©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

COORDINATE GEOMETRY

Others

1. The three vertices of a parallelogram taken in order are $-1,0),(3,1) \operatorname{and}(2,2)$ respectively. Find the coordinates of the fourth vertex.

- Watch Video Solution

2. Determine the ratio in which the line $3 x+y-9=0$ divides the segment joining the points (1,3) and (2,7) : (A) 1:2 (B) 2:3 (C) 3:4 (D) 4:5
3. The coordinates of one end point of a diameter of a circle are $(4,-1)$ and the coordinates of the centre of the circle are $(1,-3)$. Find the coordinates of the other end of the diameter.

- Watch Video Solution

4. If $A(5,-1), B(-3,-2) \operatorname{and}(-1,8)$ are the vertices of triangle $A B C$, find the length of median through A and the coordinates of the centroid.

- Watch Video Solution

5. Of $A(-2,-1), B(a, 0), C(4, b)$ and $D(1,2)$ are the vertices of a parallelogram, find the values of a and b.
6. if the coordinates of the mid points of the Sides of a triangle are $(1,2),(0,-1)$ and $(2,-1)$.Find the coordinates of its vertices :

- Watch Video Solution

7. $A(3,2) \operatorname{and} B(-2,1)$ are two vertices of a triangle ABC whose centroid G has the coordinates $\left(\frac{5}{3},-\frac{1}{3}\right)$. Find the coordinates of the third vertex C of the triangle.

- Watch Video Solution

8. Prove that the area of triangle whose vertices are $(t, t-2),(t+2, t+2) a n d t+3, t)$ is independent of t.

- Watch Video Solution

9. For what value of k are the points $(k, 2-2 k)(-k+1,2 k) \operatorname{and}(-4-k, 6-2 k)$ are collinear?

- Watch Video Solution

10. If the points $P, Q(x, 7), R, S(6, y)$ in this order divide the line segment joining $A(2, p)$ and $B(7,10)$ in 5 equal parts, find x, yandp.

- Watch Video Solution

11. If $A(2,2), B(-4,-4) \operatorname{and} C(5,-8)$ are the vertices of a triangle, then the lengthof the median through vertex C is.

- Watch Video Solution

12. The midpoint P of the line segment joining the points $A(-10,4)$ and $B(-2,0)$ lies on the line segment joining the points $C(-9,-4)$ and $D(-4, y)$.

Find the ratio in which P divides CD. Also find the value of y.

- Watch Video Solution

13. If $R(x, y)$ is a point on the line segment joining the points $P(a, b) a n d Q(b, a)$, then prove that $x+y=a+b$

- Watch Video Solution

14. If the points $A(-1,-4), B(b, c) \operatorname{and} C(5,-1)$ are collinear and $2 b+c=4$, find the values of b and c

- Watch Video Solution

15. The perimeter of a triangle with vertices $(0,4) \operatorname{and}(0,0) \operatorname{and}(3,0)$ is $7+\sqrt{5}$ (b) 5 (c) 10 (d) 12
16. A point P divides the line segment joining the points $A(3,-5) \operatorname{and} B(-4,8)$ such that $\frac{A P}{P B}=\frac{k}{1}$. If P lies on the line $x+y=0$, then find the value of k.

- Watch Video Solution

17. If G be the centroid of a triangle $A B C$, prove that, $A B^{2}+B C^{2}+C A^{2}=3\left(G A^{2}+G B^{2}+G C^{2}\right)$

- Watch Video Solution

18. If $A(-3,5), B(-2,-7), C(1,-8) \operatorname{and} D(6,3)$ are the vertices of a quadrilateral $A B C D$ find its area.

- Watch Video Solution

19. If the area of $A B C$ formed by $A(x, y), B(1,2)$ and $C(2,1)$ is 6 squae units, then prove that $x+y=15$

- Watch Video Solution

20. Show that the points $(a, a),(-a,-a)$ and $(-\sqrt{3} a, \sqrt{3} a)$ are the vertices of an equilateral triangle. Also, find its area.

- Watch Video Solution

21. The x-coordinate of a point P is twice its y-coordinate. If P is equidistant from $Q(2,-5) \operatorname{and} R(-3,6)$, then find the coordinates of P.

- Watch Video Solution

22. If $A(4,-6), B(3,-2) \operatorname{and} C(5,2)$ are the vertices of $A B C$, then verify the fact that a median of a triangle ABC divides it into two triangles of equal areas.

- Watch Video Solution

23. Three vertices of a parallelogram $A B C D$ are
$A(3,-4), B(-1,-3) \operatorname{and} C(-6,2)$. Find the coordinates of vertiex D and find the area of parallelogram $A B C D$.

