Q\right)$ where Q is the set of the rational numbers. Then:
A. $R_{1}$ and $R_{2}$ are both transitivite
B. $R_{2}$ is transitivite but $R_{1}$ is not transitive .
C. Neither $R_{1}$ and $R_{2}$ is transitive.
D. $R_{1}$ is transitivie but $R_{2}$ is not transitive .

## Answer:

## - Watch Video Solution

27. Suppose $f(x)$ is a polynomial of degree four , having critical points at $1,0,1$. If $T=(x \in R \mid f(x)=f(0)\}$, then the sum of sqaure of the elements of T is .
A. 2
B. 6
C. 8
D. 4

## - Watch Video Solution

28. Let the latus ractum of the parabola $y^{2}=4 x$ be the comon chord to the circles $C_{1}$ and $C_{2}$ each of them having radius $2 \sqrt{5}$. Then, the distance the centre of the circles $C_{1}$ and $C_{2}$ is :
A. 12
B. 8
C. $4 \sqrt{5}$
D. $8 \sqrt{5}$

## Answer:

## Watch Video Solution

29. $\operatorname{Lim}_{x \rightarrow a} \frac{(a+2 x)^{\frac{1}{3}}-(3 x)^{\frac{1}{3}}}{(3 a+x)^{\frac{1}{3}}-(4 x)^{\frac{1}{3}}}(a \neq 0)$ is equal to :
A. $\left(\frac{2}{9}\right)^{\frac{1}{3}}$
B. $\left(\frac{2}{9}\right)\left(\frac{2}{3}\right)^{\frac{1}{3}}$
C. $\left(\frac{2}{3}\right)^{\frac{4}{3}}$
D. $\left(\frac{2}{3}\right)\left(\frac{2}{9}\right)^{\frac{1}{3}}$

## Answer: d

## - Watch Video Solution

30. If $x^{3} d y+x y d x=x^{2} d y+2 y d x, y(2)=e$ and $x>1$, then $y(4)$ is equal to .
A. $\frac{1}{2}+\sqrt{e}$
B. $\frac{3}{2}+\sqrt{e}$
C. $\frac{3}{2} \sqrt{e}$
D. $\frac{\sqrt{e}}{2}$

## (D) Watch Video Solution

31. The probabilty that a randomly chosen 5 - digit number is made form exactly two digits :
A. $\frac{150}{10^{4}}$
B. $\frac{135}{10^{4}}$
C. $\frac{121}{10^{4}}$
D. $\frac{134}{10^{4}}$

## Answer:

## - Watch Video Solution

32. Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in R$ be such that $a^{2}+b^{2}+c^{2}=1$. If $a \cos \theta=b \cos \left(\theta+\frac{2 \pi}{3}\right)=c \cos \left(\theta+\frac{4 \pi}{3}\right)$, where $\theta=\frac{\pi}{9}$, then the angle between the vectors $a \hat{i}+b \hat{j}+c \hat{k}$ and $b \hat{i}+c \hat{j}+a \hat{k}$ is
A. $\frac{2 \pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{9}$
D. 0

## Answer:

## - Watch Video Solution

33. Let $p, q r$ be three statements such that the truth value of $(p \wedge q) \rightarrow(q \vee r)$ is F . Then the truth value of $\mathrm{p}, \mathrm{q} \mathrm{r}$ are respectively :

> A. T, T,F
B. T,F,T
C. F,T,F
D. none of the above

## Answer:

34. The set of all real values of $\lambda$ for which the quadratic equations, $\left(\lambda^{2}+1\right) x^{2}-4 \lambda x+2=0$ always have exactly one root in the interval $(0,1)$ is :
A. $(0,2)$
B. $(-3,-1)$
C. $(1,3)$
D. $(2,4]$

## Answer:

Watch Video Solution
35. Let A be a $3 \times 3$ matrix such that adj $A=\left[\begin{array}{lll}2 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & -2 & -1\end{array}\right]$ and $B=\operatorname{adj}(\operatorname{adj} A)$.

If $|A|=\lambda$ and $\left|\left(B^{-1}\right)^{T}\right|=\mu$ then the ordered pair $(|\lambda|, \mu)$ is equal to
A. $\left(9, \frac{1}{9}\right)$
B. $\left(3, \frac{1}{81}\right)$
C. $(3,81)$
D. $\left(9, \frac{1}{81}\right)$

## Answer:

## - Watch Video Solution

36. If the value of the integral $\int_{0}^{1 / 2} \frac{x^{2}}{\left(1-x^{2}\right)^{3 / 2}} d x$
is $\frac{k}{6}$ then k is equal to :
A. $2 \sqrt{3}-\pi$
B. $2 \sqrt{3}+\pi$
C. $3 \sqrt{2}+\pi$
D. $3 \sqrt{2}-\pi$

## - Watch Video Solution

37. Let $e_{1}$ and $e_{2}$ be the ecentricities of the ellispe $\frac{x^{2}}{25}+\frac{y^{2}}{b^{2}}=1(b<5)$ and the hyperbola, $\frac{x^{2}}{16}-\frac{y^{2}}{b^{2}}=1$ respecitvely staifying $e_{1} e_{2}=1$. If $\alpha$ and $\beta$ are the distance between the foci of the ellispse and the foci of the hyperbola resectively, then the ordered pair $(\alpha, \beta)$ is equal to :
A. $\left(\frac{20}{3}, 12\right)$
B. $(8,10)$
C. $\left(\frac{24}{5}, 10\right)$
D. $(8,12)$

## Answer:

38. If the surface area of a cube is increasing at rate of $3.6 \mathrm{~cm}^{2} / \mathrm{sec}$, then the rate of change of its volume (in $\mathrm{cm}^{3} / \mathrm{sec}$ ). When the length of a side of the cube is 10 cm , is
A. 18
B. 10
C. 20
D. 9

## Answer:

## - Watch Video Solution

39. If $z_{1}, z_{2}$ are complex number such that
$\operatorname{Re}\left(z_{1}\right)=\left|z_{1}-1\right|, \operatorname{Re}\left(z_{2}\right)=\left|z_{2}-1\right| \quad$ and $\arg \left(z_{1}-z_{2}\right)=\frac{\pi}{3}$, then $\operatorname{Im}\left(z_{1}+z_{2}\right)$ is equal to
A. $2 \sqrt{3}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{2}{\sqrt{3}}$
D. $\frac{1}{\sqrt{3}}$

## Answer:

## - Watch Video Solution

40. If a $\triangle A B C$ has vertices $A(-1,7), B(-7,1)$ and $\mathrm{C}(5,-5)$ then its orthocentre has coordinates:
A. $\left(-\frac{3}{5}, \frac{3}{5}\right)$
в. $\left(\frac{3}{5},-\frac{3}{5}\right)$
C. $(-3,3)$
D. $(3,-3)$

## Answer:

41. The plane which bisects the line joining the points $(4,-2,3)$ and $(2,4,-1)$ at right angles also passes through the point :
A. $(0,-1,1)$
B. $(0,1,-1)$
C. $(4,0,1)$
D. $(4,0,-1)$

## Answer:

## - Watch Video Solution

42. Let $x_{i}(1 \leq I \leq 10)$ be ten observation of a random variable X . If $\sum_{i=l}^{10}\left(x_{i}-p\right)=3$ and $\sum_{i=l}^{10}\left(x_{i}-p\right)^{2}=9$ where $0 \neq p \in R$, then the standard deviation of these observations is:
A. $\frac{9}{10}$
B. $\frac{4}{5}$
C. $\frac{7}{10}$
D. $\sqrt{\frac{3}{5}}$

## Answer:

## - Watch Video Solution

43. If the terms independent of x in the expansion of $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$ is k , then 18 k is equla to
A. 5
B. 11
C. 9
D. 7

Answer:
44. If the sum of the series $20+19 \frac{3}{5}+19 \frac{1}{5}+18 \frac{4}{5}+\ldots$. upto $n$ nth tems is 488 and the nth terms is negative then :
A. nth term is -4
B. nth terms $-4 \frac{2}{5}$
C. $\mathrm{n}=60$
D. $\mathrm{n}=41$

## Answer: A

## - Watch Video Solution

45. If $\int \sin ^{-1}\left(\sqrt{\frac{x}{1+x}}\right) d x=A(x) \tan ^{-1}(\sqrt{x})+B(x)+C$, where C is a constant of integration then the ordered pair $(\mathrm{A}(\mathrm{x}), \mathrm{B}(\mathrm{x}))$ can be :
A. $(x-1, \sqrt{x})$
B. $(x+1, \sqrt{x})$
C. $(x-1,-\sqrt{x})$
D. $(x+1,-\sqrt{x})$

## Answer:

## - Watch Video Solution

46. Let S be the set of all integer solutions, ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ) of the system of equation
$x-2 y+5 z=0$
$-2 x+4 y+z=0$
$-7 x+14 y+9 z=0$
such that $15 \leq x^{2}+y^{2}+z^{2} \leq 150$. Then, the number of elements of the set $S$ is equal to $\qquad$

- Watch Video Solution

47. Let a place $P$ contain two lines
$\vec{r}=\hat{i}+\lambda(\hat{i}+\hat{j}), \lambda \in R$ and
$\vec{r}=-\hat{j}+\mu(\hat{j}-\hat{k}), \mu \in R$.
If $Q(\alpha, \beta, \gamma)$ is the food of the perpendicular drawn from the point $\mathrm{M}(1,0,1)$ to P , then $3(\alpha+\beta+\gamma)$ equals $\qquad$ .

## - Watch Video Solution

48. m A.M. and 3 G.M. are inserted between 3 and 243 such that $2^{\text {nd }} \mathrm{GM}=$ $4^{\text {th }} \mathrm{AM}$ then $m=$

## - Watch Video Solution

49. If the tangent to the curve $y=e^{x}$ at a point $\left(c, e^{c}\right)$ and the normal to the parabola, $y^{2}=4 x$ at the point (1,2) intersect at the same point on the $x$-axis then the value of $c$ is $\qquad$ .
50. The total number of 3 -digit numbers, whose sum of digits is 10 , is
$\qquad$ .

## Watch Video Solution

51. If $(a+\sqrt{2} b \cos x)(a-\sqrt{2} b \cos y)=a^{2}-b^{2}$, where $a>b>0$, then $\frac{d x}{d y}$ at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ is :
A. $\frac{a-b}{a+b}$
B. $\frac{a+b}{a-b}$
C. $\frac{2 a+b}{2 a-b}$
D. $\frac{a-2 b}{a+2 b}$

## Answer: B

## - Watch Video Solution

52. The mean and variance of 8 observations are 10 and 13.5 respectively . If 6 of these observations are $5,7,10,12,14,15$, then the absolute difference of the remaining two observations is:
A. 9
B. 3
C. 7
D. 5

## Answer: C

## - Watch Video Solution

53. 

