

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR

JEE MAINS 2020

Mathematics

1. Find the value
$$\left(\frac{1+\sin\left(\frac{2\pi}{9}\right)+i\cos\left(\frac{2\pi}{9}\right)}{1+\sin\left(\frac{2\pi}{9}\right)-i\cos\left(\frac{2\pi}{9}\right)}\right)^{3}$$
A. $-\frac{1}{2}(\sqrt{3}-i)$
B. $-\frac{1}{2}(1-i\sqrt{3})$
C. $\frac{1}{2}(1-i\sqrt{3})$
D. $\frac{1}{2}(\sqrt{3}-i)$

Answer: A

2. Let y = y(x) be the solution of differential equation , $\frac{2 + \sin x}{y + 1} \cdot \frac{dy}{dx} = -\cos x, y > 0, y(0) = 1$. If $y(\pi) = a$ and $\frac{dy}{dx}$ at $x = \pi$ is b , then the ordered pair (a, b) is equal to :

A. (2, 1)B. (1, -1)

C. (1, 1)

$$\mathsf{D}.\left(2,\frac{3}{2}\right)$$

Answer:

3. The plane passing through the points (1,2,1) , (2,1,2) and parallel to

the 2x=3y , z=1 also passes through the point :

A. (-2, 0, 1)B. (0, 6, -2)C. (0, -6, 2)D. (2, 0, -1)

Answer:

Watch Video Solution

4. Let S be the set of all $\lambda \in R$ for which the system of linear equations

2x - y + 2z = 2

 $x-2y+\lambda x=-4$

 $x + \lambda y + z = 4$

has no solution . Then the set S

A. contains more than two elements

B. is a singleton

C. contains exactly two element

D. is an empty set

Answer: C

Watch Video Solution

5. The domain of the function
$$f(x) = \sin^{-1} \left(rac{|x|+5}{x^2+1}
ight)$$
 is

 $(\,-\infty,\,-a]\cup[a,\infty).\,$ then a is equal to :

A.
$$\frac{\sqrt{17}}{2} + 1$$

B. $\frac{\sqrt{17}}{2}$
C. $\frac{1 + \sqrt{17}}{2}$
D. $\frac{\sqrt{17} - 1}{2}$

Answer:

6. Let A be a 2×2 real matrix with entries from $\{0, 1\}$ and $|A| \neq 0$. Consider the following two statements :

(P) If A $\,
eq I_2$ then |A| =-1

(Q) if |A| =1 , then Tr (A)=2

Where I_2 denotes 2 imes 2 identity matrix and tr (A) denotes the sum of the

diagonal entries of A then :

A. both (P) and (Q) are false

B. (P) is true and (Q) is false

C. Both (P) and (Q) are true

D. (P) is false and (Q) is true

Answer:

7. If P (x) be a polynomial of degree three that has a local maximum value

8 at x=1 and a local minimum value 4 at x=2 , then p (0) is equal to :

A. 12

B. 6

C. -24

 $\mathsf{D.}-12$

Answer:

Watch Video Solution

8. IF the tangent to the curve $y = x + \sin y$ at a point (a, b) is parallel to the line joining $\left(0, \frac{3}{2}\right)$ and $\left(\frac{1}{2}, 2\right)$ then

A. |a+b|=1

B. |b - a| = 1

$$\mathsf{C}.\,b=\frac{\pi}{2}+a$$

 $\mathsf{D}.b = a$

Answer:

9. The contrapostive of the statement " if I reach the station in time then I will catch the train is :

A. IF I do not reach the station in time then I will catch the train .

B. IF I do not reach the station in time then I will not catch the train .

C. If I will not catch the train , then I do not reach the station in time

D. If I will catch the train then I reach the station in time .

Answer:

Watch Video Solution

10. Let p (h,k) be a point on the curce $y = x^2 + 7x + 2$, nearest to the line y = 3x - 3. then the equation of the normal to the curve at P is :

A.
$$x - 3y - 11 = 0$$

B.
$$x + 3y - 62 = 0$$

C.
$$x - 3y + 22 = 0$$

D.
$$x + 3y + 26 = 0$$

Watch Video Solution

11. If $R = ig\{(x,y)\!:\!x,y,\ \in Z, x^2+3y^2\leq 8ig\}$ is a relation on the set of integers Z, then the domain R^{-1} is :

A. $\{-1, 0, 1\}$ B. $\{0, 1\}$ C. $\{-2, -1, 0, 1, 2\}$ D. $\{-2, -1, 1, 2\}$

Answer:

12. Box I contains 30 cards numbered 1 to 30 and box II contains 20 cards numbered 31 to 50 A box is selected at random and a card is drawn from to be a non - prime number the probabilty that the card was drawn from Box I is :

A.
$$\frac{2}{3}$$

B. $\frac{4}{17}$
C. $\frac{8}{17}$
D. $\frac{2}{5}$

Answer:

Watch Video Solution

13. Let $X = \{x \in N : 1 \le x \le 17\}$ and $Y = \{ax + b : x \in X ext{ and } a, b, \in R ext{,} a > 0\}$. If mean and variance

of elements of Y are 17 and 216 respectively then a + b is equal to

A. 9

B. 7

C.-7

D.-27

Answer:

Watch Video Solution

14. Let lpha and eta be the roots of the equation $5x^2+6x-2=0.$ if $S_n=lpha^n+eta^n, n=1,2,3...$ then :

A. $5S_6-6S_5=2S_4$

B. $6S_6 + 5S_5 = 2S_4$

 ${\sf C}.\,5S_6+6S_5=2S_4$

D. $6S_6 + 5S_5 + 2S_4 = 0$

Answer: C

15. The sum of the first three terms of a G.P is S and their product is 27 . Then all such S lie in :

A.
$$(-\infty, 9]$$

B. $[-3, \infty)$
C. $(-\infty, -9] \cup [, \infty)$
D. $(-\infty, -3] \cup [9, \infty)$

Answer: D

Watch Video Solution

16. If |x| < 1 and |y| < 1, find the sum of infinity of the following series: $(x + y) + (x^2 + xy + y^2) + (x + y) + (x^3 + x^2y + xy^2 + y^3) +$ A. $\frac{x + y + xy}{(1 + x)(1 + y)}$

B.
$$rac{x+Y-xy}{(1-x)(1-y)}$$

C. $rac{x+y-xy}{(1+x)(1+Y)}$
D. $rac{x+Y-xy}{(1+x)(1+y)}$

Watch Video Solution

17. Area (in , sq units) of the region outside $\frac{|x|}{2} + \frac{|y|}{3} = 1$ and inside the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ is : A. $6(\pi - 2)$ B. $6(4 - \pi)$ C. $3(\pi - 2)$ D. $3(\pi - 2)$

Answer: C::D

18. Let $\alpha > \beta > 0$ be such that $\alpha^3 + \beta^2 = 4$. if the maximum value of the term independent x in the binomial expansion of $\left(ax^{\frac{1}{9}} + \beta x^{-\frac{1}{6}}\right)^{10}$ is 10 K, then k is equal to

A. 352

B. 336

C. 84

D. 176

Answer:

Watch Video Solution

19. A line parallel to the straight line 2x - y = 0 is tangent to the hypernola $\frac{x^2}{4} - \frac{y^2}{2} = 1$ at the point (x_1, y_1) Then $x_1^2 + 5y_1^2$ is equal to :

Β.	8
----	---

C. 5

D. 6

Answer:

Watch Video Solution

$$f(x) = egin{cases} ae^X + be^{-x} & -1 \leq x < 1 \ cx^2 & 1 \leq x \leq 3 \ ax^2 + 2cx & 3 < x \leq 4 \end{cases}$$

be continuous for some a,b,c $\ \in \$ R and f'(0)+F'(2)=e then the

value of a is :

A.
$$\frac{e}{e^2 - 3e - 13}$$

B. $\frac{e}{e^2 - 3e + 13}$
C. $\frac{1}{e^2 - 3e + 13}$
D. $\frac{e}{e^2 + 3e + 13}$

21. If the letters of the word 'MOTHER' be permuted and all the words so formed (with or without meaning) be listed as in a dictionary, then the position of the word 'MOTHER' is

22. The integral
$$\int_0^2 ||x-1|-x| dx$$
 is equal to

Watch Video Solution

23. The number of intergral values of k for which the line, 3x + 4y = kintersects the circle, $x^2 + y^2 - 2x - 4y + 4 = 0$ at two district points is

24. Let
$$\overrightarrow{a}, \overrightarrow{b}$$
 and \overrightarrow{c} be three unit vectors such that $\left|\overrightarrow{a}-\overrightarrow{b}\right|^2 + \left|\overrightarrow{a}-\overrightarrow{c}\right|^2 = 8$. Then $\left|\overrightarrow{a}+2\overrightarrow{b}\right|^2 + \left|\overrightarrow{a}+2\overrightarrow{c}\right|^2$ is equal to _____.

Watch Video Solution

25. If
$$\lim_{x o 1} rac{x^1 + x^2 + x^3 + ... + x^n - n}{x-1} = 820, (n \in N)$$

then the value of n is equal to

26. Let
$$R_1$$
 and R_2 be two relation defined as follows :
 $R_1 = \{(a,b) \in R^2, a^2 + b^2 \in Q\}$ and
 $R_2 = \{(a,b) \in R^2, a^2 + b^2 \not\in Q)$ where Q is the set of the rational numbers. Then:

A. R_1 and R_2 are both transitivite

B. R_2 is transitivite but R_1 is not transitive .

C. Neither R_1 and R_2 is transitive.

D. R_1 is transitivie but R_2 is not transitive .

Answer:

Watch Video Solution

27. Suppose f(x) is a polynomial of degree four , having critical points at -1,0,1. If $T=(x\in R\mid f(x)=f(0)\}$, then the sum of sqaure of the elements of T is .

