© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

QUADRATIC EQUATIONS

Others

1. If the roots of the equation $a x^{2}+2 b x+c=0$ and
$-2 \sqrt{a c x}+b=0$ are simultaneously real, then prove that $b^{2}=a c$

D Watch Video Solution

2. If p, q are real $p \neq q$, then show that the roots of the equation $(p-q) x^{2}+5(p+q) x-2(p-q)=0$ are real and unequal.

- Watch Video Solution

3. If -5 is a root of the quadratic equation $2 x^{2}+p x-15=0$ and the quadratic equation $p\left(x^{2}+x\right)+k=0$ has equal roots, find the value of k.

D Watch Video Solution

4. For
what
value
of
$k,(4-k) x^{2}+(2 k+4) x+(8 k+1)=0$ is a perfect

(D) Watch Video Solution

$$
\begin{aligned}
& \text { 5. } \begin{array}{l}
\text { Prove that } \\
x^{2}\left(a^{2}+b^{2}\right)+2 x(a c+b d)+\left(c^{2}+d^{2}\right)=0 \text { has no real }
\end{array}
\end{aligned}
$$ root, if $a d \neq b c$.

- Watch Video Solution

6. Find the value of k for which the quadratic equation $(k+4) x^{2}+(k+1) x+1=0$ has equal roots
7. If the roots of the equation
$(b-c) x^{2}+(c-a) x+(a-b)=0$ are equal, then
prove that $2 b=a+c$.

D Watch Video Solution

8. If the roots of the equation
$\left(a^{2}+b^{2}\right) x^{2}-2(a c+b d) x+\left(c^{2}+d^{2}\right)=0$ are equal, prove that $\frac{a}{b}=\frac{c}{. .}$

D Watch Video Solution

9. Find the least positive value of k for which the equation $x^{2}+k x+4=0$ has real roots.
10. Find the values of k for which the given quadratic equation has real and distinct roots:
$k x^{2}+2 x+1=0$
(ii) $\quad k x^{2}+6 x+1=0$
$x^{2}-k x+9=0$

(D) Watch Video Solution

11. If 2 is a root of the quadratic equation $3 x^{2}+p x-8=0 \quad$ and the quadratic equation $4 x^{2}-2 p x+k=0$ has equal roots, find the value of k.
12.

$2\left(a^{2}+b^{2}\right) x^{2}+2(a+b) x+1=0$ has no real roots, when $a \neq b$.

- Watch Video Solution

13. If the roots of the equation $\left(c^{2}-a b\right) x^{2}-2\left(a^{2}-b c\right) x+b^{2}-a c=0 \quad$ are equal, prove that either $a=0$ or $a^{3}+b^{3}+c^{3}=3 a b$.

- Watch Video Solution

14. If a, b, c, are real number such that $a c \neq 0$, then show that at least one of the equations
$a x^{2}+b x+c=0$ and $-a x^{2}+b x+c=0$ has real roots.

- Watch Video Solution

15. Show that the roots of the equation: $(x-a)(x-b)+(x-b)$
$(x-c)+(x-c)(x-a)=0$ are always real and these cannot be equal unless $a=b=c$

- Watch Video Solution

16. find the values of k so, that the equation $3 x^{2}+k x+2=0$ has equal roots. also find the roots in each case.
17. If the equation $\left(1+m^{2}\right) x^{2}+2 m c x+\left(c^{2}-a^{2}\right)=0$ has equal roots, prove that $c^{2}=a^{2}\left(1+m^{2}\right)$.

D Watch Video Solution

18. If -5 is a root of the quadratic equation
$2 x^{2}+p x-15=0 \quad$ and the quadratic equation $p\left(x^{2}+x\right)+k=0$ has equal roots, find the value of k.
19. Find the values of p for which the equadratic equation

$$
(2 p+1) x^{2}-(7 p+2) x+(7 p-3)=0 \text { has equal roots }
$$

- Watch Video Solution

20. If $a x^{2}+b x+c=0$ has equal roots, then $c=-\frac{b}{2 a}$
(b) $\frac{b}{2 a}$ (c) $\frac{-b^{2}}{4 a}$ (d) $\frac{b^{2}}{4 a}$

- Watch Video Solution

21. The positive value of k for which the equation $x^{2}+k x+64=0$ and $x^{2}-8 x+k=0$ will both have real roots, is 4 (b) 8 (c) 12 (d) 16
22. The value of $\sqrt{6+\sqrt{6+\sqrt{6+}}} \ldots i s$
(a) 4
(b) 3
(c) -2
(d) 3.5

- Watch Video Solution

23.