$1+\left(1-1.2^{2}\right)+\left(1-3.4^{2}\right)+\left(1-5.6^{2}\right)+\ldots .\left(1-19.20^{2}\right)=\alpha-220 \beta$ find $(\alpha, \beta)$
A. $(11,97)$
B. $(10,103)$
C. $(10,97)$
D. -11103

## Answer:

## - Watch Video Solution

54. A survey shows that $63 \%$ of the people watch a news channal whereas $76 \%$ watch another channel. If $x \%$ of the people watch both channel, then
A. 55
B. 29
C. 65
D. 37

## Answer: C

55. The following statement $(p \vec{q}) \overrightarrow{(\sim p \vec{q}) \vec{q}}$ is: equivalent to $\overrightarrow{p^{\sim}} q(2)$ a fallacy a tautology (4) equivalent to $\sim p \vec{q}$
A. both $\left(S_{1}\right)$ and ( $S_{2}$ ) are not correct
B. only $\left(S_{1}\right)$ is correct
C. both $\left(S_{1}\right)$ and ( $S_{2}$ ) are correct
D. only $\left(S_{2}\right)$ is correct

## Answer: C

## - Watch Video Solution

56. If two vertical pale $A B$ and $C D$ of height 15 m and 10 m and $A$ and $C$ are on ground. $P$ is the point of intersection of $B C$ and $A D$. What is height of $P$ from the ground in m .
A. $20 / 3$
B. 6
C. $10 / 3$
D. 5

## Answer: D

## - Watch Video Solution

57. If $f$ is twice differentiable function for $x \in R$ such that $f(2)=5, f^{\prime}(2)=8$ and $f^{\prime}(x) \geq 1, f^{\prime \prime}(x) \geq 4$, then
A. $f(5)+f^{\prime}(5) \geq 28$
B. $f(5) \leq 10$
C. $f(5)+f^{\prime}(5) \leq 26$
D. $f(5)+f^{\prime}(5) \leq 20$
58. $\sum_{r=0}^{20} \cdot{ }^{50-r} C_{6}$
A. ${ }^{50} C_{7}-30 C_{7}$
B. . ${ }^{51} C_{7}-30 C_{7}$
C. ${ }^{51} C_{7}+30 C_{7}$
D. . ${ }^{50} C_{6}-30 C_{6}$

## Answer: D

## - Watch Video Solution

59. If $A=\left[\begin{array}{ll}\cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta\end{array}\right],\left(\theta=\frac{\pi}{24}\right)$ and $A^{5}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, where $i=\sqrt{-1}$ then, which one of the following is not true ?
A. $a^{2}-d^{2}=0$
B. $a^{2}-c^{2}=1$
C. $a^{2}-b^{2}=\frac{1}{2}$
D. $0 \leq a^{2}+b^{2} \leq 1$

## Answer: B

## - Watch Video Solution

60. If $\alpha$ and $\beta$ are roots of $x^{2}-3 x+p=0$ and $\gamma$ and $\delta$ are the roots of $x^{2}-6 x+q=0$ and $\alpha, \beta, \gamma, \delta$ are in G.P. then find the ratio of $(2 p+q):(2 p-q)$
A. 9: 7
B. 3: 1
C. 5:3
D. 33: 31

## Answer: B

61. Let $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$ be a given ellipse, length of whose latus rectum is 10 . If its eccentricity is the maximum value of the function, $p \phi(t)=\frac{5}{2}+t-t^{2}$, then $a^{2}+b^{2}$ is equal to :
A. 145
B. 116
C. 126
D. 135

## Answer:

## - Watch Video Solution

62. A triangle $A B C$ laying in the first quadrant has two vertices as $A(1,2)$ $\mathrm{B}(3,1)$. If , $\angle B A C=90^{\circ}$ and ar $(\triangle A B C)=5 \sqrt{5}$ sq. units, then the abscissa of the vertex C is :

$$
\text { A. } 2+\sqrt{5}
$$

B. $1+2 \sqrt{5}$
C. $2 \sqrt{5}-1$
D. $1+\sqrt{5}$

## Answer:

## - Watch Video Solution

63. If from point $P(3,3)$ on the hyperbola a normal is drawn which cuts $x$ axis at $(9,0)$ on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ the value of $\left(a^{2}, e^{2}\right)$ is
A. $\left(\frac{9}{2}, 3\right)$
B. $\left(\frac{3}{2}, 2\right)$
C. $\left(\frac{9}{2}, 2\right)$
D. $(9,3)$

## Answer: A

64. The integral $\int\left(\frac{X}{x \sin x+\cos x}\right)^{2} d x$ is equal to (where C is a constant integration) :
A. $\sec x-\frac{x \tan x}{x \sin x+\cos x}+C$
B. $\sec x+\frac{x \tan x}{x \sin x+\cos x}+C$
C. $\tan x-\frac{x \sec x}{x \sin x+\cos x}+C$
D. $\tan x+\frac{x \sec x}{x \sin x+\cos x}+C$

## Answer:

## - Watch Video Solution

65. Let $f(x)=\int \frac{\sqrt{x}}{(1+x)^{2}} d x(x \geq 0)$. The $\mathrm{f}(3)-\mathrm{f}(1)$ is equal to :
A. $-\frac{\pi}{6}+\frac{1}{2}+\frac{\sqrt{3}}{4}$
B. $-\frac{\pi}{12}+\frac{1}{2}+\frac{\sqrt{3}}{4}$
C. $\frac{\pi}{6}+\frac{1}{2}-\frac{\sqrt{3}}{4}$
D. $\frac{\pi}{12}+\frac{1}{2}-\frac{\sqrt{3}}{4}$

## Answer:

## - Watch Video Solution

66. If $u=\frac{2 z+i}{z-k i}$ where $z=x+i y$ and $k>0$

Curve $\operatorname{Re}(u)+\operatorname{Im}(u)=$ cuts y -axis at two point P and Q such that $P Q=5$ then value of $k$ is
A. $1 / 2$
B. 4
C. 2
D. $3 / 2$

## Answer:

67. Let $x_{0}$ be the point of local maxima of $f(x)=\vec{a} \cdot(\vec{b} \times \vec{c})$, where $\vec{a}=x \vec{i}-2 \vec{j}+3 \vec{k}, \vec{b}=-2 \vec{i}+x \vec{j}-\vec{k}$ and $\vec{c}=7 \vec{i}-2 \vec{j}+x$ .Then the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ at $x=x_{0}$ is:
A. 14
B. -14
C. -22
D. -30

## Answer: B

## - Watch Video Solution

68. Let [ t ] denote the greatest integer st. Then the equation in $x,[x]^{2}+2[x+2]-7=0$ has :
A. infinitely many solutions.
B. exactly four integral solutions.
C. no integral solution.
D. exactly two solutions .

## Answer: B

## D Watch Video Solution

69. $x y^{\prime}-y=x^{2}(x \cos x+\sin x)$ and if $f(\pi)=\pi$ then find $f^{\prime \prime}\left(\frac{\pi}{2}\right)+f\left(\frac{\pi}{2}\right)=$
A. $2+\frac{\pi}{2}+\frac{\pi^{2}}{4}$
B. $1+\frac{\pi}{2}$
C. $1+\frac{\pi}{2}+\frac{\pi^{2}}{4}$
D. $2+\frac{\pi}{2}$

## Answer:

70. If $f(x)=|x-2|, x \in[0,4] \quad$ and $\quad g(x)=f(f(x))$. Find $\int_{2}^{3}(g(x)-f(x)) d x$.
A. $\frac{3}{2}$
B. $\frac{1}{2}$
C. 0
D. 1

## Answer: C

## - Watch Video Solution

71. If $\left(2 x^{2}+3 x+4\right)^{10}=\sum_{r=0}^{20} a_{r} x^{r}$, then $\frac{a_{7}}{a_{13}}=$

## - Watch Video Solution

72. If the equation of a plane $P$, passing through in the intersection of the planes, $\quad x+4 y-z+7=0$ and $3 x+y+5 z=8 \quad$ is $a x+b y+6 z=15$ for some $a, b, c \in R$, then the distance of the point $(3,2,-1)$ form the plane P is $\qquad$

## - Watch Video Solution

73. If probability of hitting a target is $\frac{1}{10}$, Then number of shot required so that probability to hit target at least once is greater than $\frac{1}{4}$.

## - Watch Video Solution

74. Let $f: R \rightarrow R$ be a differentiable function satisfying $f(x+y)=f(x)+f(y)+x^{2} y+x y^{2}$ for all real numbers x and y . If $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1$, then

The value of $f^{\prime}(3)$ is
75. If the system of equations
$x-2 y+3 z=9$
$2 x+y+z=b$
$x-7 y+a z=24$, has infinitely many solutions, then $\mathrm{a}-\mathrm{b}$ is equal to

## - Watch Video Solution

76. The intergral $\int_{1}^{2} e^{x} \cdot X^{2}\left(2+\log _{e} x\right) d x$ equals "
A. $e(4 e+1)$
B. $4 e^{2}-1$
C. $e(4 e-1)$
D. $e(2 e-1)$

## Answer:

77. The are ( insq. Units) of the region enclosed by the curves $y=x^{2}-1$ and $y=1-x^{2}$ is equal to
A. $\frac{4}{8}$
B. $\frac{8}{3}$
C. $\frac{7}{2}$
D. $\frac{16}{3}$

## Answer:

## - Watch Video Solution

78. If the angle of elevation of the top of a summit is $45^{\circ}$ and a person climbs at an inclination of $30^{\circ}$ upto 1 km , where the angle of elevation of top becomes $60^{\circ}$, then height of the summit is
A. $\frac{\sqrt{3}-1}{\sqrt{3}+1}$
B. $\frac{\sqrt{3}+1}{\sqrt{3}-1}$
C. $\frac{1}{\sqrt{3}-1}$
D. $\frac{1}{\sqrt{3}+1}$

## Answer:

## - Watch Video Solution

79. The set of all real value of $\lambda$ for which the functio $f(x)=\left(1-\cos ^{2} x\right) \cdot(\lambda+\sin x), x e\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ has exactly one maxina and exactly one minima is
A. $\left(-\frac{1}{2}, \frac{1}{2}\right)-\{0\}$
B. $\left(-\frac{3}{2}, \frac{3}{2}\right)$
C. $\left(-\frac{1}{2}, \frac{1}{2}\right)$
D. $\left(-\frac{3}{2}, \frac{3}{2}\right)-\{0\}$

## Answer:

80. If $\alpha, \beta$ are the roots of equation $2 x(2 x+1)=1$ then $\beta=$
A. $2 \alpha(\alpha+1)$
B. $-2 \alpha(\alpha+1)$
C. $2 \alpha(\alpha-1)$
D. $2 \alpha^{2}$