A. 2

B. 6

C. 8

D. 4

28. Let the latus ractum of the parabola $y^2 = 4x$ be the comon chord to the circles C_1 and C_2 each of them having radius $2\sqrt{5}$. Then , the distance the centre of the circles C_1 and C_2 is :

A. 12

B. 8

C. $4\sqrt{5}$

D. $8\sqrt{5}$

Answer:

29.
$$\lim_{x \to a} \frac{(a+2x)^{rac{1}{3}}-(3x)^{rac{1}{3}}}{(3a+x)^{rac{1}{3}}-(4x)^{rac{1}{3}}} (a
eq 0)$$
 is equal to :

A.
$$\left(\frac{2}{9}\right)^{\frac{1}{3}}$$

B. $\left(\frac{2}{9}\right)\left(\frac{2}{3}\right)^{\frac{1}{3}}$
C. $\left(\frac{2}{3}\right)^{\frac{4}{3}}$
D. $\left(\frac{2}{3}\right)\left(\frac{2}{9}\right)^{\frac{1}{3}}$

Answer: d

Vatch Video Solution

30. If
$$x^3dy + xydx = x^2dy + 2ydx, y(2) = e$$
 and $x > 1$, then y(4) is equal to .

A.
$$\frac{1}{2} + \sqrt{e}$$

B. $\frac{3}{2} + \sqrt{e}$
C. $\frac{3}{2}\sqrt{e}$
D. $\frac{\sqrt{e}}{2}$

Answer:

31. The probability that a randomly chosen 5 - digit number is made form exactly two digits :

A.
$$\frac{150}{10^4}$$

B. $\frac{135}{10^4}$
C. $\frac{121}{10^4}$
D. $\frac{134}{10^4}$

Answer:

Watch Video Solution

32. Let a,b, $c \in R$ be such that $a^2 + b^2 + c^2 = 1$. If $a\cos\theta = b\cos\left(\theta + \frac{2\pi}{3}\right) = c\cos\left(\theta + \frac{4\pi}{3}\right)$, where $\theta = \frac{\pi}{9}$, then the angle between the vectors $a\hat{i} + b\hat{j} + c\hat{k}$ and $b\hat{i} + c\hat{j} + a\hat{k}$ is

A.
$$\frac{2\pi}{3}$$

B. $\frac{\pi}{2}$
C. $\frac{\pi}{9}$
D. 0

33. Let p,q r be three statements such that the truth value of $(p \land q) \rightarrow (q \lor r)$ is F. Then the truth value of p,q r are respectively :

A. T, T,F

B. T,F,T

C. F,T,F

D. none of the above

Answer:

34. The set of all real values of λ for which the quadratic equations ,

 $ig(\lambda^2+1ig)x^2-4\lambda x+2=0$ always have exactly one root in the interval (0,1) is :

- A. (0,2)
- B. (-3,-1)
- C. (1,3)
- D. (2,4]

Answer:

35. Let A be a 3×3 matrix such that adj $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & -2 & -1 \end{bmatrix}$ and

B =adj (adj A) .

If $|A|=\lambda ~ ext{and}~ \left|\left(B^{-1}
ight)^T
ight|=\mu$ then the ordered pair $(|\lambda|,\mu)$ is equal to

A. $\left(9, \frac{1}{9}\right)$ B. $\left(3, \frac{1}{81}\right)$ C. $\left(3, 81\right)$ D. $\left(9, \frac{1}{81}\right)$

Answer:

Watch Video Solution

36. If the value of the integral
$$\int_{0}^{1/2} rac{x^2}{\left(1-x^2
ight)^{3/2}} \, \mathsf{dx}$$

is $\frac{k}{6}$ then k is equal to :

A. $2\sqrt{3} - \pi$ B. $2\sqrt{3} + \pi$ C. $3\sqrt{2} + \pi$

D. $3\sqrt{2}-\pi$

Answer: A

Watch Video Solution

37. Let e_1 and e_2 be the ecentricities of the ellispe $\frac{x^2}{25} + \frac{y^2}{b^2} = 1(b < 5)$ and the hyperbola, $\frac{x^2}{16} - \frac{y^2}{b^2} = 1$ respecitvely staifying $e_1e_2=$ 1. If α and β are the distance between the foci of the ellispse and the foci of the hyperbola resectively, then the ordered pair (α, β) is equal to :

A.
$$\left(\frac{20}{3}, 12\right)$$

B. $(8, 10)$
C. $\left(\frac{24}{5}, 10\right)$

D. (8, 12)

Answer:

38. If the surface area of a cube is increasing at rate of $3.6cm^2/\sec$, then the rate of change of its volume (in cm^3/\sec). When the length of a side of the cube is 10 cm, is

A. 18	
B. 10	
C. 20	
D. 9	

Answer:

39. If
$$z_1, z_2$$
 are complex number such that $Re(z_1)=|z_1-1|, Re(z_2)=|z_2-1|$ and $arg(z_1-z_2)=rac{\pi}{3}$, then $Im(z_1+z_2)$ is equal to

A. $2\sqrt{3}$

B.
$$\frac{\sqrt{3}}{2}$$

C. $\frac{2}{\sqrt{3}}$
D. $\frac{1}{\sqrt{3}}$

40. If a ΔABC has vertices A(-1,7), B(-7,1) and C(5,-5) then its

orthocentre has coordinates :

A.
$$\left(-\frac{3}{5}, \frac{3}{5}\right)$$

B. $\left(\frac{3}{5}, -\frac{3}{5}\right)$
C. $(-3, 3)$
D. $(3, -3)$

Answer:

41. The plane which bisects the line joining the points (4, -2, 3) and (2,4,-1) at right angles also passes through the point :

A.
$$(0, -1, 1)$$

B. $(0, 1, -1)$
C. $(4, 0, 1)$
D. $(4, 0, -1)$

Answer:

Watch Video Solution

42. Let $x_i (1 \le I \le 10)$ be ten observation of a random variable X. If

$$\sum_{i=l}^{10}{(x_i-p)}=3$$
 and $\sum_{i=l}^{10}{(x_i-p)}^2=9$ where $0
eq p\in R$,then the

standard deviation of these observations is :

A.
$$\frac{9}{10}$$

B.
$$\frac{4}{5}$$

C. $\frac{7}{10}$
D. $\sqrt{\frac{3}{5}}$

43. If the terms independent of x in the expansion of
$$\left(rac{3}{2}x^2-rac{1}{3x}
ight)^9$$
 is k,

then 18 k is equla to

A. 5

B. 11

C. 9

D. 7

Answer:

44. If the sum of the series $20 + 19\frac{3}{5} + 19\frac{1}{5} + 18\frac{4}{5} + \dots$ upto nth

tems is 488 and the nth terms is negative then :

A. nth term is -4

B. nth terms $-4\frac{2}{5}$

C. n = 60

D. n = 41

Answer: A

Watch Video Solution

45. If
$$\int \sin^{-1} \left(\sqrt{rac{x}{1+x}}
ight) dx = A(x) an^{-1} \left(\sqrt{x}
ight) + B(x) + C$$
, where C

is a constant of integration then the ordered pair (A(x), B(x)) can be :

A.
$$\left(x-1,\sqrt{x}
ight)$$

B. $\left(x+1,\sqrt{x}
ight)$

C.
$$\left(x-1,\ -\sqrt{x}
ight)$$

D. $\left(x+1,\ -\sqrt{x}
ight)$

Watch Video Solution

46. Let S be the set of all integer solutions, (x,y,z) of the system of equation x - 2y + 5z = 0 -2x + 4y + z = 0-7x + 14y + 9z = 0

such that $15 \leq x^2 + y^2 + z^2 \leq 150$. Then, the number of elements of

the set S is equal to _____

47. Let a place P contain two lines

$$\overrightarrow{r}\,=\,\hat{i}+\lambda\Big(\hat{i}+\hat{j}\Big),\lambda\in R$$
 and $\overrightarrow{r}\,=\,-\,\hat{j}+\mu\Big(\hat{j}-\hat{k}\Big),\mu\in R$.

If $Q(\alpha, \beta, \gamma)$ is the food of the perpendicular drawn from the point

M(1,0,1) to P, then $3(lpha+eta+\gamma)$ equals _____.

Watch Video Solution

48. m A.M. and 3 G.M. are inserted between 3 and 243 such that 2^{nd} GM= 4^{th} AM then m =

Watch Video Solution

49. If the tangent to the curve $y = e^x$ at a point (c, e^c) and the normal to the parabola, $y^2 = 4x$ at the point (1,2) intersect at the same point on the x-axis then the value of c is _____.

50. The total number of 3-digit numbers, whose sum of digits is 10, is

Watch Video Solution

•

51. If
$$(a + \sqrt{2}b\cos x)(a - \sqrt{2}b\cos y) = a^2 - b^2$$
, where $a > b > 0$,
then $\frac{dx}{dy}$ at $(\frac{\pi}{4}, \frac{\pi}{4})$ is:
A. $\frac{a-b}{a+b}$
B. $\frac{a+b}{a-b}$
C. $\frac{2a+b}{2a-b}$
D. $\frac{a-2b}{a+2b}$

Answer: B

52. The mean and variance of 8 observations are 10 and 13.5 respectively . If 6 of these observations are 5,7,10,12,14,15 , then the absolute difference of the remaining two observations is :

Answer: C

Watch Video Solution

53.

$$1 + ig(1 - 1.2^2ig) + ig(1 - 3.4^2ig) + ig(1 - 5.6^2ig) + \cdotig(1 - 19.20^2ig) = lpha - 220eta$$

 $\mathsf{find}(\alpha,\beta)$

A. (11,97)

B. (10, 103)

C.(10, 97)

D. -11103

Answer:

Watch Video Solution

54. A survey shows that 63% of the people watch a news channal whereas 76% watch another channel. If x% of the people watch both channel, then

A. 55

B. 29

C. 65

D. 37

Answer: C

55. The following statement $(p\overrightarrow{q})\overrightarrow{(-p\overrightarrow{q})}\overrightarrow{q}$ is: equivalent to $p\overrightarrow{}q$ (2) a fallacy a tautology (4) equivalent to $-p\overrightarrow{q}$

A. both (S_1) and (S_2) are not correct

B. only (S_1) is correct

C. both (S_1) and (S_2) are correct

D. only (S_2) is correct

Answer: C

Watch Video Solution

56. If two vertical pale AB and CD of height 15 m and 10 m and A and C are on ground. P is the point of intersection of BC and AD. What is height of P from the ground in m. A. 20/3

B. 6

C.10/3

D. 5

Answer: D

Watch Video Solution

57. If f is twice differentiable function for $x\in R$ such that f(2)=5, f'(2)=8 and $f'(x)\geq 1,$ $f''(x)\geq 4$, then

A. $f(5) + f'(5) \ge 28$

B. $f(5) \le 10$

C. $f(5) + f'(5) \le 26$

D. $f(5) + f'(5) \le 20$

Answer: A

58.
$$\sum_{r=0}^{20} \cdot {}^{50-r} C_6$$

A. $\cdot {}^{50} C_7 - 30C_7$
B. $\cdot {}^{51} C_7 - 30C_7$
C. $\cdot {}^{51} C_7 + 30C_7$
D. $\cdot {}^{50} C_6 - 30C_6$

Answer: D

Watch Video Solution

 $\mathsf{B.}\,a^2-c^2=1$

59. If
$$A = \begin{bmatrix} \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{bmatrix}$$
, $\left(\theta = \frac{\pi}{24}\right)$ and $A^5 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, where $i = \sqrt{-1}$ then, which one of the following is not true ?
A. $a^2 - d^2 = 0$

C.
$$a^2-b^2=rac{1}{2}$$

D. $0\leq a^2+b^2\leq 1$

Answer: B

Watch Video Solution

60. If α and β are roots of $x^2 - 3x + p = 0$ and γ and δ are the roots of $x^2 - 6x + q = 0$ and $\alpha, \beta, \gamma, \delta$ are in G.P. then find the ratio of (2p + q): (2p - q)A. 9: 7 B. 3: 1 C. 5: 3 D. 33: 31

Answer: B

61. Let $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b)$ be a given ellipse, length of whose latus rectum is 10. If its eccentricity is the maximum value of the function, $p\phi(t) = \frac{5}{2} + t - t^2$, then $a^2 + b^2$ is equal to :

