

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

ELLIPSE

Solved Examples And Exercises

1. Find the distance between the directrices of

the ellipse
$$rac{x^2}{36}+rac{y^2}{20}=1.$$

3. Find the eccentricity, centre, vertices, foci, minor axis, major axis, directrices and latus-

5. For the following ellipses find ellipses find the lengths of major and minor axes, coordinates of foci, vertices and the eccentricity: $16x^2 + 25y^2 = 400$ $3x^2 + 2y^2 = 6x^2 + 4y^2 - 2x = 0$ Watch Video Solution

6. Show that $x^2 + 4y^2 - 2x + 16y + 13 = 0$ is the equation of an ellipse. Find its eccentricity.

7. Find the equation of the ellipse with focus at (-1, 1) and eccentricity 1/2 and directrix is x-y+3=0.

Watch Video Solution

8. Find the equation of the ellipse whose eccentricity is 1/2, the focus is (1, 1) and the directrix is x - y + 3 = 0.

9. Find the equation of the ellipse whose focus is (1, 0), the directrix is x + y + 1 = 0 and eccentricity is equal to $\frac{1}{\sqrt{2.}}$ Watch Video Solution

10. A straight rod of given length slides between two fixed bars which include an ingle $of90^0$. Show that the locus of a point on the rod which divides it in a given ratio is an

ellipse. If this ratio be 1/2, show that the eccentricity of the ellipse is $\sqrt{2}/3$.

11. A point moves so that the sum of the squares of its distances from two intersecting straight lines is constant. Prove that its locus is an ellipse.

12. Find the equation of the set of all points whose distances from (0,4) are $\frac{2}{3}$ of their distances from the line y = 9.

Watch Video Solution

13. Find the equation of the ellipse whose axes are along the coordinate axes, vertices are $(0, \pm 10)$ and eccentricitye = 4/5.

14. If the latusrectum of an ellipse is equal to

half of minor axis, find its eccentricity.

15. Find the equation of the ellipse whose axes are parallel to the coordinate axes having its centre at the point (2, -3) one focus at (3, -3) and vertex at (4, -3).

17. Find the equation of the ellipse whose centre is at the origin, foci are (1,0)and(-1,0) and eccentricity is 1/2.

18. Find the equation of the set of all points the sum of whose distance from the points (3, 0) and (9, 0) is 12.

19. A rod AB of length 15cm rests in between two coordinate axes in such a way that the end point A lies on x – axis and end point Blies on y-axis . A point is taken on the rod in such a way that AP = 6cm . Show that the

locus of P is an ellipse.

21. A bar of given length moves with its extremities on two fixed straight lines at right angles. Show that any point on the bar describes an ellipse.

Watch Video Solution

22. An arc is in the form of a semi-ellipse. It is 8m wide and 2m high at the centre. Find the height of the arch at a point 1. 5m from one end.

23. Find the equation of the ellipse whose axes are along the coordinate axes, vertices are $(\pm 5, 0)$ and foci at $(\pm 4, 0)$.

Watch Video Solution

24. Find the equation of the ellipse whose axes are along the coordinate axes, foci at $(0, \pm 4)$ and eccentricity 4/5.

25. Find the equation of the ellipse (referred to its axes as the axes of xandy, respectively) whose foci are $(\pm 2, 0)$ and eccentricity is $\frac{1}{2}$

Watch Video Solution

26. A man running a racecourse notes that the sum of the distances from the two flag posts from him is always 10 m and the distance

between the flag posts is 8 m. Find the

equation of the posts traced by the man.

27. Find the equation of the ellipse whose focus is (1,-2) the directrix 3x - 2y + 5 = 0 and eccentricity equal to 1/2.

28. Find the equation of the ellipse in the following case: focus is (0,1) , directrix is x + y = 0 and $e = \frac{1}{2}$.

Watch Video Solution

29. Find the equation of the ellipse in the following case: focus is (-1,1) directirx is x - y + 3 = 0 and $e = \frac{1}{2}$.

30. Find the equation of the ellipse in the following case: focus is (-2,3) directrix is 2x + 3y + 4 = 0 and $e = \frac{4}{5}$.

Watch Video Solution

31. Find the equation of the ellipse in the following case: focus is (1,2), directrix is 3x + 4y - 7 = 0 and $e = \frac{1}{2}$.

32. Find the eccentricity ,coordinates of foci ,length of the latus rectum of the following ellipse: $4x^2 + 9y^2 = 1$

Watch Video Solution

33. Find the eccentricity ,coordinates of foci, length of the latus rectum of the following ellipse: $25x^2 + 16y^2 = 1600$.