## Answer:

## - Watch Video Solution

81. For all twice differentiable functions $f: R \rightarrow R$, with $f(0)=f(1)=f^{\prime}(0)=0$
A. $f(x) \neq 0$ at every point $x \in(0,1)$
B. $f^{\prime}(x)=0$ for some $x \neq(0,1)$
C. $f^{\prime}(0)=0$
D. $f^{\prime \prime}(x)=0$, at every point $x \in(0,1)$

Answer:

## - Watch Video Solution

82. If $y=\left(\frac{2}{\pi} x-1\right) \operatorname{cosec} \mathrm{x}$ the solution of the differential equation, $\frac{d y}{d x}+p(x) y=\frac{2}{\pi} \operatorname{cosec} x, 0<x<\frac{\pi}{2}$, then the function $p(x)$ is equal to
A. $\cot x$
B. $\operatorname{cosec} x$
C. $\sec x$
D. $\tan x$

## Answer:

83. Let L denote the line in the $\mathrm{x}-\mathrm{y}$ plane with x and y intercepts as 3 and 1 respectively. The the image of the point $(-1,-4)$ in this line is :
A. $\left(\frac{11}{5}, \frac{28}{5}\right)$
B. $\left(\frac{29}{5}, \frac{8}{5}\right)$
C. $\left(\frac{8}{5}, \frac{29}{5}\right)$
D. $\left(\frac{29}{5}, \frac{11}{5}\right)$

## Answer:

## - Watch Video Solution

84. If the tangent to the curve, $\mathrm{y}=\mathrm{f}(\mathrm{x})=x \log _{e} x,(x>0)$ at a point (c, $f(c))$ is parallel to the line - segment joining the point $(1,0)$ and $(e, e)$ then $c$ is equal to :
A. $\frac{e-1}{e}$
B. $e\left(\frac{1}{e-1}\right)$
C. $e\left(\frac{1}{1-e}\right)$
D. $\frac{1}{e-1}$

## Answer:

## - Watch Video Solution

85. Let $f, R \rightarrow R$ be a function defined by $\mathrm{f}(\mathrm{x})=\max \left\{x, x^{2}\right\}$. Let S denote the set of all point in $R$, where $f$ is not differnetiable Then :
A. $\{0,1\}$
B. $\{0\}$
C. $\phi$ ( an empty set )
D. $\{1\}$

## Answer:

86. Let $\theta=\frac{\pi}{5}$ and $A=\left[\begin{array}{ll}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$. If $\mathrm{B}=\mathrm{A}+A^{4}$, then $\operatorname{det}(\mathrm{B})$.
A. is one
B. lies in $(2,3)$
C. is zero
D. lies in $(1,2)$

## Answer:

## - Watch Video Solution

87. A plane P meets the coordinate axes at AB and C respectively. The centroid of $\triangle A B C$ is give to be $(1,1,2)$. Then the equation of the line through this centroid and perpendicular to the plane $P$ is ,
A. $\frac{x-1}{2}=\frac{y-1}{1}=\frac{z-2}{1}$
B. $\frac{x-1}{1}=\frac{y-1}{1}=\frac{z-2}{2}$
C. $\frac{x-1}{2}=\frac{y-1}{2}=\frac{z-2}{1}$
D. $\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$

Answer:

## - Watch Video Solution

88. The common difference of the AP $b_{1}, b_{2} \ldots \ldots, b_{m}$ is 2 more than the common differece of A.P $a_{1}, a_{2}, \ldots \ldots, a_{n}$. If $a_{40}=-159$, $a_{100}=-399$ and $b_{100}=a_{70}$, then $b_{1}$ is equal to :
A. 81
B. -127
C. -81
D. 127

## Answer:

## - Watch Video Solution

89. If the normal at an end of a latus rectaum of an ellipse passes through an extremity of the minor axis then the eccentricity of the ellispe satisfies
A. $e^{4}+2 e^{2}-1=0$
B. $e^{2}+e-1=0$
C. $e^{4}+e^{2}-1=0$
D. $e^{2}+2 e-1=0$

## Answer:

## - Watch Video Solution

90. For a suitabily chosen real constanat a let a fuction, $f: R \sim[\sim a] \rightarrow R$ be defined by $f(x)=\frac{a-x}{a+x}$. Further suppose that for any real number $x \neq-a$ and $f(x) \neq=2$ (fof) $(\mathrm{x})=\mathrm{x}$. Then $f\left(-\frac{1}{2}\right)$ is equal to :
A. $\frac{1}{3}$
B. $-\frac{1}{3}$
C. -3
D. 3

## Answer:

## - Watch Video Solution

91. If the constant term in the binomial expansion of $\left(\sqrt{x}-\frac{k}{x^{2}}\right)^{10}$ is 405 , then |k| equals :
A. 9
B. 1
C. 3
D. 2

## Answer:

92. Centre of a circle passing through point $(0,1)$ and touching the curve $y=x^{2}$ at $(2,4)$ is
A. $\left(\frac{-53}{10}, \frac{16}{5}\right)$
B. $\left(\frac{6}{5}, \frac{53}{10}\right)$
c. $\left(\frac{3}{10}, \frac{16}{5}\right)$
D. $\left(\frac{-16}{5}, \frac{53}{10}\right)$

## Answer:

## - Watch Video Solution

93. Let $\mathrm{z}=\mathrm{x}+$ iy be a non-zero complex number such that $z^{2}=I|z|^{2}$,
where $I=\sqrt{-1}$ then z lies on the :
A. line $y=-x$
B. imaginary axis
C. line , $y=x$
D. real axis

## Answer:

## - Watch Video Solution

94. Consider the statement : For an interger n if $n^{3}-1$ is even, the n is odd ". The contrapositive statemnet of this statement is:
A. For an interger n , if n is even then $n^{3}-1$ is odd.
B. For an integer n , if $n^{3}-1$ is not even then n is not odd.
C. For an interger n if n is even then $n^{3}-1$ is even.
D. For an integer n if n is odd then $n^{3}-1$ is even.

## Answer:

## - Watch Video Solution

95. The probabilites fo three events $A, B$ and $C$ are given by $P(A)=0.6, P(B)$
$=\quad 0.4 \quad$ and $P(C)$ $\begin{array}{ll}= & 0.5\end{array}$
If
$P(A \cup B)=0.8, P(A \cap C)=0.3 P(A \cap B \cap C)=0.2, P(B \cap C)=\beta$ and $P(A \cup B \cup C)=\alpha$ where $0.85 \leq \alpha \leq 0.95$, then $\beta$ lines in the interval :
A. $[0.35,0.36]$
B. $[0.25,0.35]$
C. $[0.20,0.25]$
D. $[0.36,0.40]$

## Answer:

## - Watch Video Solution

96. Suppose that a function $f: R \rightarrow R$ satisfies $f(x+y)=f(x) f(y)$ for all $\mathrm{x} y \in R$ and $f(1)=3$. If $\sum_{i=l}^{n} f(i)=363$, then n is equa to $\qquad$ .
97. The sum of distinct value of $\lambda$ for which the system of equations
$(\lambda-1) x+(3 \lambda+1) y+2 \lambda x=0$
$(\lambda-1) x+(4 \lambda-2) y+(\lambda+3) x=0$
$2 x+(2 \lambda+1) y+3(\lambda-1) z=0$
has non-zeor solutions is $\qquad$ .

## - Watch Video Solution

98. If $\vec{x}$ and $\vec{y}$ be two non - zero vectors such that $|\vec{x}+\vec{y}|=|\vec{x}|$ and $2 \vec{x}+\lambda \vec{y}$ is perpendicular to $\vec{y}$ then the value of $\lambda$ is $\qquad$ .

## - Watch Video Solution

99. Consider the date on x taking the values $0,2,4,8, \ldots \ldots \ldots, 2^{n}$ with frequencies ${ }^{n} C_{0},{ }^{n} C_{1},{ }^{n} C_{2}, \ldots \ldots \ldots,{ }^{n} C_{n}$ respectively. If the mean of this data is $\frac{728}{2^{n}}$ then n is equal to $\qquad$
100. The number of word (with or without meaning ) that can be formed from all the letter of the word " LETTER " in which vowels never come together is $\qquad$ .

## Watch Video Solution

101. $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan ^{3} x \sin ^{2} 3 x\left(2 \sec ^{2} x \sin ^{2} 3 x+3 \tan x . \sin 6 x\right) d x$
A. $\frac{9}{2}$
B. $-\frac{1}{18}$
C. $\frac{7}{18}$
D. $-\frac{1}{9}$

## Answer:

102. Let $\bigcup_{i=1}^{50} X_{i}=\bigcup_{i=1}^{n} Y_{i}=T$, where each $X_{i}$ contains 10 elements and each $Y_{i}$ contains 5 elements. If each element of the set T is an element of exactly 20 of sets $X_{i}^{\prime} s$ and exactly 6 of sets $Y^{\prime}{ }_{i} s$, then n is equal to:
A. 30
B. 15
C. 50
D. 45

## Answer:

## - Watch Video Solution

103. If $\alpha, \beta$ are roots of $x^{2}-x+2 \lambda=0$ and $\alpha, \gamma$ are roots of $3 x^{2}-10 x+27 \lambda=0$ then value of $\frac{\beta \gamma}{\lambda}$ is
A. 18
B. 9
C. 27
D. 36

## Answer:

## - Watch Video Solution

104. Contrapositive of the statement :
'If a function $f$ is differentiable at $a$, then it is also continuous at $a$ ', is :
A. If a function $f$ is not continuous at $a$, then it is differentiable at a.
B. If a function $f$ is not continuous at $a$, then it is not differentiable at
a.
C. If a function $f$ is continuous at $a$, then it is differentiable at a.
D. If a function $f$ is continuous at $a$, then it is not differentiable at a.