A. 145

B. 116

C. 126

D. 135

Answer:

Watch Video Solution

62. A triangle ABC laying in the first quadrant has two vertices as A(1, 2) B(3, 1). If , $\angle BAC = 90^{\circ}$ and ar $(\Delta ABC) = 5\sqrt{5}$ sq. units , then the abscissa of the vertex C is :

A.
$$2+\sqrt{5}$$

B. $1+2\sqrt{5}$ C. $2\sqrt{5}-1$

 $\mathrm{D.}\,1+\sqrt{5}$

Answer:

Watch Video Solution

63. If from point P(3,3) on the hyperbola a normal is drawn which cuts x-

axis at
$$(9,0)$$
 on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ the value of (a^2,e^2) is
A. $\left(\frac{9}{2},3\right)$
B. $\left(\frac{3}{2},2\right)$

 $\mathsf{C}.\left(\frac{9}{2},2\right)$

D. (9,3)

Answer: A

64. The integral
$$\int \left(\frac{X}{x \sin x + \cos x} \right)^2 dx$$
 is equal to

(where C is a constant integration) :

$$A. \sec x - \frac{x \tan x}{x \sin x + \cos x} + C$$
$$B. \sec x + \frac{x \tan x}{x \sin x + \cos x} + C$$
$$C. \tan x - \frac{x \sec x}{x \sin x + \cos x} + C$$
$$D. \tan x + \frac{x \sec x}{x \sin x + \cos x} + C$$

Answer:

65. Let
$$f(x)=\int\!\!\frac{\sqrt{x}}{\left(1+x
ight)^2}dx(x\ge 0)$$
 . The f(3) - f(1) is equal to :
A. $-rac{\pi}{6}+rac{1}{2}+rac{\sqrt{3}}{4}$
B. $-rac{\pi}{12}+rac{1}{2}+rac{\sqrt{3}}{4}$

C.
$$rac{\pi}{6}+rac{1}{2}-rac{\sqrt{3}}{4}$$

D. $rac{\pi}{12}+rac{1}{2}-rac{\sqrt{3}}{4}$

Watch Video Solution

66. If
$$u=rac{2z+i}{z-ki}$$
 where $z=x+iy$ and $k>0$

Curve Re(u) + Im(u) = cuts y-axis at two point P and Q such that

PQ=5 then value of k is

A. 1/2

B. 4

C. 2

D. 3/2

Answer:

67. Let x_0 be the point of local maxima of $f(x) = \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})$, where $\overrightarrow{a} = x \overrightarrow{i} - 2 \overrightarrow{j} + 3 \overrightarrow{k}, \overrightarrow{b} = -2 \overrightarrow{i} + x \overrightarrow{j} - \overrightarrow{k}$ and $\overrightarrow{c} = 7 \overrightarrow{i} - 2 \overrightarrow{j} + x$. Then the value of $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$ at $x = x_0$ is :

A. 14

- B. 14
- $\mathsf{C}.-22$
- D. 30

Answer: B

Watch Video Solution

68. Let [t] denote the greatest integer st. Then the equation in $x, [x]^2 + 2[x+2] - 7 = 0$ has :

A. infinitely many solutions.

B. exactly four integral solutions.

C. no integral solution.

D. exactly two solutions .

Answer: B

Watch Video Solution

69.
$$xy' - y = x^2(x \cos x + \sin x)$$
 and if $f(\pi) = \pi$ then find
 $f''\left(\frac{\pi}{2}\right) + f\left(\frac{\pi}{2}\right) =$
A. $2 + \frac{\pi}{2} + \frac{\pi^2}{4}$
B. $1 + \frac{\pi}{2}$
C. $1 + \frac{\pi}{2} + \frac{\pi^2}{4}$
D. $2 + \frac{\pi}{2}$

Answer:

70. If
$$f(x) = |x - 2|, x \in [0, 4]$$
 and $g(x) = f(f(x))$. Find
 $\int_2^3 (g(x) - f(x)) dx$.
A. $\frac{3}{2}$
B. $\frac{1}{2}$
C. 0
D. 1

Answer: C

71. If
$$\left(2x^2+3x+4
ight)^{10}=\sum_{r=0}^{20}a_rx^r$$
 , then $rac{a_7}{a_{13}}$ =

72. If the equation of a plane P , passing through in the intersection of the planes, x + 4y - z + 7 = 0 and 3x + y + 5z = 8 is ax + by + 6z = 15 for some $a, b, c \in R$, then the distance of the point (3,2,-1) form the plane P is

Watch Video Solution

73. If probability of hitting a target is $\frac{1}{10}$, Then number of shot required so that probability to hit target at least once is greater than $\frac{1}{4}$.

Watch Video Solution

74. Let $f: R \to R$ be a differentiable function satisfying $f(x+y) = f(x) + f(y) + x^2y + xy^2$ for all real numbers x and y. If $\lim_{x \to 0} \frac{f(x)}{x} = 1$, then

The value of f'(3) is

75. If the system of equations

$$x - 2y + 3z = 9$$

$$2x + y + z = b$$

x-7y+az=24 , has infinitely many solutions, then a - b is equal to

.....

Watch Video Solution

76. The intergral
$$\int_1^2 e^x.~X^2(2+\log_e x)dx$$
 equals "

A.
$$e(4e+1)$$

B. $4e^2 - 1$

$$C. e(4e - 1)$$

D. e(2e - 1)

Answer:

77. The are (insq . Units) of the region enclosed by the curves $y=x^2-1$ and $y=1-x^2$ is equal to

A.
$$\frac{4}{8}$$

B. $\frac{8}{3}$
C. $\frac{7}{2}$
D. $\frac{16}{3}$

Answer:

78. If the angle of elevation of the top of a summit is 45° and a person climbs at an inclination of 30° upto 1 km, where the angle of elevation of top becomes 60° , then height of the summit is

A.
$$\frac{\sqrt{3}-1}{\sqrt{3}+1}$$

B. $\frac{\sqrt{3}+1}{\sqrt{3}-1}$

$$\begin{array}{c} \mathsf{C}.\,\frac{1}{\sqrt{3}-1}\\ \mathsf{D}.\,\frac{1}{\sqrt{3}+1} \end{array}$$

Watch Video Solution

79. The set of all real value of λ for which the functio $f(x) = (1 - \cos^2 x) \cdot (\lambda + \sin x), xe(-\frac{\pi}{2}, \frac{\pi}{2})$ has exactly one maxima

and exactly one minima is

A.
$$\left(-\frac{1}{2}, \frac{1}{2}\right) - \{0\}$$

B. $\left(-\frac{3}{2}, \frac{3}{2}\right)$
C. $\left(-\frac{1}{2}, \frac{1}{2}\right)$
D. $\left(-\frac{3}{2}, \frac{3}{2}\right) - \{0\}$

Answer:

80. If α, β are the roots of equation 2x(2x+1) = 1 then $\beta =$

A. 2lpha(lpha+1)B. -2lpha(lpha+1)C. 2lpha(lpha-1)

D. $2\alpha^2$

Answer:

Watch Video Solution

81. For all twice differentiable functions $f\colon R o R$, with f(0)=f(1)=f'(0)=0A. f(x)
eq 0 at every point $x\in(0,1)$

B. f'(x)=0 for some x
eq (0,1)

 $\mathsf{C}.\,f'(0)=0$

D.
$$f$$
 ' ' $(x)=0$, at every point $x\in(0,1)$

Watch Video Solution

82. If
$$y = \left(\frac{2}{\pi}x - 1\right)$$
 cosec x the solution of the differential equation ,
 $\frac{dy}{dx} + p(x)y = \frac{2}{\pi}\cos ecx, 0 < x < \frac{\pi}{2}$, then the function $p(x)$ is equal

to

A. cot x

B. cosec x

C. sec x

D. tan x

Answer:

83. Let L denote the line in the x - y plane with x and y intercepts as 3 and 1 respectively. The the image of the point (-1,-4) in this line is :

$$A.\left(\frac{11}{5},\frac{28}{5}\right)$$
$$B.\left(\frac{29}{5},\frac{8}{5}\right)$$
$$C.\left(\frac{8}{5},\frac{29}{5}\right)$$
$$D.\left(\frac{29}{5},\frac{11}{5}\right)$$

Answer:

84. If the tangent to the curve , y =f (x)= $x \log_e x$, (x > 0) at a point (c, f(c)) is parallel to the line - segment joining the point (1,0) and (e,e) then c is equal to :

A.
$$\frac{e-1}{e}$$

B. $_{e}\left(\frac{1}{e-1}\right)$

$$\mathsf{C.}_{e}\left(\frac{1}{1-e}\right)$$
$$\mathsf{D.}\frac{1}{e-1}$$

Watch Video Solution

85. Let $f, R \to R$ be a function defined by f(x) = max $\{x, x^2\}$. Let S denote the set of all point in R , where f is not differnetiable Then :

A. $\{0, 1\}$

 $\mathsf{B.}\left\{0\right\}$

C. ϕ (an empty set)

 $\mathsf{D}.\left\{1\right\}$

Answer:

86. Let
$$heta=rac{\pi}{5}$$
 and $A=egin{bmatrix}\cos heta&\sin heta\-\sin heta&\cos heta\end{bmatrix}$. If B = A $+A^4$, then det (B).

A. is one

B. lies in (2,3)

C. is zero

D. lies in (1,2)

Answer:

87. A plane P meets the coordinate axes at A B and C respectively . The centroid of ΔABC is give to be (1,1,2) . Then the equation of the line through this centroid and perpendicular to the plane P is ,

A.
$$\frac{x-1}{2} = \frac{y-1}{1} = \frac{z-2}{1}$$

B. $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-2}{2}$
C. $\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-2}{1}$

D.
$$rac{x-1}{1} = rac{y-1}{2} = rac{z-2}{2}$$

88. The common difference of the AP b_1, b_2, \ldots, b_m is 2 more than the common differece of A.P a_1, a_2, \ldots, a_n . If $a_{40} = -159$, $a_{100} = -399$ and $b_{100} = a_{70}$, then b_1 is equal to :

A. 81

B. - 127

C. - 81

D. 127

Answer:

89. If the normal at an end of a latus rectaum of an ellipse passes through an extremity of the minor axis then the eccentricity of the ellipse satisfies

A.
$$e^4 + 2e^2 - 1 = 0$$

B. $e^2 + e - 1 = 0$
C. $e^4 + e^2 - 1 = 0$
D. $e^2 + 2e - 1 = 0$

Answer:

 $B_{\cdot}-\frac{1}{3}$

Watch Video Solution

90. For a suitabily chosen real constanat a let a fuction , $f: R^{-}[-a] \to R$ be defined by $f(x) = \frac{a-x}{a+x}$. Further suppose that for any real number $x \neq -a$ and $f(x) \neq = 2$ (fof) (x) = x . Then $f\left(-\frac{1}{2}\right)$ is equal to : A. $\frac{1}{3}$ $\mathsf{C}.-3$

D. 3

Answer:

Watch Video Solution

Answer:

