

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

BRIEF REVIEW OF CARTESIAN SYSTEM OF RECTANGULAR COORDINATES

Solved Examples And Exercises

1. If the two vertices of an equilateral triangle

be $(0, 0), (3, \sqrt{3})$, find the third vertex.

Watch Video Solution

2. Find the coordinates of the circumcentre of the triangle whose vertices are (8, 6), (8 - 2)and (2, -2) Also, find its circum-radius.

3. Find the distance between the points : $(at_1^2, 2at_1)$ and $(at_2^2, 2at_2)$

Watch Video Solution

4. Find the area of the quadrilateral ABCD whose vertices are respectively A(1, 1), B(7, -3), C(12, 2) and D(7, 21)

5. Prove that the points (a, b + c), (b, c + a) and (c, a + b) are collinear.

6. Let the opposite angular points of a square be (3, 4) and (1, -1). Find the coordinates of the remaining angular points.

Watch Video Solution

7. Prove that the area of the triangle whose vertices are

$$(t, t-2), (t+2, t+2) and (t+3, t)$$
 is

independent of t.

> Watch Video Solution

8. If the axes are shifted to the point (1, -2)without rotation, what do the following equations become? $2x^2 + y^2 - 4x + 4y = 0$ $y^2 - 4x + 4y + 8 = 0$

9. Shift the origin to a suitable point so that the equation $y^2 + 4y + 8x - 2 = 0$ will not

contain term of y and the constant term.

11. If the coordinates of the mid-points of the

sides of a triangle are

 $(1,1),\,(2,\ -3)$ and (3,4) · Find its (i) centroid

12. Find the point to which the origin should be shifted so that the equation $y^2 - 6y - 4x + 13 = 0$ is transformed to the form $y^2 + Ax = 0$.

13. AB is a variable line sliding between the coordinate axes in such a way that A lies on the x-axis and B lies on the y-axis. If P is a variable point on AB such that PA = b, Pb = a, and AB = a + b, find the equation of the locus of P.

Watch Video Solution

14. A point moves so that the sum of its distances from (ae, 0)and(-ae, 0) is 2a,

prove that the equation to its locus is $rac{x^2}{a^2}+rac{y^2}{b^2}=1$, where $b^2=a^2ig(1-e^2ig)\cdot$

Watch Video Solution

15. A point moves so that the sum of its distances from (ae, 0)and(-ae, 0) is 2a, prove that the equation to its locus is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $b^2 = a^2(1-e^2)$.

16. Find the equation of the locus of a point which moves such that the ratio of its distances from (2, 0) and (1, 3) is 5:4.

17. Find the equation to the locus of a point equidistant from the points

 $A(1,3) and B(-2,1) \cdot$

18. The sum of the squares of the distances of a moving point from two fixed points (a, 0)and(-a, 0) is equal to a constant quantity $2c^2$. Find the equation to its locus.

Watch Video Solution

19. Find the locus of a point, such that the join

of (-5, 1) and (3, 2) subtends a right angle at the moving point.

20. Find the locus of a point such that the sum

of its distances from the points

(0, 2) and (0, -2) is 6.

21. Find the locus of the mid-point of the portion of the line $x \cos \alpha + y \sin \alpha = p$

which is intercepted between the axes.

22. A(5, 3), B(3, -2) are two fixed points; find the equation to the locus of a point Pwhich moves so that the area of the triangle PAB is 9 units.

24. If the segments joining the points A(a, b)and B(c, d) subtends an angle θ at the origin, prove that : $\cos \theta = \frac{ac + bd}{\sqrt{(a^2 + b^2)(c^2 + d^2)}}$ Watch Video Solution

25. The vertices of a triangle are A(1,1), B(4,5) and C(6,13). Find $\cos A$.

26. If the vertices of a triangle having integral coordinates . Prove that triangle can't be equileteral .

27. If the coordinates of two points A and B are (3, 4) and (5, -2), respectively, find the coordinates of any point P if PA = PB. Area of PAB is 10 sq. units.

Watch Video Solution

29. Find the coordinates of points lying on the line joining P(3, -4) and Q(-2, 5) that is twice as far from P as Q

30. Determine the ratio in which the line 3x + y - 9 = 0 divides the segment joining the points (1,3) and (2,7).

Watch Video Solution

31. Prove that: (4, -1), (6, 0), (7, 2) and

(5,1) are the vertices o a rhombus. Is it a square?

32. if the coordinates of the mid points of the Sides of a triangle are (1, 2), (0, -1) and (2, -1). Find the coordinates of its vertices `:

Watch Video Solution

- $(3,\ -5) and (\ -7,\ 4)$. If its centroid is
- (2, -1), find the third vertiex.