If
the
equation
$\left(a^{2}+b^{2}\right) x^{2}-2(a c+b d) x+c^{2}+d^{2}=0 \quad$ has equal
roots, then (a) $a b=c d \quad$ (b) $a d=b c \quad$ (c) $a d=\sqrt{b c}$
$a b=\sqrt{c d}$
24. A pole has to be erected at a point on the boundary of a circular park of diameter 13 metres in such a way that the difference of its distances from two diametrically opposite fixed gates A and B on the boundary is 7 metres. Is it the possible to do so? If yes, at what distances from the two gates should the pole be erected?

- Watch Video Solution

25. If $1+\sqrt{2}$ is a root of a quadratic equation with rational coefficients, write its other root.
26. Write the sum of real roots of the equation $x^{2}+|x|-6=0$

- Watch Video Solution

27. If the equation $x^{2}-a x+1=0$ has two distinct roots, then $|a|=2$ (b) $|a|<2$ (c) $|a|>2$ None of these

- Watch Video Solution

28. If one root of the equation $2 x^{2}+b x+c=0$ is three
times the other, then $b^{2}: a c=(\mathrm{a}) 3: 1$ (b) 3:16 (c) 16:3 (d) 16:1
29. If one root of the equation $4 x^{2}-2 x+(\lambda-4)=0$ be the reciprocal of the other, then $\lambda=8$ (b) -8 (c) 4 (d) -4

- Watch Video Solution

30. One fourth of a herd of camels was seen in the forest.

Twice the square root of the herd had gone to mountains
and the remaining 15 camels were seen on the bank of a river. Find the total number of camels.
31. The difference of the squares of two numbers is 45 .

The square of the smaller number is 4 times the larger number. Determine the numbers.

D Watch Video Solution

32. If the sum of first n even natural numbers is 420 , find the value of n.

D Watch Video Solution

33. If 1 is the root of equation $3 x^{2}+a x-2=0$ and the quadratic equation $a\left(x^{2}+6 x\right)-b=0$ has equal roots.

Find the value of b.

- Watch Video Solution

34. The sum of the squares of three consecutive natural numbers is 149 . Find the numbers.

- Watch Video Solution

35. The sum of two numbers is 9 . The sum of their reciprocals is $1 / 2$. Find the numbers.

(D) Watch Video Solution

36. A two digit number is such that the product of its digits is 18 . When 63 is subtracted from the number, the
digits interchange their places. Find the number.

D Watch Video Solution

37. The denominator of a fraction is one more than twice the numerator. If the sum of the fraction and its reciprocal is $2 \frac{16}{21}$, find the fraction.

D Watch Video Solution

38. A two digit number is four times the sum and three times the product of its digits.
39. To fill swimming pool two pipes are to be used. If the pipe of larger diameter is used for 4 hours and the pipe of smaller diameter for 9 hours, only half the pool can be filled. Find, how long it would take for each pipe to fill the pool separately, if the pipe of smaller diameter takes 10 hours more than the pipe of larger diameter to fill the pool

- Watch Video Solution

40. Two water taps together can fill a tank in $9 \frac{3}{8}$ hours.

The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.
41. A shop keeper buys a number of books for Rs.80. If he had bought 4 more books for the same amount, each book would have cost his Rs. 1 less .How many books did he buy?

- Watch Video Solution

42. An electric cable costs Rs. 200. If the cable was $2 m$ longer and each meter of cloth cost Rs 2 less, the cost of the cable would remain unchanged. Represent the above situation in the form of quadratic equation.
43. A factory kept increasing its output by the same percentage every year. Find the percentage if it is known that the output is doubled in the last two years.

- Watch Video Solution

44. If the price of a book is reduced by Rs. 5 , a person can buy 5 more books for Rs. 300. Find the original list price of the book.

D Watch Video Solution

45. One fourth of a herd of camels was seen in the forest.

Twice the square root of the herd had gone to mountains
and the remaining 15 camels were seen on the bank of a river. Find the total number of camels.