## Answer:

105. If the system of equations
$x+y+z=2$
$2 x+4 y-z=6$
$3 x+2 y+\lambda z=\mu$
has infinitely many solutions, then :
A. $2 \lambda+\mu=-14$
B. $\lambda+2 \mu=14$
C. $\lambda-\mu=5$
D. $\lambda-2 \mu=-5$

## Answer: A

## - Watch Video Solution

106. Suppose the vectors $x_{1}, x_{2}$ and $x_{3}$ are the solutions of the system of linear equations, $A x=b$ when the vector b on the right side is equal
to $b_{1}, b_{2}$ and $b_{3}$ respectively. If
$x_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], x_{2}=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right], x_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], b_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], b_{2}=\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]$ and $b_{3}=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$
, then the determinant of $A$ is equal to :
A. $\frac{1}{2}$
B. 4
C. 2
D. $\frac{3}{2}$

## Answer: C

## - Watch Video Solution

107. Two persons $A$ and $B$ play a game of throwing a pair of dice until one of them wins. $A$ will win if sum of numbers on dice appear to be 6 and $B$ will win. If sum is 7 . What is the probability that $A$ wins the game if $A$ starts the game.
A. $\frac{5}{31}$
B. $\frac{5}{6}$
C. $\frac{31}{61}$
D. $\frac{30}{71}$

## Answer:

## - Watch Video Solution

108. The area (in sq. units) of the largest rectangle $A B C D$ whose vertices $A$ and $B$ lie on the x - axis and vertices C and D lie on the parabola, $y=x^{2}-1$ below the $\mathrm{x}-\mathrm{axis}$, is :
A. $\frac{4}{3 \sqrt{3}}$
B. $\frac{1}{3 \sqrt{3}}$
C. $\frac{4}{3}$
D. $\frac{2}{3 \sqrt{3}}$

## - Watch Video Solution

109. The angle of elevation of a cloud C from a point P, 200 m above a still lake is $30^{\circ}$. If the angle of depression of the image of C in the lake from the point P is $60^{\circ}$, then PC (in m ) is equal to :
A. $200 \sqrt{3}$
B. 400
C. $400 \sqrt{3}$
D. 100

## Answer:

110. Let $f:(0, \infty) \rightarrow(0, \infty)$ be a differentiable function such that $f(1)=e$ and $\lim _{t \rightarrow x} \frac{t^{2} f^{2}(x)-x^{2} f^{2}(t)}{t-x}=0$. If $f(x)=1$, then x is equal to :
A. $2 e$
B. $\frac{1}{2}$
C.e
D. $\frac{1}{2 e}$

## Answer:

## - Watch Video Solution

111. Let $a_{1}, a_{2}, \ldots \ldots, a_{n}$ be a given A.P. whose common difference is an integer and $S_{n}=a_{1}+a_{2}+\ldots \ldots \ldots .+a_{n}$. If $a_{1}=1, a_{n}=300$ and $15 \leq n \leq 50$, then the ordered pair ( $S_{n-4}{ }^{\prime} a_{n-4}$ ) is equal to:
B. $(2480,248)$
C. $(2480,249)$
D. $(2490,249)$

## Answer:

## - Watch Video Solution

112. If for some positive integer $n$, the coefficients of three consecutive terms in the binomial expansion $(1+x)^{n+5}$ are in the ratio $5: 10: 14$, then the largest coefficient in this expansion is :
A. 252
B. 462
C. 792
D. 330

## Answer:

113. If a and b are real numbers such that $(2+\alpha)^{4}=a+b \alpha$, where $\alpha=\frac{-1+i \sqrt{3}}{2}$, then $a+b$ is equal to:
A. 24
B. 33
C. 57
D. 9

## Answer:

## - Watch Video Solution

114. The solution of the differential equation

$$
\frac{d y}{d x}-\frac{y+3 x}{\log _{e}(y+3 x)}+3=0 \text { is : }
$$

(where C is a constant of integration)
A. $x-\log _{e}(y+3 x)=C$
B. $y+3 x-\frac{1}{2}\left(\log _{e} x\right)^{2}=C$
C. $x-\frac{1}{2}\left(\log _{e}(y+3 x)\right)^{2}=C$
D. $x-2 \log _{e}(y+3 x)=C$

## Answer:

## - Watch Video Solution

115. The function $f(x)=\left\{\begin{array}{ll}\frac{\pi}{4}+\tan ^{-1} x, & |x| \leq 1 \\ \frac{1}{2}(|x|-1), & |x|>1\end{array}\right.$ is :
A. continuous on $R-\{-1\}$ and differentiable on $R-\{-1,1\}$.
B. both continuous and differentiable on $R-\{-1\}$
C. continuous on $R-\{1\}$ and differentiable on $R-\{-1,1\}$.
D. both continuous and differentiable on $R-\{1\}$.

## Answer:

116. Center of a circle $S$ passing through the intersection points of circles $x^{2}+y^{2}-6 x=0 \& x^{2}+y^{2}-4 y=0$ lies on the line $2 x-3 y+12=0$ then circle S passes through
A. $(1,-3)$
B. $(-1,3)$
C. $(-3,6)$
D. $(-3,1)$

## Answer:

## Watch Video Solution

117. Let $x=4$ be a directrix to an ellipse whose centre is at the origin and its eccentricity is $\frac{1}{2}$. If $P(1, \beta), \beta>0$ is a point on this ellipse, then the equation of the normal to it at P is :
A. $7 x-4 y=1$
B. $4 x-2 y=1$
C. $8 x-2 y=5$
D. $4 x-3 y=2$

## Answer: B

## - Watch Video Solution

118. The distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$, is
A. 1
B. $\frac{7}{5}$
C. 7
D. $\frac{1}{7}$
119. The minimum value of $2^{\sin x}+2^{\cos x}$ is -
A. $2^{1-\sqrt{2}}$
B. $2^{-1+\sqrt{2}}$
C. $2^{-1+\frac{1}{\sqrt{2}}}$
D. $2^{1-\frac{1}{\sqrt{2}}}$

## Answer:

120. Find the equation of the perpendicular bisector of the line segment joining the points ( 1,1 ) and ( 2,3 ).
A. -2
B. -4
C.
D.

## Answer:

## - Watch Video Solution

121. The sum of the series $\left(2 .{ }^{1} P_{0}-3 .{ }^{2} P_{1}+4{ }^{3} P_{2}-5 .{ }^{4} P_{3}+\ldots . .51\right.$ terms $)+(1!-2!+3!-\ldots .+51$ terms $)=$
A. $1-51(51)$ !
B. $1+(52)!$
C. 1
D. $1+(51)$ !

## Answer: B

122. Let P be a point on the parabola, $y^{2}=12 x$ and N be the foot of the perpendicular drawn from P on the axis of the parabola. A line is now drawn through the mid-point $M$ of $P N$,parallel to its axis which meets the parabola at $Q$. If the $y$-intercept of the line $N Q$ is $\frac{4}{3}$, then
A. $P N=4$
B. $M Q=\frac{1}{3}$
C. $P N=3$
D. $M Q=\frac{1}{4}$

## Answer: D

## - Watch Video Solution

123. Matrix was given as det $\left[\begin{array}{ccc}x-2 & 2 x-3 & 3 x-4 \\ 2 x-3 & 3 x-4 & 4 x-5 \\ 3 x-5 & 5 x-8 & 10 x-17\end{array}\right]=A x^{3}+B x^{2}+C x+D . \quad$ Find $\quad$ the value of $B+C$.
A. 1
B. 1
C. -3
D. 9

## Answer: C

## - Watch Video Solution

124. The foot of the perpendicular drawn form the point $(4,2,3)$ to the line joining the points $(1,-2,3)$ and $(1,1,0)$ lies on the plane:
A. $x-y-2 z=1$
B. $x-2 y+z=1$
C. $2 x+y-z=1$
D. $x+2 y-z=1$

## Answer: C

125. If $y^{2}+\log _{e}\left(\cos ^{2} x\right)=y x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, then
A. $\left|y^{\prime}(0)\right|+\left|y^{\prime \prime}(0)\right|=1$
B. $y^{\prime \prime}(0)=0$
C. $\left|y^{\prime \prime}(0)\right|+\left|y^{\prime \prime}(0)\right|=3$
D. $\left|y^{\prime \prime}(0)\right|=2$

## Answer: D

## - Watch Video Solution

126. Solve : $2 \pi-\left(\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{5}{13}\right)+\sin ^{-1}\left(\frac{16}{65}\right)\right)=$
A. $\frac{5 \pi}{4}$
B. $\frac{3 \pi}{2}$
C. $\frac{7 \pi}{4}$
D. $\frac{\pi}{2}$

## Answer: B

## - Watch Video Solution

127. The length of transverse axis of a hyperbola is $\sqrt{2}$. The foci of hyperbola are same as the foci of ellipse $3 x^{2}+4 y^{2}=12$. Which of the following points does not lie on the hyperbola?
A. $\left(\sqrt{\frac{3}{2}}, \frac{1}{\sqrt{2}}\right)$
в. $\left(1,-\frac{1}{\sqrt{2}}\right)$
C. $\left(\frac{1}{\sqrt{2}}, 0\right)$
D. $\left(-\sqrt{\frac{3}{2}}, 1\right)$

## Answer: A

128. For the frequency distribution:
$\operatorname{Variate}(\mathrm{x}): \quad x_{1} \quad x_{2} \quad x_{3} \ldots . x_{15}$
Frequency (f): $f_{1} \quad f_{2} \quad f_{3} \ldots . f_{15}$
where $0<x_{1}<x_{2}<x_{3}<\ldots<x_{15}=10$ and $\sum_{i=1}^{15} f_{i}>0$, the
standard deviation cannot be :
A. 1
B. 4
C. 6
D. 2

## Answer: C

## - Watch Video Solution

129. A die is thrown two times and the sum of the scores appearing on the die is observed to be a multiple of 4. Then the conditional probability that the score 4 has appeared atleast once is:
A. $\frac{1}{3}$
B. $\frac{1}{4}$
C. $\frac{1}{8}$
D. $\frac{1}{9}$

## Answer: D

## D Watch Video Solution

130. The number of integral terms in the expansion of $(\sqrt{3}+\sqrt[5]{8})^{256}$ is
A. 128
B. 248
C. 256
D. 264

## Answer: C

131. $\int_{-\pi}^{\pi}|\pi-|x|| d x$
A. $\pi^{2}$
B. $\frac{\pi^{2}}{2}$
C. $\sqrt{2} \pi^{2}$
D. $2 \pi^{2}$

## Answer: A

132. If $\mathrm{A}=\left\{\mathrm{m}\right.$ : both roots of $x^{2}-(m+1) x+m+4=0$ is real $\}$ and $\mathrm{B}=$ $[-3,5)$ which of the following is wrong?
A. $A-B=(-\infty,-3) \cup(5, \infty)$
B. $A \cap B=\{-3\}$
C. $B-A=(-3,5)$
D. $A \cup B=R$

Answer: A

## - Watch Video Solution

133. The proposition $p \rightarrow \sim(p \wedge \sim q)$ is equivalent to :
A. $(\sim p) \vee(\sim q)$
B. $(\sim p) \wedge q$
C. q
D. $(\sim p) \vee q$

## Answer: D

## - Watch Video Solution

134. The function, $f(x)=(3 x-7) x^{2 / 3}$, x in is increasing for all x lying in
A. $\left(-\infty,-\frac{14}{15}\right) \cup(0, \infty)$
B. $\left(-\infty, \frac{14}{15}\right)$
C. $(-\infty, 0) \cup\left(\frac{14}{15}, \infty\right)$
D. $(-\infty, 0) \cup\left(\frac{3}{7}, \infty\right)$

## Answer: C

## - Watch Video Solution

135. If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is:
A. $\frac{1}{6}$
B. $\frac{1}{5}$
C. $\frac{1}{4}$
D. $\frac{1}{7}$

