

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

POLYNOMIAL

1. If $lpha \,$ and $\,eta \,$ are the zeroes of the quadratic polynomial $f(x)=x^2+x-2,\,$ find the value

2. Find a quadratic polynomial whose zeros are reciprocals of the zero of the polynomial $f(x) = ax^2 + bx + c, a
eq 0, c
eq 0.$

Watch Video Solution

3. If lpha and eta are the zeros of the quadratic polynomial $f(x)=x^2-x-2,$ find a

 $2\alpha + 1$ and $2\beta + 1$.

Watch Video Solution

4. If α and β are the zeros of the polynomial $f(x) = 2x^2 + 5x + k$ satisfying the relation $lpha^2+eta^2+lphaeta=rac{21}{4}$, then find the value of kfor this to be possible.

5. If lpha and eta are the zeros of the quadratic polynomial $f(x)=kx^2+4x+4$ such that $lpha^2+eta^2=24$, find the value of k.

6. If $lpha \,\, {
m and} \,\, eta \,\,$ are the zeros of the polynomial $f(x) = x^2 - 5x + k \,\,$ such that $\,\, lpha - eta = 1,$

find the value of k.

7. If lpha and eta are the zeros of the quadratic polynomial $f(x)=ax^2+bx+c,$ then evaluate: $lpha^4eta^4$

Watch Video Solution

8. If α and β are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$, then evaluate: (i) $\alpha^2 + \beta^2$ alpha/beta+beta/alpha $\alpha^3 + \beta^3 \qquad \frac{1}{\alpha^3} + \frac{1}{\beta^3}$ (alpha^2)/beta+

(beta^2)/alpha`

9. If lpha and eta are the zeros of the quadratic polynomial $f(x)=x^2-px+q,$ then find the values of (i) $lpha^2+eta^2$ (ii) $rac{1}{lpha}+rac{1}{eta}$

Watch Video Solution

10. If f(x) is a polynomial such that f(a)f(b) < 0, then what is the number of zeros lying between a and b?

11. For what value of k, is 3 a zero fo the polynomial $2x^2 + x + k$?

Watch Video Solution

13. If $ax^2 + bx + c = 0, a, b, c \in R$ has no real zeros, and if c < 0 , then which of the following is true? $a < 0 \, a + b + c > 0 \, a > 0$

14. What must be added to
$$f(x) = 4x^4 + 2x^3 - 2x^2 + x - 1$$
 so that the resulting polynomial is divisible by $g(x) = x^2 + 2x - 3.$

15. Find the values of a and b so that $x^4 + x^3 + 8x^2 + ax + b$ is divisible by $x^2 - 1$.

Watch Video Solution

16. Find all zeros of the polynomial $2x^4 + 7x^3 - 19x^2 - 14x + 30$, if two of its zeros are $\sqrt{2}$ and $-\sqrt{2}$.

17. If the polynomial $6x^4 + 8x^3 + 17x^2 + 21x + 7$ is divided by another polynomial $3x^2 + 4x + 1$, the remainder comes out to be ax + b, find a and b.

Watch Video Solution

18. If α, β, γ are the zeros of the polynomial

$$f(x)=x^3-px^2+qx-r,$$
 then $rac{1}{lphaeta}+rac{1}{eta\gamma}+rac{1}{\gammalpha}=$ (a) $rac{r}{p}$ (b) $rac{p}{r}$ (c) $-rac{p}{r}$ (d) $-rac{r}{p}$

Watch Video Solution

Watch Video Solution

19. If
$$\alpha$$
, β are the zeros of the polynomial $f(x) = ax^2 + bx + c$, then $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{b^2 - 2ac}{a^2}$ (b) $\frac{b^2 - 2ac}{c^2}$ (c) $\frac{b^2 + 2ac}{a^2}$ (d) $\frac{b^2 + 2ac}{c^2}$

20. If lpha,eta are the zeros of the polynomial $f(x)=ax^2+bx+c,$ then $rac{1}{lpha^2}+rac{1}{eta^2}=$ (a)

22. Draw the graph of the polynomial `f(x)=2x-<5 Also, find the coordinates of the point where it crosses x-axis

23. Draw the graph of the polynomial `f(x)=x^2-

2

24. Draw the graph of the quadratic polynomial f(x) = 3 - 2x - x = 2

Watch Video Solution

25. If α and β are the zeros of the polynomial $f(x)=x^2+px+q$, form a polynomial whose zeros are $(lpha+eta)^2$ and $(lpha-eta)^2$.

26. Draw the graph of the polynomial f(x) = -42 + 4x - 1. Also find the vertex

of this parabola.

27. If the sum of the zeros of the quadratic polynomial $f(t) = kt^2 + 2t + 3k$ is equal to

their product, find the value of k.

28. Find the zeros of the quadratic polynomial $x^2+7x+12$, and verify the relation between the zeros and its coefficients.

Watch Video Solution

29. Find the zeros of polynomial $f(x) = 4\sqrt{3}x^2 + 5x - 2\sqrt{3};$ and verify

relation between zeros and its coefficient.

30. If α and β are the zeros of the quadratic polynomial $f(x) = x^2 - px + q$, prove that $rac{lpha^2}{eta^2} + rac{eta^2}{lpha^2} = rac{p^4}{a^2} - rac{4p^2}{a} + 2.$ Watch Video Solution

31. Obtain all the zeros of the polynomial $f(x)=3x^4+6x^3-2x^2-10x-5,$ if two of its zeros are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}.$

32. Find the condition that the zeroes of the polynomial $f(x) = x^3 - px^2 + qx - r$ may be

in arithmetic progression.

that the product of its two zeros is 12.

34. If lpha andeta are the zeros of the quadratic polynomial $f(x)=x^2-2x+3,$ find a polynomial whose roots are lpha+2,eta+2 .

Watch Video Solution

35. If lpha and eta are the zeros of the quadratic polynomial $f(x)=2x^2-5x+7$, find a polynomial whose zeros are 2lpha+3eta and 3lpha+2eta .

36. If α and β are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$, then evaluate: (i) $\frac{\beta}{a\alpha + b} + \frac{\alpha}{a\beta + b}$ (ii) $a\left(\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}\right) + b\left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right)$