©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS

(HINGLISH)

TRIANGLES

Others

1. $A B C$ is a right triangle right-angled at
$\angle A B C=60^{\circ}$.

- Watch Video Solution

2. If A be the area of a right triangle and b one of the sides containing the right angle, prove that the length of the altitude on the hypotenuse is $\frac{2 A B}{\sqrt{b^{4}+4 A^{2}}}$

D Watch Video Solution

3. In an equilateral triangle $A B C$ if
$A D \perp B C$, then $A D^{2}=(\mathrm{a}) C D^{2}$ (b) $2 C D^{2}$ (c)
$3 C D^{2}$ (d) $4 C D^{2}$

D Watch Video Solution

4. If a perpendicular is drawn from the vertex containing the right angle of a right triangle to the hypotenuse then prove that the triangle on each side of the perpendicular are similar to each other and to the original
triangle. Also, prove that the square of the perpendicular is equal to the product of the lengths of the two parts of the hypotenuse.

D Watch Video Solution

5. Prove that the line segments joining the mid-points of the sides of a triangle from four triangles, each of which is similar to the original triangle.

D Watch Video Solution

6. If a perpendicular is drawn from the vertex containing the right angle of a right triangle to the hypotenuse then prove that the triangle on each side of the perpendicular are similar to each other and to the original triangle. Also, prove that the square of the perpendicular is equal to the product of the lengths of the two parts of the hypotenuse.

- Watch Video Solution

7. In a right triangle $A B C$ right-angled at B,
if PandQ are points on the sides $A B a n d A C$ respectively, then
$A Q^{2}+C P^{2}=2\left(A C^{2}+P Q^{2}\right)$
$2\left(A Q^{2}+C P^{2}\right)=A C^{2}+P Q^{2}$
$A Q^{2}+C P^{2}=A C^{2}+P Q^{2}$
$A Q+C P=\frac{1}{2}(A C+P Q)$.

D Watch Video Solution
8.
$A B C D, A B D C a n d D C=2 A B \dot{E} F \quad$ drawn
parallel to $A B$ cuts $A D$ in $F a n d B C$ in E such
that $\frac{B E}{E C}=\frac{3}{4}$. Diagonal $D B$ intersects $E F$ at G. Prove that $7 f e=10 A B$.

D View Text Solution

9. The diagonal $B D$ of a parallelogram $A B C D$ intersects the segment $A E$ at the point F,
where E is any point on the side $B C$. Prove that $D F x E F=F B x F A$.

D Watch Video Solution

10. $A B C$ is a triangle in which
$A B=A C$ and D is a point on AC such that
$B C^{2}=A C \times C D$.Prove that $B D=B C$.

D Watch Video Solution

11. Two poles of height a metres and b metres are p metres apart. Prove that the height of the point of intersection of the lines joining the top of each pole to the foot of the opposite pole is given by $\frac{a b}{a+b}$ metres.

D Watch Video Solution

12. In a triangle $A B C$, let $\operatorname{Pand} Q$ be points
on A BandAC respectively such that
$P Q|\mid B C$. Prove that the median $A D$ bisects $P Q$.

D Watch Video Solution

13. $A B C$ is an isosceles triangle with
$A B=A C$ and D is a point on $A C$ such that
$B C^{2}=A C x C D$. Prove that $B D=B C$

D Watch Video Solution
14. If $A B C D$ is quadrilateral and $E a n d F$ are the mid-points of $A C a n d B D$ respectively, prove that $\vec{A} B+\vec{A} D+\vec{C} B+\vec{C} D=4 \vec{E} F$.

- Watch Video Solution

15. Through the mid-point M of the side $C D$ of a parallelogram $A B C D$, the line $B M$ is drawn intersecting $A C$ at LandAD produced at E. Prove that $E L=2 B L$.
16. In a $A B C, D$ and E are points on sides
$A B a n d A C$ respectively such that $B D=C E$.

If $\angle B=\angle C$, show that $D E B C$.

D Watch Video Solution

17. Let $A B C$ be a triangle and $D a n d E$ be two
points on side $A B$ such that $A D=B E$. If
$D P B C$ and $E Q A C$, THEN PROVE THAT $P Q A B$.
18. The side $B C$ of a triangle $A B C$ is bisected at $D ; o$ is any point in $A D, B \operatorname{OandCO}$
produced meet $A C a n d A B$ in EandF respectively and $A D$ is produced to X so that
D is the mid-point of $O X$. Prove that $A O: A X=A F: A B$ and show that $F E B C$.

D Watch Video Solution

19. In Figure, $A B C$ is a triangle in which
$A B=A C$. Point DandE are points onthe sides $A B a n d A C$ respectively such that
$A D=A E$. Show that the points
$B, C, E a n d D$ are concyclic.

- Watch Video Solution

20. In the given figure The bisector of interior
$\angle A$ of $A B C$ meets $B C$ in D, and the
bisector of exterior $\angle A$ meets $B C$ produced in E. Prove that $\frac{B D}{B E}=\frac{C D}{C E}$.