## Answer: A

## - Watch Video Solution

136. The solution curve of the differential equation, $\left(1+e^{-x}\right)\left(1+y^{2}\right) \frac{d y}{d x}=y^{2}$, which passes through the point $(0,1)$, is:
A. $y^{2}=1+y \log _{e}\left(\frac{1+e^{-x}}{2}\right)$
B. $y^{2}+1=y\left(\log _{e}\left(\frac{1+e^{-x}}{2}\right)+2\right)$
C. $y^{2}+1=y\left(\log _{e}\left(\frac{1+e^{x}}{2}\right)+2\right)$
D. $y^{2}=1+y\left(\log _{e}\left(\frac{1+e^{x}}{2}\right)\right)$

## Answer: D

## - Watch Video Solution

137. The area (in sq. units) of the region $\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1, \frac{1}{2} \leq x \leq 2\right\}$ is
A. $\frac{23}{16}$
B. $\frac{79}{16}$
C. $\frac{23}{6}$
D. $\frac{79}{24}$

## Answer: D

## - Watch Video Solution

138. If $\alpha$ and $\beta$ are roots of the equation $x^{2}+p x+2=0$ and $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ are the roots of the equation $2 x^{2}+2 q x+1=0$, then $\left(\alpha-\frac{1}{\alpha}\right)\left(\beta-\frac{1}{\beta}\right)\left(\alpha+\frac{1}{\beta}\right)\left(\beta+\frac{1}{\alpha}\right)$ is equal to :
A. $\frac{9}{4}\left(9+p^{2}\right)$
B. $\frac{9}{4}\left(9+q^{2}\right)$
C. $\frac{9}{4}\left(9-p^{2}\right)$
D. $\frac{9}{4}\left(9-q^{2}\right)$

## Answer: C

## - Watch Video Solution

139. Determine whether the following pair of lines intersect:
$\vec{r}=\hat{i}-\hat{j}+\lambda(2 \hat{i}+\hat{k})$ and $\vec{r}=2 \hat{i}-\hat{j}+\mu(\hat{i}+\hat{j}-\hat{k})$
A. do not intersect for any values of $I$ and $m$
B. intersect when $\mathrm{I}=1$ and $\mathrm{m}=2$
C. intersect when $\mathrm{I}=2$ and $m=\frac{1}{2}$
D. intersect for all values of I and m

## Answer: A

## - Watch Video Solution

140. If $\lim _{x \rightarrow 0} \frac{|1-x+|x||}{|\lambda-x+[x]|}=L$ find L , where $\lambda \in R-\{0,1\}$ and [.] denotes G.I.F.
A. 0
B. 2
C. $\frac{1}{2}$
D. 1

## Answer: B

## - Watch Video Solution

141. If $\lim _{x \rightarrow 0}\left(\frac{1-\cos \left(\frac{x^{2}}{2}\right)-\cos \left(\frac{x^{2}}{4}\right)+\cos \left(\frac{x^{2}}{2}\right) \cos \left(\frac{x^{2}}{4}\right)}{x^{8}}\right)=2^{-k}$.

Find k .
142. The diameter of the circle, whose centre lies on the line $x+y=2$ in the first quadrant and which touches both the lines $x=3$ and $y=2$, is

## - Watch Video Solution

143. The value of $(0.16)^{\log _{25}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots \text { to } \infty\right)}$, is

## Watch Video Solution

144. In the matrix $A=\left[\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right]$ and $A^{4}=\left[\begin{array}{ll}109 & a_{12} \\ a_{21} & a_{22}\end{array}\right]$, then find the value of $a_{22}$ is equal to

## - Watch Video Solution

145. If $\left(\frac{1+i}{1-i}\right)^{\frac{m}{2}}=\left(\frac{1+i}{1-i}\right)^{\frac{n}{3}}=1,(m, n \in N)$ then the greatest common divisor of the least values of $m$ and $n$ is $\qquad$
146. If $\mathrm{y}=\mathrm{y}(\mathrm{x})$ is the solution of the differential equation $\frac{5+e^{x}}{2+y} \cdot \frac{d y}{d x}+e^{x}=0$ satisfying $\mathrm{y}(0)=1$, then a value of $y\left(\log _{e} 13\right)$ is :
A. 1
B. -1
C. 0
D. 2

## Answer:

## - Watch Video Solution

147. Find the product of the roots of the equation $9 x^{2}-18|x|+5=0$
A. $\frac{5}{9}$
B. $\frac{25}{81}$
C. $\frac{5}{27}$
D. $\frac{25}{9}$

## Answer:

## - Watch Video Solution

148. The negation of the Boolean expression $x \leftrightarrow \sim y$ is equivalent to :
A. $(x \wedge y) \vee(\sim x \wedge \sim y)$
B. $(x \wedge y) \wedge(\sim x \vee \sim y)$
C. $(x \wedge \sim y) \vee(\sim x \wedge y)$
D. $(\sim x \wedge y) \vee(\sim x \wedge \sim y)$

## Answer:

## D Watch Video Solution

149. The mean and variance of 7 observations are 8 and 16 , respectively . If five observations are $2,4,10,12,14$, then the absolute difference of the remaining two observations is :
A. 1
B. 4
C. 2
D. 3

## Answer:

## - Watch Video Solution

150. If
$2^{10}+2^{9} \cdot 3^{1}+2^{8} \cdot 3^{2}+\ldots .+2 \cdot 3^{9}+3^{10}=S-2^{11}$, then S is equal to :
A. $3^{11}-2^{12}$
B. $3^{11}$
C. $\frac{3^{11}}{2}+2^{10}$
D. $2 \cdot 3^{11}$

## Answer:

## - Watch Video Solution

151. The numbers $3^{2 \sin 2 \alpha-1}, 14$ and $3^{4-2 \sin 2 \alpha}$ form first three terms of A.P., its fifth term is
A. 66
B. 81
C. 65
D. 78

## Answer:

152. If the volume of a parallelopiped,whose coterminus edges are given by the vectors $\vec{a}=\hat{i}+\hat{j}+n \hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}-n \hat{k} \quad$ and $\vec{c}=\hat{i}+n \hat{j}+3 \hat{k}(n \geq 0)$, is 158 cu. Units, then :
A. $\vec{a} \cdot \vec{c}=17$
B. $\vec{b} \cdot \vec{c}=10$
C. $n=7$
D. $n=9$

## Answer:

## - Watch Video Solution

153. If $S=\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{13}\right)+\ldots$ to 10 terms. Find $\tan S$
A. $\frac{5}{6}$
B. $\frac{5}{11}$
C. $-\frac{6}{5}$
D. $\frac{10}{11}$

## Answer:

## - Watch Video Solution

154. If four complex number $z, \bar{z}, \bar{z}-2 \operatorname{Re}(\bar{z})$ and $z-2 \operatorname{Re}(z)$ represent the vertices of a square of side 4 -units in the Argand plane than find $|z|$.
A. $4 \sqrt{2}$
B. 4
C. $2 \sqrt{2}$
D. 2

## Answer:

155. A survey shows that $73 \%$ of the persons working in an office like coffee, whereas $65 \%$ like tea. If $x$ denotes the percentage of them, who like both coffee and tea, then $x$ cannot be :
A. 63
B. 36
C. 54
D. 38

## Answer:

## ( Watch Video Solution

156. If the co-ordinates of two point $A$ and $B$ are $(\sqrt{7}, 0)$ and $(-\sqrt{7}, 0)$ respectively and P is any point on the curve $9 x^{2}+16 y^{2}=144$, then find $A P+P B$.
A. 16
B. 8
C. 6
D. 9

## Answer:

## - Watch Video Solution

157. If the point P on the curve $4 x^{2}+5 y^{2}-20=0$ is farthest from the point $Q(0,-4)$ than Find $P Q^{2}$.
A. 36
B. 48
C. 21
D. 29

## Answer:

158. Let $\lambda \in R$. The system of linear equations
$2 x_{1}-4 x_{2}+\lambda x_{3}=1$
$x_{1}-6 x_{2}+x_{3}=2$
$\lambda x_{1}-10 x_{2}+4 x_{3}=3$
is inconsistent for :
A. exactly one negative value of $\lambda$
B. exactly one positive value of $\lambda$
C. every value of $\lambda$
D. exactly two values of $\lambda$

## Answer: A

## - Watch Video Solution

159. If min and max value of the function
$f:\left[\frac{\pi}{4}, \frac{\pi}{2}\right] \rightarrow R, f(\theta)=\left|\begin{array}{ccc}-\sin ^{2} \theta & -1-\sin ^{2} \theta & 1 \\ -\cos ^{2} \theta & -1-\sin ^{2} \theta & 1 \\ 12 & -4 & 0\end{array}\right|$ are $m$ and $M$. Find the ordered pair $(m, M)$.
A. $(0,2 \sqrt{2})$
B. $(-4,0)$
C. $(-4,0)$
D. $(0,4)$

## Answer:

## - Watch Video Solution

160. If $(a, b, c)$ is the image of the point $(1,2,-3)$ in the line $\frac{x+1}{2}=\frac{y-3}{-2}=\frac{z}{-1}$ then Find $a+b+c$.
A. 2
B. -1
C. 3
D. 1

## Answer:

## - Watch Video Solution

161. If function $f(x)=\left\{\begin{array}{ll}k_{1}(x-\pi)^{2}-1 & x \leq \pi \\ k_{2} \cos x & x>\pi\end{array}\right.$ is twice differentiable in ordered pair $\left(k_{1}, k_{2}\right)$. Find this ordered pair.
A. $\left(\frac{1}{2}, 1\right)$
B. $(1,0)$
C. $\left(\frac{1}{2},-1\right)$
D. $(1,1)$

## Answer:

162. If common tangent to parabola $y^{2}=4 x$ and $x^{2}=4 y$ also touches the circle $x^{2}+y^{2}=c^{2}$, then find the value of $C$.
A. $\frac{1}{2 \sqrt{2}}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{4}$
D. $\frac{1}{2}$

## Answer:

## - Watch Video Solution

163. If $\alpha$ is a positive root of $p(x)=x^{2}-x-2$ Find $\lim _{x \rightarrow \alpha^{+}} \frac{\sqrt{1-\cos (p(x))}}{x-2}$
A. $\frac{3}{2}$
B. $\frac{3}{\sqrt{2}}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{1}{2}$

## Answer:

## - Watch Video Solution

164. $\int\left(e^{2 x}+2 e^{x}-e^{-x}-1\right) e^{e^{x}+e^{-x}} d x=g(x) e^{e^{x}+e^{-x}}$, then find $g(0)$.
A. $e$
B. $e^{2}$
C. 1
D. 2

## Answer:

165. The value of $\int^{\frac{\pi}{2}} \frac{1}{1+e^{\sin x}} d x$ is :
A. $\frac{\pi}{4}$
B. $\pi$
C. $\frac{\pi}{2}$
D. $\frac{3 \pi}{2}$

## Answer:

## - Watch Video Solution

166. Let $\mathrm{f}(\mathrm{x})=x .\left[\frac{x}{2}\right]$ for $-10<x<10$, where [t] denotes the greatest integer function. Then the number of points of discontinuity of $f$ is equal to $\qquad$ .