34. If the line segment joining the points $P(x_1, y_1) and Q(x_2, y_2)$ subtends an angle lpha at the origin O, prove that : $OP\dot{O}Q\coslpha=x_1x_2+y_1y_2.$

Watch Video Solution

37. Find the coordinates of the centre of the circle inscribed in a triangle whose angular points are (-36, 7), (20, 7) and (0, -8).

38. The base of an equilateral triangle with side 2a lies along the y-axis such that the mid point of the base is at the origin. Find the vertices of the triangle.

39. Find the distance between $P(x_1, y_1)$ and $Q(x_2, y_2)$ when i. PQ is

parallel to the y-axis ii. PQ is parallel to the x-

axis.

41. Find the equation to the locus of a point which moves so that the sum of its distances

43. A rod of length l slides with its ends on two perpendicular lines. Find the locus of its

44. If O is the origin and Q is a variable points on $x^2=4y$. Find the locus of the mid pint of OQ.

Watch Video Solution

45. Find the locus of a point equidistant from the point (2,4) and the y-axis.

47. Find the locus of a point which is equidistant from (1,3) and x-axis.

48. Find the locus of a point which moves such

that its distance from the origin is three times

its distance from x-axis.

49. Find the locus of a point such that the line segments having end points (2,0) and (-2,0) subtend a right angle at that point.

50. If A(-1, 1) and B(2, 3) are two fixed points, find the locus of a point P so that the area of $\Delta PAB = 8sq$ units.

51. If O is the origin and Q is a variable point on $y^2 = x$. Find the locus of the mid point of OQ.

52. At what point should the origin be shifted if the coordinates of a point (4, 5) become (-3, 9)?

Watch Video Solution

53. What does the equation $(x-a)^2 + (y-b)^2 = r^2$ become when the axes are transferred to parallel axes through the pint (a-c, b)?

55. Find what the following equation become when the origin is shifted to the point (1,1): $x^2 + xy - 3x - y + 2 = 0$

56. Find what the following equation become when the origin is shifted to the point (1,1): xy - x - y + 1 = 0

Watch Video Solution

57. Find what the following equation become when the origin is shifted to the point (1,1): $x^2 - y^2 - 2x + 2y = 0$

58. Find what the following equation become when the origin is shifted to the point (1,1): $xy - y^2 - x + y = 0$

59. Find the point to which the origin should be shifted so that the equation $y^2 - 6y - 4x + 13 = 0$ is transferred to the form $y^2 + Ax = 0$

60. Find what the following equations become when the origin is shifted to the point (1,1): $x^2 + xy - 3y^2 - y + 2 = 0$

Watch Video Solution

61. Find what the following equations become

when the origin is shifted to the point (1,1):

$$xy - x - y + 1 = 0$$

62. Find what the following equations become when the origin is shifted to the point (1,1): $xy - y^2 - x + y = 0$

63. Find what the following equations become when the origin is shifted to the point (1,1):

$$x^2 - y^2 - 2x + 2y = 0$$

64. Find the point to which the origin should be shifted after a translation of axes so that the following equations will have no first degree term: $y^2 + x^2 - 4x - 8y + 3 = 0$

Watch Video Solution

65. Find the point to which the origin should be shifted after a translation of axes so that the following equations will have no first degree term: $x^2 + y^2 - 5x + 2y - 5 = 0$

66. Find the point to which the origin should be shifted after a translation of axes so that the following equations will have no first degree term: $x^2 - 12x + 4 = 0$

67. Verify that the area of the triangle with vertices (4,6), (7,10) and (1,-2) remains invariant

under the translation of axes when the origin

is shifted to the point (-2,1).

68. The vertices of a triangle are O(0, 0), A(a, 0) and B(0, b). Write the

coordinates of its circumcentre.

69. Write the coordinates of the orthocentre of the triangle formed by points (8,0), (4,6) and (0,0)

70. Three vertices of a parallelogram, taken in order, are (-1, -6), (2,-5) and (7,2). Write the

coordinates of its fourth vertex.

72. Write the co ordinates of the circumcentre

of a triangle whose centroid and orthocenter

are at (3,3) and $(\,-3,5)$ respectively

73. Write the coordinates of the incentre of the triangle having its vertices at (0,0), (5,0) and (0,12).

Watch Video Solution

74. If the points (1,-1), (2,-1) and (4,-3) are the mid points of the sides of a triangle then write the coordinates of its centroid.

1. At what point the origin be shifted so that the equation $x^2 + y^2 - 3x + 2 = 0$ does not contain any first degree term and constant term?

2. Verify that the area of the triangle with vertices (2, 3), (5, 7) and (-3 -1) remains invariant under the translation of axes when the origin is shifted to the point (-1, 3).

