



## MATHS

# **BOOKS - JEE MAINS PREVIOUS YEAR**

# **VECTOR ALGEBRA**



1. Let 
$$ar{a}=\hat{i}+\hat{j}+\hat{k},b=\hat{i}-\hat{j}+2\hat{k}$$
 and  $ar{c}=x\hat{i}+(x-2)\hat{j}-\hat{k}$  . If the vector c lies in

the plane of a and b , then x equals (1) O(2) 1

(3) - 4(4) - 2

### Watch Video Solution



#### Watch Video Solution

**3.** The vector  $\overrightarrow{a} = lpha \hat{i} + 2\hat{j} + eta \hat{k}$  lies in the plane of the vectors  $\stackrel{
ightarrow}{b}=\hat{\mathrm{i}}+\hat{j}$  and  $\overrightarrow{c} = \hat{j} + \hat{k}$  and bisects the angle between  $\overrightarrow{b}$ and  $\overrightarrow{c}$  . Then which one of the following gives possible values of lpha and eta ? (1)  $lpha=2,\,eta=2$ (2)  $\alpha=1, \beta=2$  (3)  $\alpha=2, \beta=1$  (4)  $\alpha = 1, \beta = 1$ A. lpha=2, eta=2B.  $\alpha = 1, \beta = 2$ 

 $\mathsf{C}.\,\alpha=2,\beta=1$ 

D. 
$$lpha=1, eta=1$$

#### Answer: D

Watch Video Solution

**4.** Let  $\widehat{a}$  and  $\widehat{b}$  be two unit vectors. If the vectors  $\overrightarrow{c} = \widehat{a} + 2\widehat{b}$  and  $\overrightarrow{d} = 5\widehat{a} - 4\widehat{b}$  are perpendicular to each other, then the angle between  $\widehat{a}$  and  $\widehat{b}$  is

A. 
$$\frac{\pi}{6}$$

B. 
$$\frac{\pi}{2}$$
  
C.  $\frac{\pi}{3}$   
D.  $\frac{\pi}{4}$ 

#### Answer: C

Watch Video Solution

5. If the vectors  $\overline{AB} = 3\hat{i} + 4\hat{k}$  and  $\overline{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$  are the sides of a triangle ABC, then the length of the median through A is

A.  $\sqrt{72}$ 

#### B. $\sqrt{33}$

C.  $\sqrt{45}$ 

#### D. $\sqrt{18}$

#### Answer: B

# $\mathbf{f}$ $\begin{bmatrix} \overrightarrow{a} \times \overrightarrow{b} & \overrightarrow{b} \times \overrightarrow{c} & \overrightarrow{c} \times \overrightarrow{a} \end{bmatrix} = \lambda \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^{2} ,$

then l is equal to (1) 2 (2) 3 (3) 0 (4) 1

#### Watch Video Solution

7. Let  $\overrightarrow{a}$ ,  $\overrightarrow{b}$  and  $\overrightarrow{c}$  be three non-zero vectors such that no two of them are collinear and  $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c} = \frac{1}{3} |\overrightarrow{c}| |\overrightarrow{b}| \overrightarrow{a}$ . If  $\theta$  is the angle between vectors  $\overrightarrow{b}$  and  $\overrightarrow{c}$  then a value of  $\sin \theta$  is :

#### Watch Video Solution