D Watch Video Solution

21. In three line segments $O A, O B a n d O C$,
point L, M, N respectively are so chosen that LMABandMNBC but neither of L, M, N nor of A, B, C are collinear. Show that LNAC.
22. O is any point inside a triangle $A B C$. The bisector of $\angle A O B, \angle B O C$ and $\angle C O A$ meet the sides $A B, B C$ and $C A$ in point
D, EandF respectively. Show that
$A D x B E x C F=D B x E C x F A$

- Watch Video Solution

23. $A B C D$ is a quadrilateral in which $A B=A D$.

The bisector of BAC AND CAD intersect the
sides $B C$ and $C D$ at the points E and F respectively. Prove that EF||BD.
24. In $A B C, D$ is the mid-point of $B C a n d E D$
is the bisector of the $\angle A D B a n d E F$ is drawn parallel to $B C$ cutting $A C$ in F. Prove that $\angle E D F$ is a right angle.

- Watch Video Solution

25. $A D$ is a median of $\triangle A B C$. The bisector of
$\angle A D B$ and $\angle A D C$ meet AB and AC in E and F
respectively. Prove that $E F|\mid B C$

D Watch Video Solution

26. In Figure, $A B C$ is a right triangle right angled at B and points $\operatorname{Dand} E$ trisect $B C$. Prove that $8 A E^{2}=3 A C^{2}+5 A D^{2}$.

D Watch Video Solution

27. In a triangle $A B C$, the angles at $B a n d C$
are acute. If $B E a n d C F$ be drawn
perpendiculars on $A C a n d A B$ respectively, prove that $B C^{2}=A B \cdot B F+A C \cdot C E$.

D Watch Video Solution

28. Prove that in any triangle the sum of squares of any to sides is equal to twice the square of half the third side together with twice the square of themedian
29. $A D$ is an altitude of an equilateral triangle
$A B C$. On $A D$ as base, another equilateral triangle ADE is constructed. Prove that Area (triangle ADE): Area (triangle ABC)=3:4.

- Watch Video Solution

30. A ladder 15 m long reaches a window which
is 9 m above the ground on one side of a street. Keeping its foot at the same point, the ladder is turned to other side of the street to
reach a window 12 m high. Find the width of the street.

D Watch Video Solution

31. In Figure, D, E are points on sides $A B$ and
$A C$ respectively of $A B C$, such that $\operatorname{ar}(B C E)=\operatorname{ar}(B C D)$. Show that $D E B C$.

D Watch Video Solution
32. In the trapezium $A B C D, A C$ and $B D$ intersect at O and also $A B=2 C D$ If the area of $A O B=84 \mathrm{~cm}^{2}$, find the area of $C O D$.

D Watch Video Solution

33. $A B C$ is an isosceles triangle right-angled at
B. Similar triangles $A C D$ and $A B E$ are constructed on side $A C$ and $A B$. Find the ratio between the areas of triangle $A B E$ and triangle ACD.
34. $A B C$ is a right triangle right-angled at B. Let
D and E be any points on $A B$ and $B C$ respectively. Prove that
$A E^{2}+C D^{2}=A C^{2}+D E^{2}$

D Watch Video Solution

35. P and Q are the mid-points of the
$C A$ and $C D$ respectively of a triangle $A B C$, right angled at C. Prove that: 4A Q $2=4$ A C $2+B C 2$

4 B P $2=4$ B C $2+A C 24(A Q 2+B P 2$
) $=5 \mathrm{~A}$ B 2

D View Text Solution

36. A girl of height 90 cm is walking away from
the base of a lamp-post at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. If
the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.

- Watch Video Solution

37. Two triangle ABC and $D B C$ lie on the same side of the base $B C$. From a point P on $B C, P Q A B$ AND $P R B D$ ARE DRAWN. They meet $A C$ in Q and $D C$ in R respectively. Prove that $Q R A D$.

- Watch Video Solution

38. $A B C D$ is a quadrilateral; $P, Q, \operatorname{Rand} S$ are the points of trisection of side
$A B, B C, C D a n d D A$ respectively and are
adjacent to AandC; prove that $P Q R S$ is parallelogram.

D Watch Video Solution

39. $A B C D$ is a parallelogram and $A P Q$ is a straight line meeting $B C$ at PandDC produced at Q. prove that the rectangle obtained by $B P a n d D Q$ is equal to the rectangle contained by $A B a n d B C$.

D Watch Video Solution

40. $A B C D$ is a quadrilateral in which P, Q, R and
S are mid-points of the sides $A B, B C, C D$ and DA. AC is a diagonal. Show that :
$S R \backslash\left|\mid \backslash A C \quad\right.$ and $\quad S R=\frac{1}{2} A C$
$P Q \backslash=\backslash S R$ (iii) PQRS is a parallelogram

- Watch Video Solution

41. Through the mid-point M of the side $C D$ of a parallelogram $A B C D$, the line $B M$ is drawn intersecting $A C$ at Land AD produced at E. Prove that $E L=2 B L$.
42. D is the mid-point of side $B C$ at a triangle ABC.AD is bisected at the point E and $B E$ produced cuts AC at the point X. Prove that $B E: E x=3: 1$.

- Watch Video Solution

43. A chord of a circle of radius 10 cm subtends
a right angle at the centre. The length of the
chord (in cm) is $5 \sqrt{2}$ (b) $10 \sqrt{2}$ (c) $\frac{5}{\sqrt{2}}$ (d)
$10 \sqrt{3}$

- Watch Video Solution