92. Centre of a circle passing through point (0,1) and touching the curve

 $y=x^2$ at (2,4) is

$$A.\left(\frac{-53}{10},\frac{16}{5}\right)$$
$$B.\left(\frac{6}{5},\frac{53}{10}\right)$$
$$C.\left(\frac{3}{10},\frac{16}{5}\right)$$
$$D.\left(\frac{-16}{5},\frac{53}{10}\right)$$

Answer:

93. Let z = x + iy be a non - zero complex number such that $z^2 = I|z|^2$, where $I = \sqrt{-1}$ then z lies on the :

A. line y =- x

B. imaginary axis

C. line, y = x

D. real axis

Answer:

94. Consider the statement : For an interger n if $n^3 - 1$ is even, the n is odd ". The contrapositive statemnet of this statement is :

A. For an interger n , if n is even then $n^3 - 1$ is odd.

B. For an integer n , if n^3-1 is not even then n is not odd .

C. For an interger n if n is even then n^3-1 is even .

D. For an integer n if n is odd then n^3-1 is even .

Answer:

95. The probabilites fo three events A, B and C are given by P(A) = 0.6, P(B)

= 0.4 and P(C) = 0.5 . If $P(A \cup B) = 0.8, P(A \cap C) = 0.3P(A \cap B \cap C) = 0.2, P(B \cap C) = \beta$ and $P(A \cup B \cup C) = \alpha$ where $0.85 \le \alpha \le 0.95$, then β lines in the interval :

A. [0.35, 0.36]

B. [0.25, 0.35]

C.[0.20, 0.25]

D. [0.36, 0.40]

Answer:

Watch Video Solution

96. Suppose that a function $f \colon R \to R$ satisfies f(x+y) = f(x)f(y) for

97. The sum of distinct value of λ for which the system of equations

 $(\lambda-1)x+(3\lambda+1)y+2\lambda x=0$

 $(\lambda-1)x+(4\lambda-2)y+(\lambda+3)x=0$

 $2x+(2\lambda+1)y+3(\lambda-1)z=0$

has non - zeor solutions is _____.

Watch Video Solution

98. If \overrightarrow{x} and \overrightarrow{y} be two non - zero vectors such that $\left|\overrightarrow{x} + \overrightarrow{y}\right| = \left|\overrightarrow{x}\right|$ and $2\overrightarrow{x} + \lambda \overrightarrow{y}$ is perpendicular to \overrightarrow{y} then the value of λ is _____.

Watch Video Solution

99. Consider the date on x taking the values $0, 2, 4, 8, \ldots, 2^n$ with frequencies ${}^{n}C_0, {}^{n}C_1, {}^{n}C_2, \ldots, {}^{n}C_n$ respectively. If the mean of this data is $\frac{728}{2^n}$ then n is equal to _____.

100. The number of word (with or without meaning) that can be formed from all the letter of the word " LETTER " in which vowels never come together is _____ .

Watch Video Solution

$$101. \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^3 x \sin^2 3x \left(2 \sec^2 x \sin^2 3x + 3 \tan x . \sin 6x\right) dx$$

$$A. \frac{9}{2}$$

$$B. -\frac{1}{18}$$

$$C. \frac{7}{18}$$

$$D. -\frac{1}{9}$$

Answer:

102. Let $\bigcup_{i=1}^{50} X_i = \bigcup_{i=1}^n Y_i = T$, where each X_i contains 10 elements and

each Y_i contains 5 elements. If each element of the set T is an element of exactly 20 of sets $X'_i s$ and exactly 6 of sets $Y'_i s$, then n is equal to:

A. 30

B. 15

C. 50

D. 45

Answer:

Watch Video Solution

103. If lpha,eta are roots of $x^2-x+2\lambda=0$ and $lpha,\gamma$ are roots of $3x^2-10x+27\lambda=0$ then value of $rac{eta\gamma}{\lambda}$ is

A. 18

B. 9

C. 27

D. 36

Answer:

Watch Video Solution

104. Contrapositive of the statement :

'If a function f is differentiable at a, then it is also continuous at a', is :

A. If a function f is not continuous at a, then it is differentiable at a.

B. If a function f is not continuous at a, then it is not differentiable at

a.

C. If a function f is continuous at a, then it is differentiable at a.

D. If a function f is continuous at a, then it is not differentiable at a.

Answer:

105. If the system of equations

 $egin{aligned} x+y+z&=2\ 2x+4y-z&=6\ 3x+2y+\lambda z&=\mu \end{aligned}$

has infinitely many solutions, then :

A.
$$2\lambda + \mu = -14$$

B. $\lambda + 2\mu = 14$
C. $\lambda - \mu = 5$
D. $\lambda - 2\mu = -5$

Answer: A

106. Suppose the vectors x_1, x_2 and x_3 are the solutions of the system

of linear equations, Ax = b when the vector b on the right side is equal

to b_1, b_2 and b_3 respectively. If

$$x_1 = egin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}, x_2 = egin{bmatrix} 0 \ 2 \ 1 \end{bmatrix}, x_3 = egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}, b_1 = egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}, b_2 = egin{bmatrix} 0 \ 2 \ 0 \end{bmatrix} ext{ and } b_3 = egin{bmatrix} 0 \ 0 \ 2 \ 2 \end{bmatrix}$$

, then the determinant of A is equal to :

A.	$\frac{1}{2}$
Β.	4
C.	2
D.	$\frac{3}{2}$

Answer: C

Watch Video Solution

107. Two persons A and B play a game of throwing a pair of dice until one of them wins. A will win if sum of numbers on dice appear to be 6 and B will win. If sum is 7. What is the probability that A wins the game if A starts the game.

A.
$$\frac{5}{31}$$

B. $\frac{5}{6}$
C. $\frac{31}{61}$
D. $\frac{30}{71}$

Watch Video Solution

108. The area (in sq. units) of the largest rectangle ABCD whose vertices A and B lie on the x - axis and vertices C and D lie on the parabola, $y = x^2 - 1$ below the x - axis, is :

A.
$$\frac{4}{3\sqrt{3}}$$

B.
$$\frac{1}{3\sqrt{3}}$$

C.
$$\frac{4}{3}$$

D.
$$\frac{2}{3\sqrt{3}}$$

109. The angle of elevation of a cloud C from a point P, 200 m above a still lake is 30° . If the angle of depression of the image of C in the lake from the point P is 60° , then PC (in m) is equal to :

A. $200\sqrt{3}$

B. 400

C. $400\sqrt{3}$

D. 100

Answer:

110. Let $f:(0,\infty) \to (0,\infty)$ be a differentiable function such that f(1)=e and $\lim_{t\to x} rac{t^2f^2(x)-x^2f^2(t)}{t-x}=0$. If f(x)=1, then x is equal to :

B. $\frac{1}{2}$ C. e D. $\frac{1}{2e}$

A. 2e

Answer:

Watch Video Solution

111. Let a_1, a_2, \ldots, a_n be a given A.P. whose common difference is an integer and $S_n = a_1 + a_2 + \ldots + a_n$. If $a_1 = 1, a_n = 300$ and $15 \le n \le 50$, then the ordered pair $(S_{n-4}'a_{n-4})$ is equal to:

A. (2490, 248)

B. (2480, 248)

C. (2480, 249)

D. (2490, 249)

Answer:

Watch Video Solution

112. If for some positive integer n, the coefficients of three consecutive terms in the binomial expansion $(1 + x)^{n+5}$ are in the ratio 5:10:14, then the largest coefficient in this expansion is :

A. 252

B. 462

C. 792

D. 330

Answer:

113. If a and b are real numbers such that $(2+lpha)^4=a+blpha$, where

$$lpha=rac{-1+i\sqrt{3}}{2}$$
 , then $a+b$ is equal to:

A. 24

B. 33

C. 57

D. 9

Answer:

Watch Video Solution

114. The solution of the differential equation $\frac{dy}{dx} - \frac{y+3x}{\log_e(y+3x)} + 3 = 0 \text{ is :}$ (where C is a constant of integration)

A.
$$x-\log_e(y+3x)=C$$

B. $y+3x-rac{1}{2}(\log_e x)^2=C$
C. $x-rac{1}{2}(\log_e(y+3x))^2=C$

D.
$$x-2\log_e(y+3x)=C$$

Watch Video Solution

115. The function
$$f(x) = egin{cases} rac{\pi}{4} + an^{-1}x, & |x| \leq 1 \ rac{1}{2}(|x|-1), & |x| > 1 \end{cases}$$
 is :

A. continuous on $R-\{-1\}$ and differentiable on $R-\{-1,1\}.$

B. both continuous and differentiable on $R-\{-1\}$

C. continuous on $R-\{1\}$ and differentiable on $R-\{-1,1\}.$

D. both continuous and differentiable on $R-\{1\}.$

Answer:

116. Center of a circle S passing through the intersection points of circles

 $x^2 + y^2 - 6x = 0 \& x^2 + y^2 - 4y = 0$ lies on the line 2x - 3y + 12 = 0

then circle S passes through

A. (1, -3)B. (-1, 3)C. (-3, 6)D. (-3, 1)

Answer:

Watch Video Solution

117. Let x = 4 be a directrix to an ellipse whose centre is at the origin and its eccentricity is $\frac{1}{2}$. If $P(1, \beta), \beta > 0$ is a point on this ellipse, then the equation of the normal to it at P is :

A.
$$7x - 4y = 1$$

B. $4x - 2y = 1$
C. $8x - 2y = 5$
D. $4x - 3y = 2$

Answer: B

Watch Video Solution

118. The distance of the point (1, -2, 3) from the plane x - y + z = 5measured parallel to the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$, is

A. 1

в. $\frac{7}{5}$ с. 7

D. $\frac{1}{7}$

Answer:

119. The minimum value of $2^{\sin x} + 2^{\cos x}$ is -

A.
$$2^{1-\sqrt{2}}$$

B. $2^{-1+\sqrt{2}}$

$$c.2^{-1+rac{1}{\sqrt{2}}}$$

D.
$$2^{1-rac{1}{\sqrt{2}}}$$

Answer:

Watch Video Solution

120. Find the equation of the perpendicular bisector of the line segment joining the points (1,1) and (2,3).

A.
$$-2$$

 $\mathsf{B.}-4$

	-	
•	-	

D.

Answer:

Watch Video Solution

121. The sum of the series $(2.^{1} P_{0} - 3.^{2} P_{1} + 4^{3} P_{2} - 5.^{4} P_{3} + \dots .51$ terms) +(1! - 2! + 3! - + 51 terms)=

A. 1 - 51(51)!

B.1 + (52)!

C. 1

D.1 + (51)!

Answer: B

122. Let P be a point on the parabola, $y^2 = 12x$ and N be the foot of the perpendicular drawn from P on the axis of the parabola. A line is now drawn through the mid-point M of PN,parallel to its axis which meets the parabola at Q. If the y-intercept of the line NQ is $\frac{4}{3}$, then

A. PN=4B. $MQ=rac{1}{3}$ C. PN=3D. $MQ=rac{1}{4}$

Answer: D

123. Matrix was given as det
$$\begin{bmatrix} x-2 & 2x-3 & 3x-4 \\ 2x-3 & 3x-4 & 4x-5 \\ 3x-5 & 5x-8 & 10x-17 \end{bmatrix} = Ax^3 + Bx^2 + Cx + D.$$
Find the value of $B + C$.