34. Find the eccentricity ,coordinates of foci, length of the latus rectum of the following ellipse: $5x^2 + 4y^2 = 1$

35. Find the eccentricity coordinates of foci, length of the latus rectum of the following ellipse: $4x^2 + 3y^2 = 1$

36. Find the eccentricity, coordinates of foci, length of the latus rectum of the following ellipse: $9x^2 + 25y^2 = 225$

Watch Video Solution

37. Find the equation to the ellipse (referred to its axes as the axes of x and y respectively) which passes through the point (-3,1) and has eccentricity $\sqrt{\frac{2}{5}}$

38. Find the equation of the ellipse (referred to its axes as the axes of xandy, respectively) whose foci are $(\pm 2, 0)$ and eccentricity is $\frac{1}{2}$

39. Find the equation of the ellipse in the following case: eccentricity $e = \frac{2}{3}$ and length

of latus rectum = 5.

40. Find the equation of the ellipse in the following case: eccentricity $e = \frac{1}{2}$ and semi major axis = 4.

Watch Video Solution

41. Find the equation of the ellipse in the following case: eccentricity $e = \frac{1}{2}$ and major

axis = 12

42. Find the equation of the ellipse in the following case: the ellipse passes through (1,4) and (-6,1).

43. Find the equation of the ellipse whose axes are along the coordinate axes, vertices are $(\pm 5, 0)$ and foci at $(\pm 4, 0)$.

44. Find the equation of the ellipse in the following case: ends of major axis $(\pm 3, 0)$ ends of minor axis $(0, \pm 2)$

45. Find the equation for the ellipse that satisfies the given conditions: Ends of major axis $\left(0, \pm \sqrt{5}\right)$, ends of minor axis $(\pm 1, 0)$

46. Find the equation for the ellipse that satisfies the given conditions: Length of major axis 26, foci (\pm 5, 0)

Watch Video Solution

47. Find the equation of the ellipse in the following case: Length of minor axis 16 ,foci $(0,\ \pm\ 6)$

50. Find the equation of the ellipse whose minor axis is equal to distance between the

foci and latus rectum is 10.

51. Find the equation of the ellipse whose centre is (-2,3) and whose semi axes are 3 and 2 when major axis is (i.) parallel to x-axis (ii.) parallel to y-axis.

52. If the latus rectum of an ellipse is equal to

the half of minor axis, then find its eccentricity.

Watch Video Solution

53. Find the centre ,the lengths of the axes, eccentricity, foci of the following ellipse:2+2y^2-2x+12 y+10=0`

54. Find the centre, the lengths of the axes, eccentricity, foci of the following ellips+4y^2-4x+24y+31=0

55. Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:

$$4x^2 + y^2 - 8x + 2y + 1 = 0$$

56. Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: $4x^2 + 16y^2 - 24x - 32y - 120 = 0$

57. Find the centre ,the lengths of the axes, eccentricity, foci of the following ellipse: $3x^2 + 4y^2 - 12x - 8y + 3 = 0$

Watch Video Solution

58. Find the centre ,the lengths of the axes, eccentricity, foci of the following ellipse: $x^2 + 4y^2 - 2x + 8y + 1 = 0$

Watch Video Solution

59. Find the equation of an ellipse whose foci are at $(\pm 3, 0)$ and which passes through (4,1).

60. Find the equation of an ellipse whose eccentricity is 2/3, the latus rectum is 5 and the centre is at the origin.

61. Find the equation of an ellipse with its foci on y-axis, eccentricity $\frac{3}{4}$, centre at the origin and passing through (6,4).

62. Find the equation of an ellipse whose axes

lie along coordinate axes and which passes

through (4,3) and (-1,4).

63. Find the equation of an ellipse whose axes lie along the coordinate axes, which passes through the point (-3,1) and has eccentricity equal to $\sqrt{2/5}$

64. Find the equation of an ellipse the distance between the foci is 8 units and the distance between the directrices is 18 units.

65. Find the equation of an ellipse whose vertices are $(0, \pm 10)$ and eccentricity $e = \frac{4}{5}$

66. A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3cm from the end in contact with the x-axis.

Watch Video Solution

67. If the lengths of semi major and semi minor axes of an ellipse are 2 and $\sqrt{3}$ and their corresponding equation are

 $y-5=0 \ and \ x+3=0$ then write the

equation of the ellipse.

69. Write the centre and eccentricity of the ellipse $3x^2 + 4y^2 - 6x + 8y - 5 = 0$.

70. PSQ is a focal chord of the ellipse $4x^2 + 9y^2 = 36$ such that SP=4. If S' the another focus write the value of S'Q.

A.
$$\frac{2}{4}$$

B. $\frac{15}{4}$
C. 7
D. $\frac{26}{5}$

72. The eccentricity of the ellipse, if the distance between the foci is equal to the

lenght of the latus rectum, is

73. If S and S' are two foci of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ and } B$ is and end of the minor axis such that DeltaBSS' is equilateral, then write the eccentricity of the ellipse.

