©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR

VECTOR ALGEBRA

Others

1. Let $\bar{a}=\hat{i}+\hat{j}+\hat{k}, b=\hat{i}-\hat{j}+2 \hat{k}$ and
$\bar{c}=x \hat{i}+(x-2) \hat{j}-\hat{k}$. If the vector c lies in
the plane of a and b, then x equals (1) 0 (2) 1
(3) $-4(4)-2$

D Watch Video Solution
2. The nonzero verctors \vec{a}, \vec{b} and \vec{c} are related by $\vec{a}=8 \vec{b}$ and $\quad \vec{c}=-7 \vec{b}$.

Then the angle between \vec{a} and \vec{c} is

D Watch Video Solution
3. The vector $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$ lies in the plane of the vectors $\vec{b}=\hat{\mathrm{i}}+\hat{j}$ and $\vec{c}=\hat{j}+\hat{k}$ and bisects the angle between \vec{b} and \vec{c}. Then which one of the following gives possible values of α and β ? (1) $\alpha=2, \beta=2$
(2) $\alpha=1, \beta=2 \quad$ (3) $\quad \alpha=2, \beta=1$
$\alpha=1, \beta=1$

$$
\begin{aligned}
& \text { A. } \alpha=2, \beta=2 \\
& \text { B. } \alpha=1, \beta=2 \\
& \text { C. } \alpha=2, \beta=1
\end{aligned}
$$

$$
\text { D. } \alpha=1, \beta=1
$$

Answer: D

D Watch Video Solution

4. Let \hat{a} and \hat{b} be two unit vectors. If the vectors $\vec{c}=\widehat{a}+2 \hat{b}$ and $\vec{d}=5 \widehat{a}-4 \hat{b}$ are perpendicular to each other, then the angle between \widehat{a} and \hat{b} is
А. $\frac{\pi}{6}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: C

D Watch Video Solution
5. If the vectors $\overline{A B}=3 \hat{i}+4 \hat{k}$ and
$\overline{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a
triangle $A B C$, then the length of the median
through A is
A. $\sqrt{72}$
B. $\sqrt{33}$
C. $\sqrt{45}$
D. $\sqrt{18}$

Answer: B

- Watch Video Solution

6.

$$
[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=\lambda[\vec{a} \vec{b} \vec{c}]^{2}
$$

then I is equal to (1) $2(2) 3(3) 0(4) 1$

- Watch Video Solution

7. Let \vec{a}, \vec{b} and \vec{c} be three non-zero vectors
such that no two of them are collinear and
$(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{c}||\vec{b}| \vec{a}$. If θ is the angle between vectors \vec{b} and \vec{c} then a value of $\sin \theta$ is :
8. Let \vec{a}, \vec{b} and \vec{c} be there unit vectors such
that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\sqrt{3}}{2}(\vec{b}+\vec{c})$. If
\vec{b} is not parallel to \vec{c}, then the angle between \vec{a} and \vec{b} is: (1) $\frac{3 \pi}{4}$ (2) $\frac{\pi}{2}$ (3) $\frac{2 \pi}{3}$ (4) $\frac{5 \pi}{6}$