A. 1

B. 1

 $\mathsf{C}.-3$

D. 9

Answer: C

Watch Video Solution

124. The foot of the perpendicular drawn form the point (4, 2, 3) to the line joining the points (1, -2, 3) and (1, 1, 0) lies on the plane:

A. x - y - 2z = 1

B. x - 2y + z = 1

C. 2x + y - z = 1

D. x + 2y - z = 1

Answer: C

125. If
$$y^2 + \log_e(\cos^2 x) = yx \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
, then
A. $|y'(0)| + |y''(0)| = 1$
B. $y''(0) = 0$
C. $|y''(0)| + |y''(0)| = 3$
D. $|y''(0)| = 2$

Answer: D

126. Solve :
$$2\pi - \left(\sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) + \sin^{-1}\left(\frac{16}{65}\right)\right) =$$

A. $\frac{5\pi}{4}$
B. $\frac{3\pi}{2}$

C.
$$\frac{7\pi}{4}$$

Answer: B

Watch Video Solution

127. The length of transverse axis of a hyperbola is $\sqrt{2}$. The foci of hyperbola are same as the foci of ellipse $3x^2 + 4y^2 = 12$. Which of the following points does not lie on the hyperbola?

A.
$$\left(\sqrt{\frac{3}{2}}, \frac{1}{\sqrt{2}}\right)$$

B. $\left(1, -\frac{1}{\sqrt{2}}\right)$
C. $\left(\frac{1}{\sqrt{2}}, 0\right)$
D. $\left(-\sqrt{\frac{3}{2}}, 1\right)$

Answer: A

128. For the frequency distribution:

standard deviation cannot be :

A. 1

B. 4

C. 6

D. 2

Answer: C

Watch Video Solution

129. A die is thrown two times and the sum of the scores appearing on the die is observed to be a multiple of 4. Then the conditional probability that the score 4 has appeared atleast once is:

A.
$$\frac{1}{3}$$

B. $\frac{1}{4}$
C. $\frac{1}{8}$
D. $\frac{1}{9}$

Answer: D

Watch Video Solution

130. The number of integral terms in the expansion of $\left(\sqrt{3}+\sqrt[5]{8} ight)^{256}$ is

A. 128

B. 248

C. 256

D. 264

Answer: C

131.
$$\int_{-\pi}^{\pi} |\pi - |x| | dx$$

A. π^2
B. $\frac{\pi^2}{2}$
C. $\sqrt{2}\pi^2$
D. $2\pi^2$

Answer: A

Watch Video Solution

132. If A={m: both roots of $x^2-(m+1)x+m+4=0$ is real} and B=

[-3,5) which of the following is wrong?

A.
$$A-B=(\,-\infty,\,-3)\cup(5,\infty)$$

 $\mathsf{B}.\,A\cap B=\{\,-\,3\}$

C.B - A = (-3, 5)

 $\mathsf{D}.\, A\cup B=R$

Answer: A

133. The proposition $p o \, au(p \wedge \, au q)$ is equivalent to :

A. $(\ensuremath{\,{}^{-}p}) \lor (\ensuremath{\,{}^{-}q})$ B. $(\ensuremath{\,{}^{-}p}) \land q$ C. q

D. $(\ensuremath{\,{}^{\sim}} p) \lor q$

Answer: D

134. The function, $f(x)=(3x-7)x^{2/3}$, x in is increasing for all x lying in

$$\begin{array}{l} \mathsf{A.}\left(-\infty,\ -\frac{14}{15}\right)\cup(0,\infty)\\\\ \mathsf{B.}\left(-\infty,\ \frac{14}{15}\right)\\\\ \mathsf{C.}\left(-\infty,0\right)\cup\left(\frac{14}{15},\infty\right)\\\\ \mathsf{D.}\left(-\infty,0\right)\cup\left(\frac{3}{7},\infty\right)\end{array}$$

Answer: C

:

135. If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is:

A.
$$\frac{1}{6}$$

B. $\frac{1}{5}$
C. $\frac{1}{4}$

$$\mathsf{D}.\,\frac{1}{7}$$

Answer: A

Watch Video Solution

136. The solution curve of the differential equation, $(1+e^{-x})(1+y^2)\frac{dy}{dx}=y^2$, which passes through the point (0,1), is:

$$\begin{array}{l} \mathsf{A}.\,y^2 = 1 + y \log_e\!\left(\frac{1 + e^{-x}}{2}\right) \\ \mathsf{B}.\,y^2 + 1 = y\!\left(\log_e\!\left(\frac{1 + e^{-x}}{2}\right) + 2\right) \\ \mathsf{C}.\,y^2 + 1 = y\!\left(\log_e\!\left(\frac{1 + e^x}{2}\right) + 2\right) \\ \mathsf{D}.\,y^2 = 1 + y\!\left(\log_e\!\left(\frac{1 + e^x}{2}\right)\right) \end{array}$$

Answer: D

137.	The	area	(in	sq.	units)	of	the	region
$iggl\{(x,y$	$y): 0 \leq y$	$y \leq x^2 + 1$	$1,0\leq y$	$y \leq x + y$	$1, rac{1}{2} \leq x$	$\leq 2 \bigg\}$	is	
A	$\frac{23}{16}$							
В	$\frac{79}{16}$							
C	$\frac{23}{6}$							
D	$\frac{79}{24}$							

Answer: D

Watch Video Solution

138. If α and β are roots of the equation $x^2 + px + 2 = 0$ and $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ are the roots of the equation $2x^2 + 2qx + 1 = 0$, then $\left(\alpha - \frac{1}{\alpha}\right)\left(\beta - \frac{1}{\beta}\right)\left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right)$ is equal to : A. $\frac{9}{4}(9 + p^2)$ B. $\frac{9}{4}(9 + q^2)$

C.
$$rac{9}{4} ig(9-p^2ig)$$

D. $rac{9}{4} ig(9-q^2ig)$

Answer: C

Watch Video Solution

139. Determine whether the following pair of lines intersect: $\vec{r} = \hat{i} - \hat{j} + \lambda \left(2\hat{i} + \hat{k}\right) \text{ and } \vec{r} = 2\hat{i} - \hat{j} + \mu \left(\hat{i} + \hat{j} - \hat{k}\right)$

A. do not intersect for any values of I and m

B. intersect when I=1 and m=2

C. intersect when I=2 and $m=rac{1}{2}$

D. intersect for all values of I and m

Answer: A

140. If $\lim_{x
ightarrow 0} \ rac{|1-x+|x|\mid|}{|\lambda-x+[x]|} = L$ find L, where $\lambda\in R-\{0,1\}$ and [.]

denotes G.I.F.

A. 0

B. 2

 $\mathsf{C}.\,\frac{1}{2}$

D. 1

Answer: B

Watch Video Solution

141. If
$$\lim_{x \to 0} \left(\frac{1 - \cos\left(\frac{x^2}{2}\right) - \cos\left(\frac{x^2}{4}\right) + \cos\left(\frac{x^2}{2}\right)\cos\left(\frac{x^2}{4}\right)}{x^8} \right) = 2^{-k}.$$

Find k.

142. The diameter of the circle, whose centre lies on the line x + y = 2 in the first quadrant and which touches both the lines x = 3 and y = 2, is

Watch Video Solution

143. The value of
$$(0.16)^{\log_{2.5}\left(rac{1}{3}+rac{1}{3^2}+rac{1}{3^3}+\dots ext{to}\,\infty\,
ight)}$$
 , is

Watch Video Solution

144. In the matrix
$$A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$$
 and $A^4 = \begin{bmatrix} 109 & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, then find the

value of a_{22} is equal to

Watch Video Solution

145. If
$$\left(rac{1+i}{1-i}
ight)^{rac{m}{2}}=\left(rac{1+i}{1-i}
ight)^{rac{n}{3}}=1, (m,n\in N)$$
 then the greatest

common divisor of the least values of m and n is

146. If y = y (x) is the solution of the differential equation $\frac{5 + e^x}{2 + y} \cdot \frac{dy}{dx} + e^x = 0$ satisfying y(0) = 1, then a value of $y(\log_e 13)$ is : A.1 B. -1 C. 0 D. 2

Answer:

Watch Video Solution

147. Find the product of the roots of the equation $9x^2 - 18|x| + 5 = 0$

A.
$$\frac{5}{9}$$

B. $\frac{25}{81}$

C.
$$\frac{5}{27}$$

D. $\frac{25}{9}$

Answer:

148. The negation of the Boolean expression $x \leftrightarrow \neg y$ is equivalent to :

A.
$$(x \land y) \lor (extsf{-}x \land extsf{-}y)$$

$$\mathsf{B}.\,(x\wedge y)\wedge(\,{\scriptstyle{\scriptstyle{\sim}}} x\,\vee\,{\scriptstyle{\scriptstyle{\sim}}} y)$$

$$\mathsf{C.} \left(x \wedge extsf{-}y
ight) ee \left(extsf{-}x \wedge y
ight)$$

D.
$$(\hbox{\tt}{\sc x} \land y) \lor (\hbox{\tt}{\sc x} \land \hbox{\tt}{\sc y})$$

Answer:

149. The mean and variance of 7 observations are 8 and 16, respectively. If five observations are 2, 4, 10, 12, 14, then the absolute difference of the remaining two observations is :

Answer:

Watch Video Solution

150. If

 $2^{10}+2^9\cdot 3^1+2^8\cdot 3^2+\ldots\,+2\cdot 3^9+3^{10}=S-2^{11}$, then S is equal

to :

A. $3^{11} - 2^{12}$

 $\mathsf{B.}\,3^{11}$

C. $\frac{3^{11}}{2} + 2^{10}$ D. $2 \cdot 3^{11}$

Answer:

Watch Video Solution

151. The numbers $3^{2\sin 2\alpha - 1}$, 14 and $3^{4 - 2\sin 2\alpha}$ form first three terms of

A.P., its fifth term is

A. 66

B. 81

C. 65

D. 78

Answer:

152. If the volume of a parallelopiped ,whose coterminus edges are given by the vectors $\overrightarrow{a} = \hat{i} + \hat{j} + n\hat{k}, \ \overrightarrow{b} = 2\hat{i} + 4\hat{j} - n\hat{k}$ and $\overrightarrow{c} = \hat{i} + n\hat{j} + 3\hat{k}(n \ge 0)$, is 158 cu. Units , then : A. $\overrightarrow{a} \cdot \overrightarrow{c} = 17$ B. $\overrightarrow{b} \cdot \overrightarrow{c} = 10$ C. n = 7D. n = 9

Answer:

Watch Video Solution

153. If
$$S = \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) + \dots$$
 to 10

terms. Find $\tan S$

A.
$$\frac{5}{6}$$

B.
$$\frac{5}{11}$$

C. $-\frac{6}{5}$
D. $\frac{10}{11}$

Answer:

Watch Video Solution

154. If four complex number $z, ar{z}, ar{z} - 2Re(ar{z})$ and z - 2Re(z) represent

the vertices of a square of side 4-units in the Argand plane than find |z|.