A.
$$\frac{3}{4}$$

 $\mathsf{B.7}$

C.
$$\frac{4}{5}$$

 $\mathsf{D}.\,\frac{1}{2}$

Answer: $\frac{1}{2}$

Watch Video Solution

74. If the minor axis of an ellipse subtends an equilateral triangle with vertex at one end of major axis, then write the eccentricity of the ellipse.

A.
$$\sqrt{2}$$

Answer:
$$\sqrt{\frac{2}{3}}$$

75. If a latus rectum of an ellipse subtends a right angle at the centre of the ellipse, then write the eccentricity of the ellipse.

A.
$$e = \frac{\sqrt{10} - 1}{9}$$

B. $e = \frac{\sqrt{5} - 1}{2}$
C. $e = \frac{\sqrt{9} + 1}{16}$
D. $e = \frac{\sqrt{9} + 1}{2}$
Answer: $e = \frac{\sqrt{5} - 1}{2}$
Watch Video Solution

 $(\,-1,2)$ b. lengths of the axes are $\sqrt{3} \ and \ 1$ c. eccentricity $=\sqrt{rac{2}{3}}$ d. all of these

Watch Video Solution

78. The equation of the circle drawn with the two foci of $rac{x^2}{a^2}+rac{y^2}{b^2}=1$ as the end-points of

80. The eccentricity of the ellipse if the distance between the foci is equal to the

81. The difference between the lengths of the major axis and the latus rectum of an ellipse is a.ae b. 2ae c. ae^2 d. $2ae^2$

82. The eccentricity of the conic $9x^2 + 25y^2 = 225$ is a.2/5 b.4/5 c. 1/3 d. 1/5 e. 3/5

84. Find the equations of the tangents drawn

from the point (2, 3) to the ellipse $9x^2+16y^2=144.$

88. For the ellipse $x^2+4y^2=9$ a. the eccentricity is 1/2 b. the latus rectum is 3/2 c. a focus is $\left(3\sqrt{3},0
ight)$ d. a directrix is $x=-2\sqrt{3}$

Watch Video Solution

89. If the latus rectum of an ellipse is equal to

the half of minor axis, then find its eccentricity.

90. An ellipse has its centre at (1,-1) and semi major axis =8 and it passes through the point (1,3). The equation of the ellipse is

91. Find the sum of the focal distances of any point on the ellipse $9x^2 + 16y^2 = 144$.

Watch Video Solution

92. If (2,4) and (10,10) are the ends of a latus rectum of an ellipse with eccentricity then the length of semi major axis is a.20/3 b. 15/3 c. 40/3 d. none of these

94. If the major axis of an ellipse is three times the minor axis, then its eccentricity is equal to

a.
$$\frac{1}{3}$$
 b. $\frac{1}{\sqrt{3}}$ c. $\frac{1}{\sqrt{2}}$ d. $\frac{2\sqrt{2}}{3}$ e. $\frac{3}{3\sqrt{2}}$

95.	The	eccentricity	of	the	ellipse
$25x^2+16y^2=400$ is					
a. $3/5$					
b. $1/3$					
c. $2/5$					
d. $1/5$					
Watch Video Solution					
96. The eccentricity of the ellipse $5x^2 + 9y^2 = 1$ is a.2/3 b. 3/4 c. 4/5 d. 1/2					
Watch Video Solution					

1. The equation of the ellipse with focus (-1,1) directrix x - y + 3 = 0 and eccentricity is a.

$$7x^2+2xy+7y^2+10x+10y+7=0$$
 b.
 $7x^2+2xy+7y^2+10x-10y+7=0$ c.
 $7x^2+2xy+7y^2+10x-10y+7=0$ d.

None of these

A. a.

$$7x^2 + 2xy + 7y^2 + 10x + 10y + 7 = 0$$

B.b.

 $7x^2 + 2xy + 7y^2 + 10x - 10y + 7 = 0$

С. с.

$$7x^2 + 2xy + 7y^2 + 10x - 10y + 7 = 0$$

D. d. None of these

Answer:

 $7x^2 + 2xy + 7y^2 + 10x - 10y + 7 = 0$

2. The difference of het ellipse, if the minor is

equal to the distance between the foci is a.

$$\frac{\sqrt{3}}{2} \text{ b. } \frac{2}{\sqrt{3}} \text{ c. } \frac{1}{\sqrt{2}} \text{ d. } \frac{\sqrt{2}}{3}$$

$$\text{A. } \frac{\sqrt{3}}{2}$$

$$\text{B. } \frac{2}{\sqrt{3}}$$

$$\text{C. } \frac{1}{\sqrt{2}}$$

Answer: $\frac{1}{\sqrt{2}}$