## - Watch Video Solution

167. If the distance of line $2 x-y+3=0$ from $4 x-2 y+p=0$ and $6 x-3 y+r=0$ is respectively $\frac{1}{\sqrt{5}}$ and $\frac{2}{\sqrt{5}}$

## - Watch Video Solution

168. The number of four letters word while each consisting 2 distinct and two alike letters taken from eord $S Y L L A B U S$

## - Watch Video Solution

169. The natural number $m$, for which the coefficient of $x$ in the binomial expansion of $\left(x^{m}+\frac{1}{x^{2}}\right)^{22}$ is 1540 , is $\qquad$

## - Watch Video Solution

170. Four different dice are thrown independently 27 times, then find the expectation of number of times if at leat two of them shows either 5 or 3 .
171. If $\alpha$ and $\beta$ be two roots of the equation $x^{2}-64 x+256=0$. Then the value of $\left(\frac{\alpha^{3}}{\beta^{5}}\right)^{\frac{1}{8}}+\left(\frac{\beta^{3}}{\alpha^{5}}\right)^{\frac{1}{8}}$ is :
A. 2
B. 3
C. 1
D. 4

## Answer:

## - Watch Video Solution

172. The area ( in sq. units ) of the region $A=\left\{(x, y):|x|+|y| \leq 1,2 y^{2} \geq|x|\right\}$ is:
A. $\frac{1}{3}$
B. $\frac{7}{6}$
C. $\frac{1}{6}$
D. $\frac{5}{6}$

## Answer:

## - Watch Video Solution

173. Find the general solution of the differential equation
$\sqrt{1+x^{2}+y^{2}+x^{2} y^{2}}+x y \frac{d y}{d x}=0$.
A. $\sqrt{1+y^{2}}+\sqrt{1+x^{2}}=\frac{1}{2} \log _{e}\left(\frac{\sqrt{1+x^{2}}+1}{\sqrt{1+x^{2}}-1}\right)+C$
B. $\sqrt{1+y^{2}}-\sqrt{1+x^{2}}=\frac{1}{2} \log _{e}\left(\frac{\sqrt{1+x^{2}}+1}{\sqrt{1+x^{2}}-1}\right)+C$
C. $\sqrt{1+y^{2}}+\sqrt{1+x^{2}}=\frac{1}{2} \log _{e}\left(\frac{\sqrt{1+x^{2}}-1}{\sqrt{1+x^{2}}+1}\right)+C$
D. $\sqrt{1+y^{2}}+\sqrt{1+x^{2}}=\frac{1}{2} \log _{e}\left(\frac{\sqrt{1+x^{2}}-1}{\sqrt{1+x^{2}}+1}\right)+C$

## Answer:

174. Let $L_{1}$ be a tangent to the parabola $y^{2}=4(x+1)$ and $L_{2}$ be a tangent to the parabola $y^{2}=8(x+2)$ such that $L_{1}$ and $L_{2}$ intersect at right angles. Then $L_{1}$ and $L_{2}$ meet on the straight line :
A. $x+3=0$
B. $2 x+1=0$
C. $x+2=0$
D. $x+2 y=0$

## Answer:

## - Watch Video Solution

175. If $f(x+y)=f(x) f(y)$ and $\sum_{x=1}^{\infty} f(x)=2, x, y \in N$, where N is the set of all natural numbers , then the value of $\frac{f(4)}{f(2)}$ is :
A. $\frac{2}{3}$
B. $\frac{1}{9}$
C. $\frac{1}{3}$
D. $\frac{4}{9}$

## Answer:

## (D) Watch Video Solution

176. Let $I_{1}=\int_{0}^{1}\left(1-x^{50}\right)^{100} d x$ and $I_{2}=\int_{0}^{1}\left(1-x^{50}\right)^{101} d x$ and $I_{1}=\lambda I_{2}$, then $\lambda$ is
A. $\frac{5049}{5050}$
B. $\frac{5050}{5049}$
C. $\frac{5050}{5051}$
D. $\frac{5051}{5050}$

## Answer:

177. Out of 11 consecutive natural numbers if three number are selected at random ( without repetition ), then the probability that they are in A.P. with positive common difference, is :
A. $\frac{15}{101}$
B. $\frac{5}{101}$
C. $\frac{5}{33}$
D. $\frac{10}{99}$

## Answer:

## - Watch Video Solution

178. A ray of light coming from the point $(2,2 \sqrt{3})$ is incident at an angle $30^{\circ}$ on the line $x=1$ at the point $A$. The ray gets reflected on the line $x=1$ and meet $x$-axis at the point $B$. Then, the line $A B$ passes through the point :
A. $\left(3,-\frac{1}{\sqrt{3}}\right)$
B. $\left(4,-\frac{\sqrt{3}}{2}\right)$
C. $(3,-\sqrt{3})$
D. $(4,-\sqrt{3})$

## Answer:

## - Watch Video Solution

179. Which of the following points lies on the locus of the foot of perpendicular drawn upon any tangent to the ellipse, $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ from any of its foci ?
A. $(-2, \sqrt{3})$
B. $(-1, \sqrt{2})$
C. $(-1, \sqrt{3})$
D. $(1,2)$

## - Watch Video Solution

180. The region represented by $\{z=x+i y \in C:|z|-\operatorname{Re}(z) \leq 1\}$ is also given by the inequality :
A. $y^{2} \geq 2(x+1)$
B. $y^{2} \leq 2\left(x+\frac{1}{2}\right)$
C. $y^{2} \leq x+\frac{1}{2}$
D. $y^{2} \geq x+1$

## Answer:

## - Watch Video Solution

181. The position of a moving car at time $t$ is given by $f(t)=a t^{2}+b t+c, t>0$, where $\mathrm{a}, \mathrm{b}$ and c are real numbers greater
than 1 . Then the average speed of the car over the time interval $\left[t_{1}, t_{2}\right]$ is attained at the point :
A. $\left(t_{2}-t_{1}\right) / 2$
B. $a\left(t_{2}-t_{1}\right)+b$
C. $\left(t_{1}+t_{2}\right) / 2$
D. $2 a\left(t_{1}+t_{2}\right)+b$

## Answer:

## - Watch Video Solution

182. $\lim _{x \rightarrow 1}\left(\frac{\int_{0}^{(x-1)} t \cos (t) d t}{(x-1) \sin (x-1)}\right)$
A. is equal to $\frac{1}{2}$
B. is equal to 1
C. is equal to $-\frac{1}{2}$
D. does not exist

## - Watch Video Solution

183. If $\sum_{i=1}^{n}\left(x_{i}-a\right)=n$ and $\sum_{i=1}^{n}\left(x_{i}-a\right)^{2}=n a$ then the standard deviation of variate $x_{i}$
A. $a-1$
B. $n \sqrt{a-1}$
C. $\sqrt{n(a-1)}$
D. $\sqrt{a-1}$

## Answer:

## Watch Video Solution

184. If $\{p\}$ denotes the fractional part of the number p , then $\left\{\frac{3^{200}}{8}\right\}$, is equal to :
A. $\frac{5}{8}$
B. $\frac{7}{8}$
C. $\frac{3}{8}$
D. $\frac{1}{8}$

## Answer:

## D Watch Video Solution

185. The shortest distance between the lines $\frac{x-1}{0}=\frac{y+1}{-1}=\frac{z}{1}$ and $x+y+z+1=0,2 x-y+z+3=0$ is :
A. 1
B. $\frac{1}{\sqrt{3}}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{1}{2}$
186. The negation of the Boolean expression $p \vee(\sim p \wedge q)$ is equivalent to
A. $p \wedge \sim q$
B. $\sim p \wedge \sim q$
C. $\sim p \vee \sim q$
D. $\sim p \vee q$

## Answer:

## - Watch Video Solution

187. Two families with three members each and one family with four members are to be estated in a row. In how many ways can they be setated so that the same familymembers are not separated ?
A. $2!3!4!$
B. $(3!)^{3} \cdot(4!)$
C. $(3!)^{2} \cdot(4!)$
D. $3!(4!)^{3}$

## Answer:

## - Watch Video Solution

188. Let $m$ and $M$ be respectively the minimum and maximum values of
$\left|\begin{array}{lll}\cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x\end{array}\right|$

Then the ordered pari ( $m, M$ ) is equal to :
A. $(-3,-1)$
B. $(1,3)$
C. $(-3,3)$
D. $(-4,-1)$

## Answer: A

## - Watch Video Solution

189. Let $a, b, c, d$ and $p$ be any non zero distinct real numbers such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right)=0$. Then :
A. a,c,p are in A.P.
B. a,c,p, are in G.P.
C. a,b,c,d are in G.P.
D. a,b,c,d are in A.P.

## Answer:

## - Watch Video Solution

190. The value of $\lambda$ and $\mu$ for which the system of linear equation $x+y+z=2$
$x+2 y+3 z=5$
$x+3 y+\lambda z=\mu$
has infinitely many solutions are, respectively :
A. 5 and 8
B. 5 and 7
C. 4 and 9
D. 6 and 8

## Answer: A

## - Watch Video Solution

191. Set $A$ has $m$ element and Set $B$ has $n$ element. If the total numbers of subsets of $A$ is 112 more than the total number of subsets of $B$, then the value of m.n is $\qquad$

## - Watch Video Solution

192. Let $f: R \rightarrow R$ be defined as $f(x)=\left\{\begin{array}{cc}x^{5} \sin \left(\frac{1}{x}\right)+5 x^{2}, & x<0 \\ 0, & x=0 \\ x^{5} \cos \left(\frac{1}{x}\right)+\lambda x^{2}, & x>0\end{array}\right.$

The value of $\lambda$ for which $f^{\prime \prime}(0)$ exists, is $\qquad$

## - Watch Video Solution

193. If $\vec{a}$ and $\vec{b}$ are unit vectors, then the greatest value of $\sqrt{3}|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|$ is $\qquad$

## - Watch Video Solution

194. Let $A D$ and $B C$ be two vertical poles at $A$ and $B$ respectively on a horizontal ground . If $A D=8 m \quad, \quad B C=11 m$ and $A B=10 \mathrm{~m}$, then the distance ( in meters) of a point $M$ on $A B$ from the point $A$ such that $M D^{2}+M C^{2}$ is miniumu is $\qquad$