A. $4\sqrt{2}$

 $\mathsf{B.4}$

 $\mathsf{C.}\,2\sqrt{2}$

 $\mathsf{D.}\,2$

Answer:

155. A survey shows that 73 % of the persons working in an office like coffee , whereas 65% like tea . If x denotes the percentage of them, who like both coffee and tea , then x cannot be :

A. 63

 $\mathsf{B.}\,36$

C.54

D. 38

Answer:

Watch Video Solution

156. If the co-ordinates of two point A and B are $(\sqrt{7}, 0)$ and $(-\sqrt{7}, 0)$ respectively and P is any point on the curve $9x^2 + 16y^2 = 144$, then find AP + PB.

A. 16	
B. 8	
C. 6	
D. 9	

Answer:

Watch Video Solution

157. If the point P on the curve $4x^2+5y^2-20=0$ is farthest from the point $Q(0,\ -4)$ than Find $PQ^2.$

A. 36

B.48

C. 21

D. 29

Answer:

158. Let $\lambda \in R$. The system of linear equations

 $2x_1-4x_2+\lambda x_3=1$

 $x_1 - 6x_2 + x_3 = 2$

 $\lambda x_1 - 10 x_2 + 4 x_3 = 3$

is inconsistent for :

A. exactly one negative value of λ

B. exactly one positive value of λ

C. every value of λ

D. exactly two values of λ

Answer: A

159. If min and max value of the function

$$f: \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \to R, f(\theta) = \begin{vmatrix} -\sin^2 \theta & -1 - \sin^2 \theta & 1 \\ -\cos^2 \theta & -1 - \sin^2 \theta & 1 \\ 12 & -4 & 0 \end{vmatrix} \text{ are } m \text{ and } M. \text{ Find}$$

the ordered pair (m, M).

A. $(0, 2\sqrt{2})$ B. (-4, 0)C. (-4, 0)D. (0, 4)

Answer:

Watch Video Solution

160. If (a, b, c) is the image of the point (1, 2, -3) in the line $\frac{x+1}{2} = \frac{y-3}{-2} = \frac{z}{-1}$ then Find a + b + c.

A. 2

$$B. -1$$

C. 3

D. 1

Answer:

Watch Video Solution

161. If function
$$f(x) = egin{cases} k_1(x-\pi)^2 - 1 & x \leq \pi \ k_2\cos x & x > \pi \end{cases}$$
 is twice differentiable

in ordered pair (k_1, k_2) . Find this ordered pair.

A. $\left(\frac{1}{2}, 1\right)$ B. (1, 0)C. $\left(\frac{1}{2}, -1\right)$ D. (1, 1)

Answer:

162. If common tangent to parabola $y^2 = 4x$ and $x^2 = 4y$ also touches the circle $x^2 + y^2 = c^2$, then find the value of C.

Answer:

$$\mathsf{C}.\,\frac{1}{\sqrt{2}}$$
$$\mathsf{D}.\,\frac{1}{2}$$

Answer:

164.
$$\int (e^{2x} + 2e^x - e^{-x} - 1)e^{e^x + e^{-x}} dx = g(x)e^{e^x + e^{-x}}$$
, then find $g(0)$.
A. e
B. e^2
C. 1
D. 2

165. The value of
$$\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{1}{1+e^{\sin x}} dx$$
 is :
A. $\frac{\pi}{4}$
B. π
C. $\frac{\pi}{2}$
D. $\frac{3\pi}{2}$

Answer:

Watch Video Solution

166. Let f(x) = x. $\left[\frac{x}{2}\right]$ for -10 < x < 10, where [t] denotes the greatest integer function. Then the number of points of discontinuity of f is equal to _____. **Watch Video Solution** 167. If the distance of line 2x - y + 3 = 0 from 4x - 2y + p = 0 and 6x - 3y + r = 0 is respectively $\frac{1}{\sqrt{5}}$ and $\frac{2}{\sqrt{5}}$

Watch Video Solution

168. The number of four letters word while each consisting 2 distinct and

two alike letters taken from eord SYLLABUS

Watch Video Solution

169. The natural number m, for which the coefficient of x in the binomial

expansion of
$$\left(x^m+rac{1}{x^2}
ight)^{22}$$
 is 1540 , is _____

Watch Video Solution

170. Four different dice are thrown independently 27 times, then find the

expectation of number of times if at leat two of them shows either 5 or 3.

171. If $lpha \,\, {
m and} \,\, eta$ be two roots of the equation $x^2-64x+256=0$. Then

the value of
$$\left(rac{lpha^3}{eta^5}
ight)^{rac{1}{8}}+\left(rac{eta^3}{lpha^5}
ight)^{rac{1}{8}}$$
 is :

A. 2

B. 3

C. 1

D. 4

Answer:

Watch Video Solution

172. The area (in sq. units) of the region $A=ig\{(x,y)\colon |x|+|y|\leq 1, 2y^2\geq |x|ig\}$ is : A. $rac{1}{3}$

B.
$$\frac{7}{6}$$

C. $\frac{1}{6}$
D. $\frac{5}{6}$

Answer:

Watch Video Solution

173. Find the general solution of the differential equation

$$\begin{split} \sqrt{1+x^2+y^2+x^2y^2} + xy\frac{dy}{dx} &= 0.\\ \text{A. } \sqrt{1+y^2} + \sqrt{1+x^2} &= \frac{1}{2}\log_e\left(\frac{\sqrt{1+x^2}+1}{\sqrt{1+x^2}-1}\right) + C\\ \text{B. } \sqrt{1+y^2} - \sqrt{1+x^2} &= \frac{1}{2}\log_e\left(\frac{\sqrt{1+x^2}+1}{\sqrt{1+x^2}-1}\right) + C\\ \text{C. } \sqrt{1+y^2} + \sqrt{1+x^2} &= \frac{1}{2}\log_e\left(\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2}+1}\right) + C\\ \text{D. } \sqrt{1+y^2} + \sqrt{1+x^2} &= \frac{1}{2}\log_e\left(\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2}+1}\right) + C \end{split}$$

Answer:

174. Let L_1 be a tangent to the parabola $y^2 = 4(x + 1)$ and L_2 be a tangent to the parabola $y^2 = 8(x + 2)$ such that L_1 and L_2 intersect at right angles. Then L_1 and L_2 meet on the straight line :

A. x+3 =0

B. 2x+1=0

C. x+2=0

D. x+2y=0

Answer:

Watch Video Solution

175. If f(x+y)=f(x)f(y) and $\sum_{x=1}^{\infty}f(x)=2, x,y\in N$, where N is the set of all natural numbers , then the value of $rac{f(4)}{f(2)}$ is :

A.
$$\frac{2}{3}$$

B.
$$\frac{1}{9}$$

C. $\frac{1}{3}$
D. $\frac{4}{9}$

176. Let
$$I_1 = \int_0^1 \left(1-x^{50}
ight)^{100} dx$$
 and $I_2 = \int_0^1 \left(1-x^{50}
ight)^{101} dx$ and

$$I_1 = \lambda I_2$$
, then λ is

- A. $\frac{5049}{5050}$
- B. $\frac{5050}{5049}$
- C. $\frac{5050}{5051}$
- D. $\frac{5051}{5050}$

Answer:

177. Out of 11 consecutive natural numbers if three number are selected at random (without repetition) , then the probability that they are in A.P. with positive common difference , is :

A.
$$\frac{15}{101}$$

B. $\frac{5}{101}$
C. $\frac{5}{33}$
D. $\frac{10}{99}$

Answer:

Watch Video Solution

178. A ray of light coming from the point $(2, 2\sqrt{3})$ is incident at an angle 30° on the line x=1 at the point A. The ray gets reflected on the line x=1 and meet x-axis at the point B. Then , the line AB passes through the point :

A.
$$\left(3, -\frac{1}{\sqrt{3}}\right)$$

B. $\left(4, -\frac{\sqrt{3}}{2}\right)$
C. $\left(3, -\sqrt{3}\right)$
D. $\left(4, -\sqrt{3}\right)$

Watch Video Solution

179. Which of the following points lies on the locus of the foot of perpendicular drawn upon any tangent to the ellipse,

$$rac{x^2}{4}+rac{y^2}{2}=1$$
 from any of its foci ?

A. $(-2, \sqrt{3})$ B. $(-1, \sqrt{2})$ C. $(-1, \sqrt{3})$ D. (1, 2)

180. The region represented by $\{z=x+iy\in C\colon |z|-\operatorname{Re}(z)\leq 1\}$ is also given by the inequality :

A.
$$y^2 \geq 2(x+1)$$

B. $y^2 \leq 2\left(x+rac{1}{2}
ight)$
C. $y^2 \leq x+rac{1}{2}$
D. $y^2 \geq x+1$

Answer:

181. The position of a moving car at time t is given by $f(t)=at^2+bt+c, t>0$, where a ,b and c are real numbers greater

than 1. Then the average speed of the car over the time interval $[t_1, t_2]$ is attained at the point :

A. $\left(t_2-t_1
ight)/2$ B. $a(t_2-t_1)+b$ C. $\left(t_1+t_2
ight)/2$ D. $2a(t_1+t_2)+b$

Answer:

Watch Video Solution

182.
$$\lim_{x \to 1} \left(\frac{\int_0^{(x-1)} t \cos(t) dt}{(x-1)\sin(x-1)} \right)$$

A. is equal to $\frac{1}{2}$
B. is equal to 1
C. is equal to $-\frac{1}{2}$

D. does not exist

183. If
$$\sum_{i=1}^n (x_i-a) = n$$
 and $\sum_{i=1}^n (x_i-a)^2 = na$ then the standard

deviation of variate x_i

B.
$$n\sqrt{a-1}$$

C. $\sqrt{n(a-1)}$
D. $\sqrt{a-1}$

Answer:

184. If
$$\{p\}$$
 denotes the fractional part of the number p , then $\left\{\frac{3^{200}}{8}\right\}$, is

equal to :

A.
$$\frac{5}{8}$$

B. $\frac{7}{8}$
C. $\frac{3}{8}$
D. $\frac{1}{8}$

B.
$$\frac{1}{\sqrt{3}}$$

C. $\frac{1}{\sqrt{2}}$
D. $\frac{1}{2}$

Answer:

186. The negation of the Boolean expression $p \lor (\sc p \land q)$ is equivalent to

A. $p \wedge {\scriptstyle{\sim}} q$

:

B. ~ $p \wedge$ ~q

C. ~ $p \lor$ ~q

D. ~ $p \lor q$

Answer:

Watch Video Solution

187. Two families with three members each and one family with four members are to be estated in a row. In how many ways can they be setated so that the same familymembers are not separated ?