- Watch Video Solution

24. The base $P Q$ of two equilateral triangles $P Q R$ and $P Q R$ ' with side 2 a lies along y-axis such that the mid-point of $P Q$ is at the origin. Find the coordinates of the vertices R and R ' of the triangles.

- Watch Video Solution

25. Let $A B C D$ be a square of side 2 a. Find the coordinates of the vertices of this square when (i) A coincides with the origin and $A B$ and $A D$ are along OX and OY respectively. (ii) The centre of the square is at the origin and coordinate axes are parallel to the sides $A B$ and $A D$ respectively

D Watch Video Solution

26. Find the coordinates of the vertices of an equilateral triangle of side

2a as shown in Figure.

(Watch Video Solution

27. The area of the triangle formed by $(a, b+c),(b, c+a) \operatorname{and}(c, a+b)$ is (a) $a+b+c$ (b) $a b c$ (c) $(a+b+c)^{2}$ (d) 0

(Watch Video Solution

28. If the points $A(4,3) \operatorname{and} B(x, 5)$ are on the circle with centre $O(2,3)$, find the value of x.

- Watch Video Solution

29. Find the equation of the perpendicular bisector of $A B$, where A and B are the points $(3,6)$ and $(-3,4)$ respectively. Also, find its points of intersection with (i) x-axis (ii) y-axis.

- Watch Video Solution

30. If the point (x, y) is equidistant from the points $(a+b, b-a)$ and $(a-b, a+b)$, prove that $b x=a y$

- Watch Video Solution

31. Find the distance between the points: $P(-6,7)$ and $Q(-1,-5)$ $R(a+b, a-b)$ and $S(a-b-b) A\left(a t 12,2 a t_{1}\right)$ and $B\left(a t 22,2 a t_{2}\right)$

Watch Video Solution

32. Find the angle subtended at the origin by the line segment whose end points are $(0,100)$ and $(10,0)$

- Watch Video Solution

33. Prove that the points $(2,3),(-4,-6)$ and $\left(1, \frac{3}{2}\right)$ do not form a triangle.

- Watch Video Solution

34. Show that the points $(-3,2),(-5,-5),(2,-3)$ and $(4,4)$ are the vertices of a rhombus. Find the area of this rhombus.
35. Q. 7 The two opposite vertices of a square are (l.-6)and (5,4). Find the coordinates of the other two vertices.

- Watch Video Solution

36. In an A.P.the sum of m terms of an AP is n and sum of n terms of AP is m,then prove that sum of $(m+n)$ terms of AP is- $(m+n)$

- Watch Video Solution

37. In the seating arrangement of desks in a classroom three studens Rohini, Sandhya and Bina are seated at $A(3,1), B(6,4) \operatorname{and} C(8,6)$. Do you think they are seated in al line?

- Watch Video Solution

38. Find the coordinates of points which trisect the line segment joining $(1,-2) \operatorname{and}(-3,4)$.

- Watch Video Solution

39. If the point $P(2,2)$ is equidistant from the points $A(-2, k) \operatorname{and} B(-2 k,-3)$, find k. Also, find the length of AP.

- Watch Video Solution

40. In what ratio does the point $C\left(\frac{3}{5}, \frac{11}{5}\right)$ divide the line segment joining the points $A(3,5)$ and $B(-3,-2)$?

- Watch Video Solution

41. Find the ratio in which [the line segment joining $A(1, \backslash 5) \backslash$ and $\backslash B(4, \backslash 5)$ is divided by the xaxis. Also find the coordinates of the point of division.

- Watch Video Solution

42. If $a \neq b \neq c$, prove that the points $\left(a, a^{2}\right),\left(b, b^{2}\right),\left(c, c^{2}\right)$ can never be collinear.

- Watch Video Solution

43. A point A divides the join of $P(-5,1)$ and $Q(3,5)$ in the ratio $k: 1$. Then the integral value of k for which the area of $A B C$, where B is $(1,5)$ and C is $(7,-2)$, is equal to 2 units in magnitude is \qquad

- Watch Video Solution

44. Prove that the mid-point of the hypotenuse of right angled triangle is equidistant from its vertices.

- Watch Video Solution

45. Show that the points $(1,-1),(5,2)$ and $(9,5)$ are collinear.

- Watch Video Solution

46. Prove that the diagonals of a rectangle bisect each other and are equal.

- Watch Video Solution

47. Using analytical geometry, prove that the diagonals of a rhombus are perpendicular to each other.

- Watch Video Solution

48. Find the area of the triangle whose vertices are
(i) $(2,3), \backslash(-1,0), \backslash$
$(2, \backslash-4)$
$(i i)(-5,-1), \backslash$
$(3,-5), \backslash$
49. If the vertices of a triangle have rational coordinates, then prove that the triangle cannot be equilateral.