## - Watch Video Solution

195. The angle of elevation of the top of a hill from a point on the horizontal planes passing through the foot of the hill is found to be $45^{\circ}$. After walking a distance of 80 meters towards the top, up a slope inclined at an angle of $30^{\circ}$ to the horizontal plane, the angle of elevation of the top of the hill becomes $75^{\circ}$. Then the height of the hill (in meters ) is $\qquad$

## - Watch Video Solution

196. Let $f: R \rightarrow R$ be a function which satisfies
$f(x+y)=f(x)+f(y) \forall x, y \in R . \quad$ If $\quad f(1)=2 \quad$ and
$g(n)=\sum_{k-1}^{(n-1)} f(k), n \in N$ then the value of n , for which $g(n)=20$, is:
A. 9
B. 5
C. 4
D. 20

## Answer: B

## - Watch Video Solution

197. If the sum of first 11 terms of an $A . P ., a_{1}, a_{2}, a_{3}, \ldots$ is $0\left(a_{1} \neq 0\right)$ then the sum of the $A . P ., a_{1}, a_{3}, a_{5}, \ldots \ldots, a_{23}$ is $k a_{1}$, where k is equal to
A. $-\frac{121}{10}$
B. $-\frac{72}{5}$
C. $\frac{72}{5}$
D. $\frac{121}{10}$

## Answer: B

198. Let $E^{C}$ denote the complement of an event E . Let $E_{1}, E_{2}$ and $E_{3}$ be any pairwise independent events with $P\left(E_{1}\right)>0$ and $P\left(E_{1} \cap E_{2} \cap E_{3}\right)=0$. Then $P\left(E_{2}^{C} \cap E_{3}^{C} / E_{1}\right)$ is equal to :
A. $P\left(E_{3}^{C}\right)-P\left(E_{2}^{C}\right)$
B. $P\left(E_{3}\right)-P\left(E_{2}^{C}\right)$
C. $P\left(E_{3}^{C}\right)-P\left(E_{2}\right)$
D. $P\left(E_{2}^{C}\right)+P\left(E_{3}\right)$

## Answer: C

## - Watch Video Solution

199. If the equation $\cos ^{4} \theta+\sin ^{4} \theta+\lambda=0$ has real solutions for $\theta$, then
$\lambda$ lies in the interval :
A. $\left(-\frac{1}{2},-\frac{1}{4}\right]$
B. $\left[-1,-\frac{1}{2}\right]$
C. $\left[-\frac{3}{2},-\frac{5}{4}\right]$
D. $\left(-\frac{5}{4},-1\right)$

## Answer: B

## - Watch Video Solution

200. An equilateral trinagle is inscribed in parabola $y^{2}=8 x$ whose one vertex coincides with vertex of parabola.Find area of triangle.
A. $128 \sqrt{3}$
B. $192 \sqrt{3}$
C. $64 \sqrt{3}$
D. $256 \sqrt{3}$

## Answer: B

201. Find the imaginary part of $\left((3+2 \sqrt{-54})^{\frac{1}{2}}-(3-2 \sqrt{-54})^{\frac{1}{2}}\right)$
A. $\sqrt{6}$
B. $-2 \sqrt{6}$
C. 6
D. $-\sqrt{6}$

## Answer: B

## - Watch Video Solution

202. A plane passing through the point $(3,1,1)$ contains two lines whose direction ratios are 1,-2,2 and 2,3, -1 respectively. If this plane also passes through the point $(\alpha,-3,5)$, then $\alpha$ is equal to:
A. -5
B. 10
C. 5
D. -10

## Answer: C

## - Watch Video Solution

203. Let $A=\left\{X=(x, y, z)^{T}: P X=0\right.$ and $\left.x^{2}+y^{2}+z^{2}=1\right\}$,
where $P=\left[\begin{array}{ccc}1 & 2 & 1 \\ -2 & 3 & -4 \\ 1 & 9 & -1\end{array}\right]$, then the set $A$ :
A. contains more than two elements
B. is a singleton.
C. contains exactly two elements
D. is an empty set.

## Answer: C

## - Watch Video Solution

204. The equation of the normal to the curve $y=(1+x)^{2 y}+\cos ^{2}\left(\sin ^{-1} x\right)$ at $x=0$ is :
A. $y+4 x=2$
B. $2 y+x=4$
C. $x+4 y=8$
D. $y=4 x+2$

## Answer: C

## - Watch Video Solution

205. Consider a region $R=\left\{(x, y) \in R^{2}: x^{2} \leq y \leq 2 x\right\}$. If a line $y=\alpha$ divides the area of region $R$ into two equal parts, then which of the following is true.?
A. $\alpha^{3}-6 \alpha^{2}+16=0$
B. $3 \alpha^{2}-8 \alpha^{3 / 2}+8=0$
C. $\alpha^{3}-6 \alpha^{3 / 2}-16$
D. $3 \alpha^{2}-8 \alpha+8=0$

## Answer: B

## - Watch Video Solution

206. Let $f:(-1, \infty) \rightarrow R$ be defined by $f(0)=1$ and $f(x)=\frac{1}{x} \log _{e}(1+x), x \neq 0$. Then the function $\mathrm{f}:$
A. increases in $(-1, \infty)$
B. decreases in $(-1,0)$ and increases in $(0, \infty)$
C. increases in $(-1,0)$ and decreases in $(0, \infty)$
D. decreases in $(-1, \infty)$.

## Answer: D

## - Watch Video Solution

207. Which of the following is a tautology?
A. $(p \rightarrow q) \wedge(q \rightarrow p)$
B. $(\sim p) \wedge(p \vee q) \rightarrow q$
C. $(q \rightarrow p) \vee \sim(p \rightarrow q)$
D. $(\sim q) \vee(p \wedge q) \rightarrow q$

## Answer: B

## - Watch Video Solution

208. If $f(x)$ be a quadratic polynomial such that $f(x)=0$ has a root 3 and $f(2)+f(-1)=0$ then other root lies in
A. $(0,1)$
B. $(1,3)$
C. ( $-1,0$ )
D. $(-3,-1)$

## D Watch Video Solution

209. Let $S$ be the sum of the first 9 terms of the series :
$\{x+k a\}+\left\{x^{2}+(k+2) a\right\}+\left\{x^{3}+(k+4) a\right\}+\left\{x^{4}+(k+6) a\right\}+\ldots$
where $a \neq 0$ and $a \neq 1$.
If $S=\frac{x^{10}-x+45 a(x-1)}{x-1}$, then k is equal to :
A. 3
B. -3
C. 1
D. -5

## Answer: B

210. The set of all possible values of $\theta$ in the interval $(0, \pi)$ for which the points $(1,2)$ and $(\sin \theta, \cos \theta)$ lie on the same side of the line $x+y=1$ is:
A. $\left(0, \frac{\pi}{4}\right)$
B. $\left(0, \frac{\pi}{2}\right)$
C. $\left(0, \frac{3 \pi}{4}\right)$
D. $\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right)$

## Answer: B

## - Watch Video Solution

211. There are n stations in a circular path.Two consecutive stations are connected by blue line and two non-consecutive stations are connected by red line.If no. of red lines is equal to 99 times number of blue line then value of $n$ is
A. 201
B. 199
C. 101
D. 200

## Answer: A

## - Watch Video Solution

212. If a curve $y=f(x)$ satisfy the differential equation $2 x^{2} d y=\left(2 x y+y^{2}\right) d x$ and passes $(1,2)$ the find $f\left(\frac{1}{2}\right)$
A. $\frac{-1}{1+\log _{e} 2}$
B. $1+\log _{e} 2$
C. $\frac{1}{1+\log _{e} 2}$
D. $\frac{1}{1-\log _{e} 2}$

## Answer: C

213. If $x^{2}-y^{2} \sec ^{2} \theta=10$ be a hyperbola and $x^{2} \sec ^{2} \theta+y^{2}=5$ be an ellipse such that the eccentricity of hyperbola $=\sqrt{5}$ eccentricity of ellipse then find the length of latus rectum of ellipse
A. $\frac{4 \sqrt{5}}{3}$
B. $\frac{2 \sqrt{5}}{3}$
C. $2 \sqrt{6}$
D. $\sqrt{30}$

## Answer: A

## - Watch Video Solution

214. Find $(\lim )_{x 0}\left\{\tan \left(\frac{\pi}{4}+x\right)\right\}^{1 / x}$
A. e
B. $e^{2}$
C. 2
D. 1

## Answer: B

## - Watch Video Solution

215. Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$ be all non-zero and satisfy $a^{3}+b^{3}+c^{3}=2$. If the matrix
$A=\left(\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right)$
satisfies $A^{T} A=I$, then a value of abc can be:
A. $\frac{2}{3}$
B. 3
C. $-\frac{1}{3}$
D. $\frac{1}{3}$

## - Watch Video Solution

216. Let the position vectors of points ' $A$ ' and ' $B$ ' be $\hat{i}+\hat{j}+\hat{k}$ and $2 \hat{i}+\hat{j}+3 \hat{k}$, respectively. $A$ point ' $P$ ' divides the line segment $A B$ internally in the ratio $\lambda: 1(\lambda>0)$. If O is the origin and $\overrightarrow{O B} \cdot \overrightarrow{O P}-3|\overrightarrow{O A} \times \overrightarrow{O P}|^{2}=6$, then $\lambda$ is equal to
A.
B.
C.
D.

## Answer: 0.8

## - Watch Video Solution

217. Let $[x]$ denote the greatest integer less than or equal to $x$. Then the value of $\int_{1}^{2}|2 x-[3 x]| d x$ is
A.
B.
C.
D.

## Answer: 1

## - Watch Video Solution

218. If $y=\sum_{k=1}^{6} K \cos ^{-1}\left(\frac{3}{5} \cos k x-\frac{4}{5} \sin k x\right)$ then $\frac{d y}{d x}=$
A.
B.
C.
D.

Answer: 91
219. If the variance of the terms in an increasing $A . P ., b_{1}, b_{2}, b_{3}, \ldots, b_{11}$ is 90 , then the common difference of this A.P. is $\qquad$
A.
B.
C.
D.

## Answer: 3

## - Watch Video Solution

220. For a positive integer $n,\left(1+\frac{1}{x}\right)^{n}$ is expanded in increasing powers of $x$. If three consecutive coefficients in this expansion are in the ratio, $2: 5: 12$, then n is equal to $\qquad$
A.
B.
C.
D.