- Watch Video Solution

46. The angry Arjun carried some arrows for fighting with

Bheeshm. With half the arrows, he cut down the arrows
thrown by Bheeshm on him and with six other arrows he
killed the rath driver of Bheeshm. With one arrow each he
knocked down respectively the rath, flag and the bow of

Bheeshm. Finally, with one more than four times the square root of arrows he laid Bheeshm unconscious on an arrow bed. Find the total number of arrows Arjun had.
47. Rs. 9000 were divided equally among a certain number of persons. Had there been 20 more persons, each would have got Rs. 160 less. Find the original number of persons.

- Watch Video Solution

48. A peacock is sitting on the top of a pillar, which is 9 m high. From a point 27 m away from the bottom of the pillar, a snake is coming to its hole at the base of the pillar. Seeing the snake the peacock pounces on it. If their speeds are equal, at what distance from the whole is the snake caught?

- Watch Video Solution

49. The difference of two numbers is 4.1 If the difference of their reciprocals is $4 / 21$, find the numbers

- Watch Video Solution

50. The sum of a number and its positive square root is $6 / 25$.Find the number.

- Watch Video Solution

51. If a integer is added to its square, the sum is 90 . Find the integer with the help of quadratic equation.
52. Two squares have sides $x c m$ and $(x+4)$. The sum of their areas is $656 \mathrm{~cm}^{2}$. Find the sides of the squares.

- Watch Video Solution

53. Two number differ by 4 and their product is 192 . Find the number.

D Watch Video Solution

54. Two numbers differ by 3 and their product is 504 . Find the number.
55. The sum of two numbers is 16 . The sum of their reciprocals is $1 / 3$. Find the numbers.

- Watch Video Solution

56. The sum of the squares of three consecutive natural numbers is 149 . Find the numbers.

- Watch Video Solution

57. The sum of two numbers is 18 . The sum of their reciprocals is $1 / 4$. Find the numbers.
58. The difference of the squares of two positive integers is 180 . The square of the smaller number is 8 times the larger, find the numbers.

D Watch Video Solution

59. The area of a rectangular plot is $528 \mathrm{~m}^{2}$. The length of the plot (in metres) is one metre more then twice its breadth. Find the length and the breadth of the plot.

D Watch Video Solution

60. The area of a right angled triangle is $165 m^{2}$.

Determine its base and altitude if the latter exceeds the

former by 7 m .

- Watch Video Solution

61. The area of a right angled triangle is $600 \mathrm{~cm}^{2}$. If the base of the triangle exceeds the altitude by 10 cm , find the dimensions of the triangle.

(Watch Video Solution

62. The perimeter of a rectangular field is 82 cm and its area is $400 \mathrm{~m}^{2}$. Find the breadth of the rectangle.
63. If twice the area of a smaller square is subtracted from the area of a larger square, the result is $14 \mathrm{~cm}^{2}$. However, if twice the area of the larger square is added to three times the area of the smaller square, the result is $203 \mathrm{~cm}^{2}$
. Determine the sides of the square.

D Watch Video Solution

64. A farmer wishes to grow a $100 m^{2}$ rectangular vegetable garden. Since he has with the only 30 m barbed
wire, the fences three sides of the rectangular garden letting compound wall of his house act as the fourth sidefence. Find the dimensions of his garden.
65. Solve the following quadratic equations by factorization: $x^{2}+6 x+5=0$

D Watch Video Solution

66. Solve the following quadratic equations by factorization method. $x^{2}+2 \sqrt{2} x-6=0$

D Watch Video Solution

67. Sum of the areas of two squares is $468 \mathrm{~m}^{2}$. If the difference of their perimeters is $24 m$, formulate the quadratic equation to find the sides of the two squares.
68. An express train takes 1 hour less than a passenger train to travel 132 km between Mysore and Bangalroe. if the average speed of the express train is $11 \mathrm{~km} / \mathrm{hr}$ more than that of the passenger train, form the quadratic equation to find the average speed of express train.

D Watch Video Solution

69. If $x=\frac{2}{3}$ and $x=-3$ are the roots of the equation $a x^{2}+7 x+b=0$, find the values of $a a n d b$.

D Watch Video Solution

70. If $x=2$ and $x=3$ are roots of the equation $3 x^{2}-2 k x+2 m=0$, find the value of k and m.

- Watch Video Solution

71. A fast train takes one hour less than a slow tran for a journey of 200 km . If the speed of the slow train is 10 $\mathrm{km} / \mathrm{hr}$ less than that of the fast train, find the speed of the two trains.