Watch Video Solution

50. Find the area of the triangle ABC with $A(1,-4)$ and mid-points of sides through A being $(2,-1)$ and $(0,-1)$.

- Watch Video Solution

51. If $P(x, y)$ is any point on the line joining the point $A(a, 0) \operatorname{and} B(0, b)$, then show that $\frac{x}{a}+\frac{y}{b}=1$.

- Watch Video Solution

52. If the line segment joining the points $(3,-4)$, and $(1,2)$ is trisected at points $\quad P(a,-2) \operatorname{and} Q\left(\frac{5}{3}, b\right) . \quad$ Then, $\quad a=\frac{8}{3}, b=\frac{2}{3}$
$a=\frac{7}{3}, b=0 a=\frac{1}{3}, b=1$ (d) $a=\frac{2}{3}, b=\frac{1}{3}$

- Watch Video Solution

53. If the point $(x, 4)$ lies on a circle whose centre is at the origin and radius is 5 , then $x= \pm 5$ (b) ± 3 (c) 0 (d) 14

- Watch Video Solution

54. If three points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ lie on the same line, prove that $\frac{y_{1}-y_{3}}{x_{2} x_{3}}+\frac{y_{3}-y_{1}}{x_{3} x_{1}}+\frac{y_{1}-y_{2}}{x_{1} x_{2}}=0$

- Watch Video Solution

55. If G be the centroid of a triangle $A B C$ and P be any other point in the plane prove that $P A^{2}+P B^{2}+P C^{2}=G A^{2}+G B^{2}+G C^{2}+3 G P^{2}$
56.

$(a \cos \theta+b \sin \theta, 0)$ and $(0, a \sin \theta-b \cos \theta)$ is $a^{2}+b^{2}$
(b) $a+b a^{2}-b^{2}$
(d) $\sqrt{a^{2}+b^{2}}$

- Watch Video Solution

57. Two vertices of a triangle are $(3,-5) \operatorname{and}(-7,4)$. If its centroid is $(2,-1)$, find the third vertiex.

- Watch Video Solution

58. If $A(5,2), B(2,-2)$ and $C(-2, t)$ are the vertices of right angles triangle with $\angle B=90^{\circ}$, then find the value of t.

- Watch Video Solution

59. The length of a line segment is of 10 units and the coordinates of one end-point are $(2,-3)$. If the abscissa of the other end is 10 , find the ordinate of the other end.

- Watch Video Solution

60. Find the coordinates of the circumcentre of the triangle whose vertices are $(6,6),(8,-2)$ and $(2,2)$ Also, find its circum-radius.

- Watch Video Solution

61. Let the opposite angular points of a square be $(3,4) \operatorname{and}(1,-1)$. Find the coordinates of the remaining angular points.

- Watch Video Solution

62. Show that $A(6,4), B(5,-2)$ and $C(7,-2)$ are the vertices of an isosceles triangle. Also, find the length of the median through A.

Watch Video Solution

63. Points $A(-1, y)$ and $B(5,7)$ lie on a circle with centre $O(2,-3 y)$.

Find the values of y. Hence, find the radius of the circle.

- Watch Video Solution

64. Show that the points $(1,-1),(5,2)$ and $(9,5)$ are collinear.

- Watch Video Solution

65. Show that four points $(0,-1),(6,7),(-2,3) \operatorname{and}(8,3)$ are the vertices of a rectangle. Also, find its area.
66. If P and Q are two points whose coordinates are $\left(a t^{2}, 2 a t\right) a n d\left(\frac{a}{t^{2}}, \frac{2 a}{t}\right)$ respectively and S is the point (a, O). Show that $\frac{1}{S P}+\frac{1}{s Q}$ is independent of t .

- Watch Video Solution

67. If the two vertices of an equilateral triangle be $(0,0),(3, \sqrt{3})$, find the third vertex.

- Watch Video Solution

68. Find the coordinates of the points which divides the line segment joining the points $(6,3)$ and $(-4,5)$ in the ratio $3: 2$ internally.

- Watch Video Solution

69. If a vertex of a triangle be $(1,1)$ and the middle points of the sides through it be $(-2,3)$ and $(5,2)$, find the other vertices.

- Watch Video Solution

70. $A(4,2), B(6,5)$ and $C(1,4)$ are the vertices of $A B C$. Find the coordinates of the points Q on median $B E$ such that $B Q: Q E=2: 1$
A. $\mathrm{Q}=\left(\frac{11}{3}, \frac{11}{3}\right)$
B. $Q=\left(\frac{10}{3}, \frac{11}{3}\right)$
C. $Q=\left(\frac{11}{3}, \frac{10}{3}\right)$
D. $\mathrm{Q}=\left(\frac{10}{3}, \frac{10}{3}\right)$

Answer: A

- Watch Video Solution