## Answer: 118

## - Watch Video Solution

221. If the system of linear equations
$x+y+3 z=0$
$x+3 y+k^{2} z=0$
$3 x+y+3 z=0$
has a non -zero solution ( $\mathrm{x}, \mathrm{y},-\mathrm{z}$ ) for some $\mathrm{k} \in \mathrm{R}$ then $x+\left(\frac{y}{z}\right)$ is equal to :
A. 9
B. -3
C. -9
D. 3

Answer: D

## - Watch Video Solution

222. If $\alpha$ and $\beta$ are the roots of the equation, $7 x^{2}-3 x-2=0$, then
the value of
$\frac{\alpha}{1-\alpha^{2}}+\frac{\beta}{1+\beta^{2}}$ is equal to :
A. $\frac{27}{32}$
B. $\frac{1}{24}$
C. $\frac{3}{8}$
D. $\frac{27}{16}$

## Answer:

223. If $x=1$ is a critical point of the function $f(x)=\left(3 x^{2}+a x-2-a\right) e^{x}$, then :
A. $\mathrm{x}=1$ and $x=-\frac{2}{3}$ are local minima of f .
B. $\mathrm{x}=1$ and $x=-\frac{2}{3}$ are local maxima of f .
C. $\mathrm{x}=1$ is a local maxima and $x=-\frac{2}{3}$ is a local minima of f .
D. $\mathrm{x}=1$ is a local minima and $x=-\frac{2}{3}$ is a local maxima of f .

## Answer:

## - Watch Video Solution

224. The area (in sq. units ) of the region $A=\{(x, y):(x-1)[x] \leq y \leq 2 \sqrt{x}, 0 \leq x \leq 2]$ where [t] denotes the greatest integer function is
A. $\frac{8}{3} \sqrt{2}-\frac{1}{2}$
B. $\frac{4}{3} \sqrt{2}+1$
C. $\frac{8}{3} \sqrt{2}-1$
D. $\frac{4}{3} \sqrt{2}-\frac{1}{2}$

## Answer:

## - Watch Video Solution

225. If the sum of the second, third and fourth terms of a positive term G.P is 3 and the sum of its sixth, seventh and eight terms is 243 , then the sum of the first 50 terms of this G.P is :
A. $\frac{1}{26}\left(3^{49}-1\right)$
B. $\frac{1}{26}\left(3^{50}-1\right)$
C. $\frac{2}{13}\left(3^{50}-1\right)$
D. $\frac{1}{13}\left(3^{50}-1\right)$

## Answer: A:C

226. $\left(\frac{-1+\sqrt{3} i}{1-i}\right)^{30}$ simplifies to
A. $-2^{15}$
B. $2^{15}$
C. $-2^{15} i$
D. $6^{5}$

## Answer:

## - Watch Video Solution

227. If $L=\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ and $M=\cos ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$, then :
A. $L=-\frac{1}{2 \sqrt{2}}+\frac{1}{2} \cos \left(\frac{\pi}{8}\right)$
B. $L=\frac{1}{4 \sqrt{2}}-\frac{1}{4} \cos \left(\frac{\pi}{8}\right)$
C. $M=\frac{1}{4 \sqrt{2}}+\frac{1}{4} \cos \left(\frac{\pi}{8}\right)$
D. $M=\frac{1}{2 \sqrt{2}}+\frac{1}{2} \cos \left(\frac{\pi}{8}\right)$

## Answer:

## - Watch Video Solution

228. If $a+x=b+y=c+z+1$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ are non polar distinct real numbers , then $\left|\begin{array}{lll}x & a+y & x+a \\ y & b+y & y+b \\ z & c+y & z+c\end{array}\right|$ is equal to :
A. 0
B. $y(a-b)$
C. $y(b-c)$
D. $y(a-c)$

## Answer: B

229. If the line $y=m x+c$ is a common tangent to the hyperbola $\frac{x^{2}}{100}-\frac{y^{2}}{64}=1$ and the circle $x^{2}+y^{2}=36$, then which one of the following is ture?
A. $c^{2}=369$
B. $5 m=4$
C. $4 c^{2}=369$
D. $8 m+5=0$

## Answer:

## - Watch Video Solution

230. Which of the following points lies on the tangent to the curve $x^{4} e^{y}+2 \sqrt{y+1}=3$ at the point $(1,0)$ ?
A. $(2,2)$
B. $(2,6)$
C. $(-2,6)$
D. $(-2,4)$

## Answer:

## - Watch Video Solution

231. The statement
$(p \rightarrow(q \rightarrow p)) \rightarrow(p \rightarrow(p \vee q))$ is :
A. equivalent to $(p \wedge q) \vee(\sim q)$
B. a contradiction
C. equivalent to $(p \vee q) \wedge(\sim p)$
D. a tautology

## Answer:

232. $\lim _{x \rightarrow 0} \frac{x\left(\frac{\sqrt{1+x^{2}+x^{4}}-1}{e^{x}}-1\right)}{\sqrt{1+x^{2}+x^{4}}-1}$
A. is equal to $\sqrt{e}$
B. is equal to 1
C. is equal to 0
D. does not exist

## Answer:

233. If the sum of the first 20 terms of the series
$\log _{\left(7^{1 / 2}\right)} x+\log _{\left(7^{1 / 3}\right)} x+\log _{\left(7^{1 / 4}\right)} x+\ldots$. is 460 , then x is equal to :
A. $7^{2}$
B. $7^{1 / 2}$
C. $e^{2}$
D. $7^{46 / 21}$

Answer:

## - Watch Video Solution

234. the derivation of $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ with respect to $\tan ^{-1}\left(\frac{2 x \sqrt{1-x^{2}}}{1-2 x^{2}}\right)$
A. $\frac{2 \sqrt{3}}{5}$
B. $\frac{\sqrt{3}}{12}$
C. $\frac{2 \sqrt{3}}{3}$
D. $\frac{\sqrt{3}}{10}$

## Answer:

## - Watch Video Solution

235. If $\int \frac{\cos \theta}{5+7 \sin \theta-2 \cos ^{2} \theta} d \theta=A \log _{e}|B(\theta)|+C$
where C is a constant of integration, then $\frac{B(\theta)}{A}$ can be :
A. $\frac{2 \sin \theta+1}{\sin \theta+3}$
B. $\frac{2 \sin \theta+1}{5(\sin \theta+3)}$
C. $\frac{5(\sin \theta+3)}{2 \sin \theta+1}$
D. $\frac{5(2 \sin \theta+1)}{\sin \theta+3}$

## Answer: D

## - Watch Video Solution

236. Let $y=y(x)$ be the solution of the differential equation
$\cos x \frac{d y}{d x}+2 y \sin x=\sin 2 x, x \in\left(0, \frac{\pi}{2}\right)$.
If $y(\pi / 3)=0$, then $y(\pi / 4)$ is equal to :
A. $2-\sqrt{2}$
B. $2+\sqrt{2}$
C. $\sqrt{2}-2$
D. $\frac{1}{\sqrt{2}}-1$

## Answer: C

## - Watch Video Solution

237. If the length of the chord of the circle, $x^{2}+y^{2}=r^{2}(r>0)$ along the line , $y-2 x=3$ is $r$, then $r^{2}$ is equal to
A. $\frac{9}{5}$
B. 12
C. $\frac{24}{5}$
D. $\frac{12}{5}$

## Answer: D

238. If the mean and the standard deviation of the data $3,5,7, \mathrm{a}, \mathrm{b}$ are 5 and 2 respectively, then $a$ and $b$ are the roots of the equation :
A. $x^{2}-10 x+18=0$
B. $2 x^{2}-20 x+19=0$
C. $x^{2}-10 x+19=0$
D. $x^{2}-20 x+18=0$

## Answer:

## - Watch Video Solution

239. If for some $\alpha \in R$, the lines
$L_{1}: \frac{x+1}{2}=\frac{y-2}{-1}=\frac{z-1}{1}$ and
$L_{2}: \frac{x+2}{\alpha}=\frac{y+1}{5-\alpha}=\frac{z+1}{1}$ are coplanar, then the line $L_{2}$ passes through the point :
A. $(10,2,2)$
B. $(2,-10,-2)$
C. $(10,-2,-2)$
D. $(-2,10,2)$

## Answer:

## D Watch Video Solution

240. There are three sections in a question paper, each containing 5 questions. A candidate has to solve any 5 questions, choosing at least one from each section. Find the number of ways in which the candidate can choose the questions.
A. 3000
B. 1500
C. 2255
D. 2250

## Answer:

## - Watch Video Solution

241. Find the coefficient of $x^{4}$ in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{6}$

## - Watch Video Solution

242. In a bombing attack, there is $50 \%$ chance that a bomb will hit target
. At least two independent hits are required to destroy the target completely. Then the minimum number of bombs, that must be dropped to ensure that there is at least $90 \%$ chance of completely destroying the target , is $\qquad$

## - Watch Video Solution

243. If the lines $\mathrm{x}+\mathrm{y}=\mathrm{a}$ and $\mathrm{x}-\mathrm{y}=\mathrm{b}$ touch the curves $y=x^{2}-3 x+2$ at points where the curve intersects the x - axis then $\frac{a}{b}$ is equal to $\qquad$ .

## (D) Watch Video Solution

244. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ be such that $|\vec{a}|=2|\vec{b}|=4$ and $|\vec{c}|=4$. If the projection of $\vec{b}$ on $\vec{a}$ is equal to the projection of $\vec{c}$ on $\vec{a}$ and $\vec{b}$ is perpendicular to $\vec{c}$, then the value of $|\vec{a}+\vec{b}-\vec{c}|$ is $\qquad$ .

## - Watch Video Solution

245. Let $A=\{a, b, c\}$ and $B=\{1,2,3,4\}$. Then the number of elements in the set $\mathrm{C}=\{\mathrm{f}: A \rightarrow B \mid 2 \in f(A)$ and f is not one-one $\}$ is

## - Watch Video Solution

246. The consists of 6 multiple choice questions, each having 4 alternative answers of wihc only one is correct. The number of ways, in which a
canditate answers all six questions such that exactly four of the answers are correct, is $\qquad$ .

## - Watch Video Solution

247. If $\vec{a}=2 \hat{i}+\hat{j}+2 \hat{k}$, then the value of $|\hat{i} \times(v a c a \times \hat{i})|^{2}+|\hat{i} \times(\vec{a} \times \hat{j})|^{2}+|\hat{k} \times(\vec{a} \times \hat{k})|^{2} \quad$ equal to

## - Watch Video Solution

248. Let $\{x\}$ and $[x]$ denote the fractional part of $x$ and the greatest interger $\leq x$ respectively of a real number x . if $\int_{0}^{n}\{x\} d x, \int_{0}^{n}[x] d x$ and $10\left(n^{2}-n\right),(n \in N, n>1)$ are three consecutive terms of a G.P then $n$ is equal to $\qquad$ .

## - Watch Video Solution

249. If the variance of the following frequency distribution,

Class : 10-20 20-30 30-40
Frequency : $2 \quad x \quad 2$
is 50 , then x is equal to $\qquad$ .

## - Watch Video Solution

250. Let PQ be a diameter of the circle $x^{2}+y^{2}=9$ If $\alpha$ and $\beta$ are the lengths of the perpendiculars from $P$ and $Q$ on the straight line, $x+y=2$ respectively, then the maximum value of $\alpha \beta$ is $\qquad$ .

## - Watch Video Solution