A. 2!3!4!

B. $(3!)^3 \cdot (4!)$ C. $(3!)^2 \cdot (4!)$ D. $3!(4!)^3$

Answer:

Watch Video Solution

188. Let m and M be respectively the minimum and maximum values of

 $egin{array}{cccc} \cos^2 x & 1 + \sin^2 x & \sin 2x \ 1 + \cos^2 x & \sin^2 x & \sin 2x \ \cos^2 x & \sin^2 x & 1 + \sin 2x \end{array}$

Then the ordered pari (m, M) is equal to :

A. (-3, -1)B. (1, 3)C. (-3, 3)D. (-4, -1)

Answer: A

189. Let a,b,c,d and p be any non zero distinct real numbers such that

$$ig(a^2+b^2+c^2ig)p^2-2(ab+bc+cd)p+ig(b^2+c^2+d^2ig)=0$$
. Then :

A. a,c,p are in A.P.

B. a,c,p, are in G.P.

C. a,b,c,d are in G.P.

D. a,b,c,d are in A.P.

Answer:

Watch Video Solution

190. The value of λ and μ for which the system of linear equation

x+y+z=2

x + 2y + 3z = 5

 $x+3y+\lambda z=\mu$

has infinitely many solutions are , respectively :

A. 5 and 8

B. 5 and 7

C. 4 and 9

D. 6 and 8

Answer: A

Watch Video Solution

191. Set A has m element and Set B has n element . If the total numbers of

subsets of A is 112 more than the total number of subsets of B, then the

value of m.n is _____

192. Let
$$f:R o R$$
 be defined as $f(x)= egin{cases} x^5\sin\left(rac{1}{x}
ight)+5x^2, & x<0\ 0, & x=0\ x^5\cos\left(rac{1}{x}
ight)+\lambda x^2, & x>0 \end{cases}$

The value of λ for which f''(0) exists , is _____

194. Let AD and BC be two vertical poles at A and B respectively on a horizontal ground . If AD = 8m, BC = 11m and AB=10 m, then the distance (in meters) of a point M on AB from the point A such that $MD^2 + MC^2$ is miniumu is _____

195. The angle of elevation of the top of a hill from a point on the horizontal planes passing through the foot of the hill is found to be 45° . After walking a distance of 80 meters towards the top , up a slope inclined at an angle of 30° to the horizontal plane , the angle of elevation of the top of the hill becomes 75° . Then the height of the hill (in meters) is _____

Watch Video Solution

196. Let $f: R \to R$ be a function which satisfies $f(x + y) = f(x) + f(y) \forall x, y \in R$. If f(1) = 2 and $g(n) = \sum_{k=1}^{(n-1)} f(k), n \in N$ then the value of n, for which g(n) = 20, is : A.9 B.5 C.4

D. 20

Answer: B

197. If the sum of first 11 terms of an A. P., $a_1, a_2, a_3, ...$ is $0(a_1 \neq 0)$ then the sum of the A. P., $a_1, a_3, a_5, ..., a_{23}$ is ka_1 , where k is equal to

:

Answer: B

198. Let E^C denote the complement of an event E. Let E_1, E_2 and E_3 be any pairwise independent events with $P(E_1)>0$ and $P(E_1\cap E_2\cap E_3)=0$. Then $Pig(E_2^C\cap E_3^C/E_1ig)$ is equal to :

A.
$$P(E_3^C) - P(E_2^C)$$

B. $P(E_3) - P(E_2^C)$
C. $P(E_3^C) - P(E_2)$
D. $P(E_2^C) + P(E_3)$

Answer: C

Watch Video Solution

199. If the equation $\cos^4 \theta + \sin^4 \theta + \lambda = 0$ has real solutions for θ , then λ lies in the interval :

$$A.\left(-\frac{1}{2}, -\frac{1}{4}\right]$$
$$B.\left[-1, -\frac{1}{2}\right]$$

$$\begin{array}{l} \mathsf{C}.\left[\,-\frac{3}{2},\;-\frac{5}{4}\right]\\ \mathsf{D}.\left(\,-\frac{5}{4},\;-1\right)\end{array}$$

Answer: B

Watch Video Solution

200. An equilateral trinagle is inscribed in parabola $y^2 = 8x$ whose one vertex coincides with vertex of parabola.Find area of triangle.

A. $128\sqrt{3}$

B. $192\sqrt{3}$

C. $64\sqrt{3}$

D. $256\sqrt{3}$

Answer: B

201. Find the imaginary part of $\left(\left(3+2\sqrt{-54}
ight)^{rac{1}{2}}-\left(3-2\sqrt{-54}
ight)^{rac{1}{2}}
ight)$

A. $\sqrt{6}$ B. $-2\sqrt{6}$

C. 6

D. $-\sqrt{6}$

Answer: B

Watch Video Solution

202. A plane passing through the point (3,1,1) contains two lines whose direction ratios are 1,-2,2 and 2,3, -1 respectively. If this plane also passes through the point $(\alpha, -3, 5)$, then α is equal to:

A. -5

B. 10

C. 5

D. -10

Answer: C

Watch Video Solution

203. Let
$$A = \left\{ X = (x, y, z)^T : PX = 0 \text{ and } x^2 + y^2 + z^2 = 1 \right\}$$
,
where $P = \begin{bmatrix} 1 & 2 & 1 \\ -2 & 3 & -4 \\ 1 & 9 & -1 \end{bmatrix}$, then the set A:

A. contains more than two elements

B. is a singleton.

C. contains exactly two elements

D. is an empty set.

Answer: C

204. The equation of the normal to the curve

$$y = (1+x)^{2y} + \cos^2(\sin^{-1}x)$$
 at $x = 0$ is :
A. $y + 4x = 2$
B. $2y + x = 4$
C. $x + 4y = 8$
D. $y = 4x + 2$

Answer: C

Watch Video Solution

205. Consider a region $R = \{(x, y) \in R^2 : x^2 \le y \le 2x\}$. If a line $y = \alpha$ divides the area of region R into two equal parts, then which of the following is true.?

A.
$$lpha^3-6lpha^2+16=0$$

B. $3\alpha^2 - 8\alpha^{3/2} + 8 = 0$

C.
$$lpha^3-6lpha^{3\,/\,2}-16$$

D.
$$3lpha^2 - 8lpha + 8 = 0$$

Answer: B

206. Let
$$f\colon (-1,\infty) o R$$
 be defined by $f(0)=1$ and $f(x)=rac{1}{x}{
m log}_e(1+x), x
eq 0.$ Then the function f:

A. increases in $(-1,\infty)$

B. decreases in (–1,0) and increases in $(0,\infty)$

C. increases in (–1,0) and decreases in $(0,\infty)$

D. decreases in $(-1,\infty)$.

Answer: D

207. Which of the following is a tautology?

A.
$$(p
ightarrow q)\wedge(q
ightarrow p)$$

B. $(\mathchar`p)\wedge(p\lor q)
ightarrow q$
C. $(q
ightarrow p)\lor\mathchar`(p
ightarrow q)$
D. $(\mathchar`q)\lor(p\land q)
ightarrow q$

Answer: B

Watch Video Solution

208. If f(x) be a quadratic polynomial such that f(x) = 0 has a root 3

and $f(2)+f(\,-\,1)=0$ then other root lies in

A. (0, 1)

B. (1, 3)

C. (-1, 0)

D. (-3,-1)

Answer: C

209. Let S be the sum of the first 9 terms of the series :

$$\{x + ka\} + \{x^{2} + (k + 2)a\} + \{x^{3} + (k + 4)a\} + \{x^{4} + (k + 6)a\} + \dots$$

where $a \neq 0$ and $a \neq 1$.

If $S = \frac{x^{10} - x + 45a(x - 1)}{x - 1}$, then k is equal to :

A. 3

B. -3

C. 1

D. -5

Answer: B

210. The set of all possible values of θ in the interval $(0, \pi)$ for which the points (1,2) and $(\sin \theta, \cos \theta)$ lie on the same side of the line x + y = 1 is:

A.
$$\left(0, \frac{\pi}{4}\right)$$

B. $\left(0, \frac{\pi}{2}\right)$
C. $\left(0, \frac{3\pi}{4}\right)$
D. $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$

Answer: B

211. There are n stations in a circular path.Two consecutive stations are connected by blue line and two non-consecutive stations are connected by red line.If no. of red lines is equal to 99 times number of blue line then value of n is

B. 199

C. 101

D. 200

Answer: A

Watch Video Solution

212. If a curve y = f(x) satisfy the differential equation $2x^2dy = (2xy + y^2)dx$ and passes (1, 2) the find $f\left(\frac{1}{2}\right)$

$$\mathsf{A} \cdot \frac{1}{1 + \log_e 2}$$

$$\mathsf{B} \cdot 1 + \log_e 2$$

$$\mathsf{C} \cdot \frac{1}{1 + \log_e 2}$$

$$\mathsf{D} \cdot \frac{1}{1 - \log_e 2}$$

Answer: C

213. If $x^2 - y^2 \sec^2 \theta = 10$ be a hyperbola and $x^2 \sec^2 \theta + y^2 = 5$ be an ellipse such that the eccentricity of hyperbola= $\sqrt{5}$ eccentricity of ellipse then find the length of latus rectum of ellipse

A.
$$\frac{4\sqrt{5}}{3}$$

B. $\frac{2\sqrt{5}}{3}$
C. $2\sqrt{6}$
D. $\sqrt{30}$

Answer: A

Watch Video Solution

214. Find
$$(\lim)_{x \ 0} \left\{ angle \left\{ angle \left\{ angle \left\{ angle x \right\}
ight\}^{1/x}
ight\}$$

A. e

 ${\rm B.}\,e^2$

C. 2

D. 1

Answer: B

Watch Video Solution

215. Let a, b, c $\,\in\,$ R be all non-zero and satisfy $a^3+b^3+c^3=2$. If the

matrix

$$A=egin{pmatrix} a&b&c\b&c&a\c&a&b \end{pmatrix}$$

satisfies $A^T A = I$, then a value of abc can be :

A.
$$\frac{2}{3}$$

B. 3
C. $-\frac{1}{3}$
D. $\frac{1}{3}$

Answer: D

216. Let the position vectors of points 'A' and 'B' be $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} + \hat{j} + 3\hat{k}$, respectively. A point 'P' divides the line segment AB internally in the ratio $\lambda: 1(\lambda > 0)$. If O is the origin and $\overrightarrow{OB}. \overrightarrow{OP} - 3 \left| \overrightarrow{OA} \times \overrightarrow{OP} \right|^2 = 6$, then λ is equal to _____

A.

Β.

C.

D.

Answer: 0.8

217. Let [x] denote the greatest integer less than or equal to x. Then the

value of
$$\int_1^2 |2x-[3x]| dx$$
 is _____

A.			
В.			
C.			
D.			

Watch Video Solution

218. If
$$y=\sum_{k=1}^{6}K\cos^{-1}\left(rac{3}{5}\cos kx-rac{4}{5}\sin kx
ight)$$
 then $rac{dy}{dx}=$

A.

Β.

C.

D.

Answer: 91

219. If the variance of the terms in an increasing $A. P., b_1, b_2, b_3, ..., b_{11}$

is 90, then the common difference of this A.P. is _____

А.		
В.		
C.		
D.		