- Watch Video Solution

72. Swati can row her boat at a speed of $5 \mathrm{~km} / \mathrm{hr}$ in still water. if it takes her 1 hour more to row the boat 5.25 km
upstream than to return downstream, Find the speed of the stream.

D Watch Video Solution

73. A motor boat whose speed is $24 \mathrm{~km} / \mathrm{hr}$ in still water
takes 1 hr more to go 32 km upstream than to return
downstream to the same spot. Find the speed of the
stream.

D Watch Video Solution

74. The sum of the squares of two consecutive multiples of 7 is 637 . Find the multiples.
75. The numerator of a fraction is 3 less than the denominator. If 2 is added to both the numerator and the denominator, then the sum of the new fraction and the original fraction is $\frac{29}{20}$. Find the original fraction.

D Watch Video Solution

76. Three consecutive positive integers are such that the sum of the square of the first and the product of other two is 46 , find the integers.
77. The difference of squares of two numbers is 88 . If the larger number is 5 less than twice the smaller number, then find the two numbers.

- Watch Video Solution

78. The sum of two numbers is 9 . The sum of their reciprocals is $1 / 2$. Find the numbers.

- Watch Video Solution

79. The sum of two numbers is 9 . The sum of their reciprocals is $1 / 2$. Find the numbers.
80. Solve the following quadratic equations by factorization:
$\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}+\frac{1}{(x-3)(x-4)}=\frac{1}{6}$

- Watch Video Solution

81. Solve the following quadratic equations by
factorization: $\frac{x-a}{x-b}+\frac{x-b}{x-a}=\frac{a}{b}+\frac{b}{a}$

D Watch Video Solution

82. Solve for : $x: \frac{x-1}{x-2}+\frac{x-3}{x-4}=3 \frac{1}{3}, x \neq 2,4$
83. Solve for : $a^{2} b^{2} x^{2}+b^{2} x-a^{2} x-1=0$

- Watch Video Solution

84. Solve the following quadratic equations by factorization method: $4 x^{2}-2\left(a^{2}+b^{2}\right) x+a^{2} b^{2}=0$

D Watch Video Solution

85. Solve: $x+\frac{1}{x}=25$
86. Solve for: $\frac{1}{2 a+b+2 x}=\frac{1}{2 a}+\frac{1}{b}+\frac{1}{2 x}$

- Watch Video Solution

87. Solve for $: \frac{1}{x-3}+\frac{2}{x-2}=\frac{8}{x} ; x \neq 0,2,3$

D Watch Video Solution

88. The diagonal of a rectangular field is 60 metres more
than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.

D Watch Video Solution

89. the hypotenuse of a right angle triangle is 1 m less than twice the shortest side. If the third side is 1 m more than the shortest side, find the sides of the triangle.

- Watch Video Solution

90. The product of Ramu's age (in years) five years ago with his age (in years) 9 years later is 15 . Find Ramu's present age.

- Watch Video Solution

91. One year ago, a man was 8 times as old as his son. Now his age is equal to the square of his son's age. Find their present ages.

(D) Watch Video Solution

92. A girl is twice as old as her sister. Four years hence, the product of their ages (in years) will be 160. Find their present ages.

(D) Watch Video Solution

93. Seven years ago Varun's age was five times the square of Swati's age. Three years hence Swati's age will be two fifth of Varun's age. Find their present ages.
94. While boarding an aeroplane, a passenger got hurt.

The pilot showing promptness and concern, made arrangements to hospitalise the injured and so the plane started late 30 minutes to reach the destination, 1500 km away in time, the pilot increased the speed by $100 \mathrm{~km} / \mathrm{hr}$. Find the original speed/hour of the plane.

- Watch Video Solution

95. While boarding an aeroplane, a passenger got hurt.

The pilot showing promptness and concern, made arrangements to hospitalise the injured and so the plane started late 30 minutes to reach the destination, 1500 km
away in time, the pilot increased the speed by $100 \mathrm{~km} / \mathrm{hr}$.

Find the original speed/hour of the plane.

D Watch Video Solution

96. A motor boat whose speed is $18 \mathrm{~km} / \mathrm{h} \mathrm{m}$ still water
takes 1 hour more to go 24 km upstream than to return
downstream to the same spot. Find the speed of the
stream.

