©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR

SEQUENCES AND SERIES

Others

1. The sum of the series $\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\ldots$ upto infinity is (1) $e^{-2}(2) e^{-1}$ (3) $e^{-1 / 2}$ (4) $e^{1 / 2}$

- Watch Video Solution

2. The average marks of boys in a class is 52 and that of girls is 42 . The average marks of boys and girls combined is 50 . The percentage of boys in the class is

- Watch Video Solution

3. The first two terms of a geometric progression add up to 12 . The sum of the third and the fourth terms is 48 . If the terms of the geometric progression are alternately positive and negative, then the first term is
$4.1+\frac{2}{3}+\frac{6}{3^{2}}+\frac{10}{3^{3}}+\frac{14}{3^{4}}+$

- Watch Video Solution

5. A person is to count 4500 currency notes. Let an denote the number of notes he counts in the nth minute. If $a_{1}=a_{2}=\ldots \ldots=a_{10}=150 \quad$ and $a_{10}, a_{11}, \ldots \ldots$ are in A.P. with common difference 2 , then the time taken by him to count all notes is (1) 34 minutes (2) 125 minutes (3) 135 minutes (4) 24 minutes

- Watch Video Solution

6. If 100 times the $100^{\text {th }}$ term of an AP with non zero common difference equals the 50 times its $50^{\text {th }}$ term, then the $150^{\text {th }}$ term of this AP is (1) 150 (2) 150 times its $50^{\text {th }}$ term (3) 150 (4) zero
A. 150 times its 50th term
B. 150
C. zero
D. -150

Answer: null
7. Statement 1: The sum of the series $1+(1+2+4)+(4+6+9)+(9+12+16)+\ldots .$.
$+(361+380+400) i s 8000$. Statement 2:
$\sum_{k=1}^{n}\left(k^{3}-(k-1)^{3}\right)=n^{3}$ for any natural number n . (1)
Statement 1 is false, statement 2 is true (2) Statement 1
is true, statement 2 is true; statement 2 is a correct explanation for statement 1 (3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1 (4) Statement 1 is true, statement 2 is false

- Watch Video Solution

8. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in A.P. and $\tan ^{-1} x, \tan ^{-1} \operatorname{yandtan}^{-1} z$ are also in A.P., then (1) $2 x=3 y=6 z$ (2) $6 x=3 y=2 z$ (3) $6 x=4 y=3 z(4) x=y=z$

D Watch Video Solution

9. The sum of first 20 terms of the sequence $0.7,0.77$,
$0.777, \ldots$, is (1) $\frac{7}{9}\left(99-10^{-20}\right)$ (2) $\frac{7}{81}\left(179+10^{-20}\right)$
$\frac{7}{9}\left(99+10^{-20}\right)(3) \frac{7}{81}\left(179-10^{-20}\right)$

D Watch Video Solution

10.

$$
(10)^{9}+2(11)^{1}(10)^{8}+3(11)^{2}(10)^{7}+. .+10(11)^{9}=k(10)^{9}
$$

, then k is equal to (1) $\frac{121}{10}$ (2) $\frac{441}{100}$ (3) 100 (4) 110

- Watch Video Solution

11. If m is the A.M. of two distinct real numbers l and $n(l, n>1)$ and G_{1}, G_{2} and G_{3} are three geometric means between l and n , then $G_{1}^{4}+2 G_{2}^{4}+G_{3}^{4}$ equals, (1) $4 l^{2} \mathrm{mn}$ (2) $4 m^{2} \mathrm{nl}$ (3) $4 l m n^{2}$ (4) $4 l^{2} m^{2} n^{2}$

D Watch Video Solution

12. The sum of first 9 terms of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+2+3}+\ldots$ is (1) 71 (2) 96 (3) 142 (4) 192
13. If the sum of the first ten terms of the series $\left(1 \frac{3}{5}\right)^{2}+\left(2 \frac{2}{5}\right)^{2}+\left(3 \frac{1}{5}\right)^{2}+4^{2}+\left(4 \frac{4}{5}\right)^{2}+\ldots \ldots$,
is $\frac{16}{5} \mathrm{~m}$, then m is equal to: (1) 102 (2) 101 (3) 100 (4) 99

- Watch Video Solution

14. For any three positive real numbers a, b and $c, 9\left(25 a^{2}+b^{2}\right)+25\left(c^{2}-3 a c\right)=15 b(3 a+c)$. Then :
(1) a, b and c are in $A \dot{P}$ (2) a, b and c are in $G \dot{P}$ (3) b, c and a are in $G \dot{P}$ (4) b, c and a are in $A \dot{P}$
A. a, b and c are in GP
B. b,c and a are in GP
C. b,c and a are in AP
D. a, b and c are in AP

Answer: null

- Watch Video Solution