Answer: 3

Watch Video Solution

220. For a positive integer n, $\left(1 + \frac{1}{x}\right)^n$ is expanded in increasing powers of x. If three consecutive coefficients in this expansion are in the ratio, 2:5:12, then n is equal to _____

- C.
- D.

Watch Video Solution

221. If the system of linear equations

x+y+3z=0

 $x + 3y + k^2 z = 0$

3x + y + 3z = 0

has a non-zero solution (x, y, -z) for some $\mathsf{k} \in \mathsf{R}$ then $x + \left(\frac{y}{z}\right)$ is equal to :

A. 9

 $\mathsf{B.}-3$

C. - 9

Answer: D

222. If α and β are the roots of the equation, $7x^2 - 3x - 2 = 0$, then the value of $\frac{\alpha}{2} + \frac{\beta}{2}$ is equal to :

$$\frac{\alpha}{1-\alpha^2} + \frac{\beta}{1+\beta^2}$$
 is equal to
A. $\frac{27}{32}$
B. $\frac{1}{24}$
C. $\frac{3}{8}$
D. $\frac{27}{16}$

Answer:

223. If x = 1 is a critical point of the function $f(x) = \left(3x^2 + ax - 2 - a
ight)e^x$, then :

A. x = 1 and
$$x = -\frac{2}{3}$$
 are local minima of f.
B. x =1 and $x = -\frac{2}{3}$ are local maxima of f.
C. x = 1 is a local maxima and $x = -\frac{2}{3}$ is a local minima of f
D. x = 1 is a local minima and $x = -\frac{2}{3}$ is a local maxima of f

Answer:

Watch Video Solution

224. The area (in sq. units) of the region $A=ig\{(x,y)\colon (x-1)[x]\leq y\leq 2\sqrt{x}, 0\leq x\leq 2ig]$ where [t] denotes the greatest integer function is

A.
$$\frac{8}{3}\sqrt{2} - \frac{1}{2}$$

B. $\frac{4}{3}\sqrt{2} + 1$

C.
$$\frac{8}{3}\sqrt{2} - 1$$

D. $\frac{4}{3}\sqrt{2} - \frac{1}{2}$

Watch Video Solution

225. If the sum of the second , third and fourth terms of a positive term G.P is 3 and the sum of its sixth , seventh and eight terms is 243, then the sum of the first 50 terms of this G.P is :

A.
$$rac{1}{26} (3^{49} - 1)$$

B. $rac{1}{26} (3^{50} - 1)$
C. $rac{2}{13} (3^{50} - 1)$
D. $rac{1}{13} (3^{50} - 1)$

Answer: A::C

226.
$$\left(\frac{-1+\sqrt{3}i}{1-i}
ight)^{30}$$
 simplifies to
A. -2^{15}
B. 2^{15}
C. $-2^{15}i$
D. 6^5

227. If
$$L = \sin^2\left(rac{\pi}{16}
ight) - \sin^2\left(rac{\pi}{8}
ight)$$
 and $M = \cos^2\left(rac{\pi}{16}
ight) - \sin^2\left(rac{\pi}{8}
ight)$, then :

A.
$$L = -\frac{1}{2\sqrt{2}} + \frac{1}{2}\cos\left(\frac{\pi}{8}\right)$$

B. $L = \frac{1}{4\sqrt{2}} - \frac{1}{4}\cos\left(\frac{\pi}{8}\right)$
C. $M = \frac{1}{4\sqrt{2}} + \frac{1}{4}\cos\left(\frac{\pi}{8}\right)$

D.
$$M=rac{1}{2\sqrt{2}}+rac{1}{2} ext{cos}\Big(rac{\pi}{8}\Big)$$

Watch Video Solution

228. If a + x = b + y = c + z + 1, where a, b,c,x,y,z are non polar distinct real numbers, then $\begin{vmatrix} x & a + y & x + a \\ y & b + y & y + b \\ z & c + y & z + c \end{vmatrix}$ is equal to : A. 0 B. y(a - b)C. y(b - c)

 $\mathsf{D}.\,y(a-c)$

Answer: B

229. If the line y = mx + c is a common tangent to the hyperbola $\frac{x^2}{100} - \frac{y^2}{64} = 1$ and the circle $x^2 + y^2 = 36$, then which one of the following is ture ?

A. $c^2 = 369$

B. 5m=4

 $C. 4c^2 = 369$

 $\mathsf{D.}\,8m+5=0$

Answer:

Watch Video Solution

230. Which of the following points lies on the tangent to the curve $x^4e^y+2\sqrt{y+1}=3$ at the point (1, 0)?

A. (2, 2)

B. (2, 6)

C. (-2, 6)

D. (-2, 4)

Answer:

231. The statement

$$(p
ightarrow (q
ightarrow p))
ightarrow (p
ightarrow q))$$
 is :

A. equivalent to $(p \land q) \lor (\ensuremath{\,^{\sim}} q)$

B. a contradiction

C. equivalent to $(p \lor q) \land (\neg p)$

D. a tautology

Answer:

232.
$$\lim_{x \to 0} \frac{x \left(\frac{\sqrt{1+x^2+x^4}-1}{x} - 1 \right)}{\sqrt{1+x^2+x^4}-1}$$

A. is equal to \sqrt{e}

B. is equal to 1

C. is equal to 0

D. does not exist

Answer:

Watch Video Solution

233. If the sum of the first 20 terms of the series

$$\log_{\left(7^{1/2}
ight)}x+\log_{\left(7^{1/3}
ight)}x+\log_{\left(7^{1/4}
ight)}x+...$$
 is 460 , then x is equal to :

A. 7^2

B. $7^{1/2}$

 $\mathsf{C}.\,e^2$

D. $7^{46/21}$

Answer:

Watch Video Solution

234. the derivation of
$$\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$$
 with respect to $\tan^{-1}\left(\frac{2x\sqrt{1-x^2}}{1-2x^2}\right)$
A. $\frac{2\sqrt{3}}{5}$
B. $\frac{\sqrt{3}}{12}$
C. $\frac{2\sqrt{3}}{3}$
D. $\frac{\sqrt{3}}{10}$

Answer:

235. If
$$\int \frac{\cos \theta}{5 + 7\sin \theta - 2\cos^2 \theta} d\theta = A \log_e |B(\theta)| + C$$

where C is a constant of integration, then $\frac{B(\theta)}{A}$ can be :

A.
$$\frac{2\sin\theta + 1}{\sin\theta + 3}$$

B.
$$\frac{2\sin\theta + 1}{5(\sin\theta + 3)}$$

C.
$$\frac{5(\sin\theta + 3)}{2\sin\theta + 1}$$

D.
$$\frac{5(2\sin\theta + 1)}{\sin\theta + 3}$$

Answer: D

Watch Video Solution

236. Let y = y (x) be the solution of the differential equation

$$\cos x rac{dy}{dx} + 2y \sin x = \sin 2x, x \in \left(0, rac{\pi}{2}
ight).$$

If $y(\pi/3)=0, \hspace{1em} ext{then} \hspace{1em} y(\pi/4)$ is equal to :

A. $2-\sqrt{2}$

 $\mathsf{B}.\,2+\sqrt{2}$

C.
$$\sqrt{2}-2$$

D. $\frac{1}{\sqrt{2}}-1$

Answer: C

Watch Video Solution

237. If the length of the chord of the circle , $x^2+y^2=r^2(r>0)$ along the line , y-2x=3 is r, then r^2 is equal to

A.
$$\frac{9}{5}$$

B. 12
C. $\frac{24}{5}$
D. $\frac{12}{5}$

Answer: D

238. If the mean and the standard deviation of the data 3,5,7,a,b are 5 and 2 respectively, then a and b are the roots of the equation :

A. $x^2 - 10x + 18 = 0$ B. $2x^2 - 20x + 19 = 0$

C.
$$x^2 - 10x + 19 = 0$$

D.
$$x^2 - 20x + 18 = 0$$

Answer:

Watch Video Solution

239. If for some $lpha \in R$, the lines

 $L_1: rac{x+1}{2}=rac{y-2}{-1}=rac{z-1}{1}$ and $L_2: rac{x+2}{lpha}=rac{y+1}{5-lpha}=rac{z+1}{1}$ are coplanar , then the line L_2 passes

through the point :

A. (10, 2, 2)

B. (2, -10, -2)

C. (10, -2, -2)

D. (-2, 10, 2)

Answer:

Watch Video Solution

240. There are three sections in a question paper, each containing 5 questions. A candidate has to solve any 5 questions, choosing at least one from each section. Find the number of ways in which the candidate can choose the questions.

A. 3000

B. 1500

C. 2255

D. 2250

Watch Video Solution

241. Find the coefficient of x^4 in the expansion of $\left(1+x+x^2+x^3
ight)^6$

Watch Video Solution

242. In a bombing attack, there is 50% chance that a bomb will hit target . At least two independent hits are required to destroy the target completely. Then the minimum number of bombs, that must be dropped to ensure that there is at least 90% chance of completely destroying the target , is _____

Watch Video Solution

243. If the lines x + y =a and x - y = b touch the curves $y = x^2 - 3x + 2$ at

points where the curve intersects the x - axis then $\frac{a}{b}$ is equal to _____.

244. Let the vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be such that $|\overrightarrow{a}| = 2|\overrightarrow{b}| = 4$ and $|\overrightarrow{c}| = 4$. If the projection of \overrightarrow{b} on \overrightarrow{a} is equal to the projection of \overrightarrow{c} on \overrightarrow{a} and \overrightarrow{b} is perpendicular to \overrightarrow{c} , then the value of $|\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c}|$ is _____.

Watch Video Solution

245. Let A = { a, b,c } and B = {1, 2, 3, 4} . Then the number of elements in the set C = { f : $A \rightarrow B \mid 2 \in f(A)$ and f is not one-one } is

Watch Video Solution

246. The consists of 6 multiple choice questions, each having 4 alternative answers of wihc only one is correct. The number of ways, in which a

canditate answers all six questions such that exactly four of the answers

are correct, is _____.

247. If
$$\overrightarrow{a} = 2\hat{i} + \hat{j} + 2\hat{k}$$
, then the value of $\left|\hat{i} \times \left(vaca \times \hat{i}\right)\right|^2 + \left|\hat{i} \times \left(\overrightarrow{a} \times \hat{j}\right)\right|^2 + \left|\hat{k} \times \left(\overrightarrow{a} \times \hat{k}\right)\right|^2$ equal to

Watch Video Solution

248. Let {x} and [x] denote the fractional part of x and the greatest interger $\leq x$ respectively of a real number x. if $\int_0^n \{x\} dx$, $\int_0^n [x] dx$ and $10(n^2 - n)$, $(n \in N, n > 1)$ are three consecutive terms of a G.P then n is equal to _____.

249. If the variance of the following frequency distribution , Class : 10-20 20-30 30-40 Frequency : 2 x 2 is 50, then x is equal to ____.

250. Let PQ be a diameter of the circle $x^2 + y^2 = 9$ If α and β are the lengths of the perpendiculars from P and Q on the straight line, x+y=2 respectively, then the maximum value of $\alpha\beta$ is _____.