- Watch Video Solution

97. While boarding an aeroplane, a passenger got hurt.

The pilot showing promptness and concern, made arrangements to hospitalise the injured and so the plane
started late 30 minutes to reach the destination, 1500 km away in time, the pilot increased the speed by $100 \mathrm{~km} / \mathrm{hr}$.

Find the original speed/hour of the plane.

D Watch Video Solution

98. Solve for: $\frac{4}{x}-3=\frac{5}{2 x+3}, x \neq 0,,-\frac{3}{2}$

- Watch Video Solution

99. Solve for: $\frac{x-4}{x-5}+\frac{x-6}{-x-7}=\frac{10}{3} ; x \neq 5,7$
100. Solve for : $\frac{5+x}{5-x}-\frac{5-x}{5+x}=3 \frac{3}{4} ; x \neq 5,-5$

- Watch Video Solution

101. Solve for : $\frac{3}{x+1}-\frac{1}{2}=\frac{2}{3 x-1}, x \neq \frac{3}{5},-\frac{1}{7}$

- Watch Video Solution

102. Solve for : $\frac{2}{x+1}+\frac{3}{2(x-2)}=\frac{23}{5 x} ; x \neq 0,-1,2$

- Watch Video Solution

103. Find the roots of the following equation
$4 x^{2}+4 b x-\left(a^{2}-b^{2}\right)=0$ by the method of completing the square.

- Watch Video Solution

104. Find the roots of the equation
$a^{2} x^{2}-3 a b x+2 b^{2}=0$ by the method of completing the square.

(D) Watch Video Solution

105. Solve the equation $x^{2}-(\sqrt{3}+1) x+\sqrt{3}=0$ by the method of completing the square.

- Watch Video Solution

106. Find the roots of the quadratic equations (if they exist) by the method of completing the square. $4 x^{2}+4 \sqrt{3} x+3=0$

- Watch Video Solution

107. Find the roots of the quadratic equations (if they exist) by the method of completing the square.
$\sqrt{3} x^{2}+10 x+7 \sqrt{3}=0$
108. If the roots of the equation $x^{2}+2 c x+a b=0$ are real unequal, prove that the equation $x^{2}-2(a+b) x+a^{2}+b^{2}+2 c^{2}=0$ has no real roots.

D Watch Video Solution

109. If p, q, rands are real numbers such that $p r=2(q+s)$, then show that at least one of the equations $x^{2}+p x+q=0$ and $x^{2}+r x+s=0$ has real roots.

- Watch Video Solution

110. Find the values of k for which the equation $x^{2}+5 k x+16=0$ has no real roots.

- Watch Video Solution

111. If $p, q r$ are real and $p \neq q$, then show that the roots of the equation $(p-q) x^{2}+5(p+q) x-2(p-q=0$ are real and unequal.

D Watch Video Solution

112. $I f-4$ is a root of the quadratic equation $x^{2}+p x-4=0 \quad$ and the quadratic equation $x^{2}+p x+k=0$ has equal roots, find the value of k.

(D) Watch Video Solution

113. Find the values of k for which the following equation has equal roots: $(k-12) x^{2}+2(k-12) x+2=0$

- Watch Video Solution

114. Find the value of k for which the given equation has
real and equal roots: $2 x^{2}-10 x+k=0$

$$
9 x^{2}+3 k x+4=0 \quad 12 x^{2}+4 k x+3=0
$$

$$
2 x^{2}+3 x+k=02 x^{2}-k x+1=0 k x^{2}-5 x+k=0
$$

$$
x^{2}+k(4 x+k-1)+2=0
$$

$$
x^{2}-2 x(1+3 k)+7(x+2 k)=0
$$

$$
(k+1) x^{2}-2(k-1) x+1=0
$$

- Watch Video Solution

115. Using quadratic formula, solve the following equation
for $x: a b x^{2}+\left(b^{2}-a c\right) x-b c=0$

- Watch Video Solution

116. Using quadratic formula solve the following quadratic equations:

$$
p^{2} x^{2}+\left(p^{2}-q^{2}\right) x-q^{2}=0, p \neq 0
$$

$$
9 x^{2}-9(a+b) x+\left(2 a^{2}+5 a b+2 b^{2}\right)=0
$$

- Watch Video Solution

117. A dealer sells a toy for Rs 24 and gains as much per cent as the cost price of the toy. Find the cost price of the toy.

- Watch Video Solution

