©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS
 (HINGLISH)

ELLIPSE

Solved Examples And Exercises

1. Find the distance between the directrices of
the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{20}=1$.
2. If the eccentricity of an ellipse is $\frac{5}{8}$ and the distance between its foci is 10 , then find the latusrectum of the ellipse.

- Watch Video Solution

3. Find the eccentricity, centre, vertices, foci, minor axis, major axis, directrices and latus-
$25 x^{2}+9 y^{2}-150 x-90 y+225=0$.

D Watch Video Solution

4. Find the eccentricity, foci and the length of
the
latusrectum
of the
ellipse
$x^{2}+4 y^{2}+8 y-2 x+1=0$.

D Watch Video Solution
5. For the following ellipses find ellipses find
the lengths of major and minor axes, coordinates of foci, vertices and the eccentricity: $16 x^{2}+25 y^{2}=400$
$3 x^{2}+2 y^{2}=6 x^{2}+4 y^{2}-2 x=0$

D Watch Video Solution

6. Show that $x^{2}+4 y^{2}-2 x+16 y+13=0$
is the equation of an ellipse. Find its eccentricity.
7. Find the equation of the ellipse with focus at ($-1,1$) and eccentricity $1 / 2$ and directrix is $x-y+3=0$.

- Watch Video Solution

8. Find the equation of the ellipse whose eccentricity is $1 / 2$, the focus is $(1,1)$ and the directrix is $x-y+3=0$.
9. Find the equation of the ellipse whose focus
is $(1,0)$, the directrix is $x+y+1=0$ and eccentricity is equal to $\frac{1}{\sqrt{2 .}}$

- Watch Video Solution

10. A straight rod of given length slides between two fixed bars which include an ingle of 90°. Show that the locus of a point on the rod which divides it in a given ratio is an
ellipse. If this ratio be $1 / 2$, show that the eccentricity of the ellipse is $\sqrt{2} / 3$.

D Watch Video Solution

11. A point moves so that the sum of the squares of its distances from two intersecting straight lines is constant. Prove that its locus is an ellipse.

- Watch Video Solution

12. Find the equation of the set of all points whose distances from $(0,4)$ are $\frac{2}{3}$ of their distances from the line $y=9$.

- Watch Video Solution

13. Find the equation of the ellipse whose axes
are along the coordinate axes, vertices are
$(0, \pm 10)$ and eccentricitye $=4 / 5$.
14. If the latusrectum of an ellipse is equal to half of minor axis, find its eccentricity.

- Watch Video Solution

15. Find the equation of the ellipse whose axes are parallel to the coordinate axes having its
centre at the point $(2,-3)$ one focus at
$(3,-3)$ and vertex at $(4,-3)$.

- Watch Video Solution

16. Find the equation of the ellipse with foci at $(\pm 5,0)$ and $\mathrm{x}=\frac{36}{5}$ as one of the directrices.

D Watch Video Solution

17. Find the equation of the ellipse whose centre is at the origin, foci are $(1,0) \operatorname{and}(-1,0)$ and eccentricity is $1 / 2$.
18. Find the equation of the set of all points
the sum of whose distance from the points
$(3,0) \operatorname{and}(9,0)$ is 12.

D Watch Video Solution

19. A rod $A B$ of length 15 cm rests in between
two coordinate axes in such a way that the end point A lies on x - axis and end point B
lies on y-axis. A point is taken on the rod in
such a way that $A P=6 \mathrm{~cm}$. Show that the locus of P is an ellipse.

D Watch Video Solution

20. Find the equation of the ellipse whose foci
are $(2,3),(-2,3)$ and whose semi-minor axes is $\sqrt{5}$.

D Watch Video Solution
21. A bar of given length moves with its extremities on two fixed straight lines at right angles. Show that any point on the bar describes an ellipse.

- Watch Video Solution

22. An arc is in the form of a semi-ellipse. It is
$8 m$ wide and $2 m$ high at the centre. Find the height of the arch at a point 1.5 m from one end.
23. Find the equation of the ellipse whose axes are along the coordinate axes, vertices are $(\pm 5,0)$ and foci at $(\pm 4,0)$.

- Watch Video Solution

24. Find the equation of the ellipse whose axes
are along the coordinate axes, foci at $(0, \pm 4)$ and eccentricity 4/5.
25. Find the equation of the ellipse (referred to its axes as the axes of $x a n d y$, respectively) whose foci are $(\pm 2,0)$ and eccentricity is $\frac{1}{2}$

D Watch Video Solution

26. A man running a racecourse notes that the
sum of the distances from the two flag posts
from him is always 10 m and the distance
between the flag posts is 8 m . Find the equation of the posts traced by the man.

D Watch Video Solution

27. Find the equation of the ellipse whose
focus is $(1,-2)$ the directrix $3 x-2 y+5=0$ and eccentricity equal to $1 / 2$.

D Watch Video Solution

28. Find the equation of the ellipse in the following case: focus is $(0,1)$, directrix is
$x+y=0$ and $e=\frac{1}{2}$.

D Watch Video Solution

29. Find the equation of the ellipse in the following case: focus is $(-1,1)$ directirx is
$x-y+3=0$ and $e=\frac{1}{2}$.
30. Find the equation of the ellipse in the following case: focus is $(-2,3)$ directrix is
$2 x+3 y+4=0$ and $e=\frac{4}{5}$.

D Watch Video Solution

31. Find the equation of the ellipse in the following case: focus is (1,2), directrix is
$3 x+4 y-7=0$ and $e=\frac{1}{2}$.
32. Find the eccentricity, coordinates of foci ,length of the latus rectum of the following ellipse: $4 x^{2}+9 y^{2}=1$

- Watch Video Solution

33. Find the eccentricity ,coordinates of foci, length of the latus rectum of the following ellipse: $25 x^{2}+16 y^{2}=1600$.

- Watch Video Solution

34. Find the eccentricity ,coordinates of foci,
length of the latus rectum of the following ellipse: $5 x^{2}+4 y^{2}=1$

- Watch Video Solution

35. Find the eccentricity coordinates of foci,
length of the latus rectum of the following ellipse: $4 x^{2}+3 y^{2}=1$
36. Find the eccentricity, coordinates of foci, length of the latus rectum of the following ellipse: $9 x^{2}+25 y^{2}=225$

- Watch Video Solution

37. Find the equation to the ellipse (referred to its axes as the axes of x and y respectively) which passes through the point $(-3,1)$ and has eccentricity $\sqrt{\frac{2}{5}}$
38. Find the equation of the ellipse (referred to its axes as the axes of $x a n d y$, respectively)
whose foci are $(\pm 2,0)$ and eccentricity is $\frac{1}{2}$

D Watch Video Solution

39. Find the equation of the ellipse in the following case: eccentricity $e=\frac{2}{3}$ and length of latus rectum $=5$.

D Watch Video Solution

40. Find the equation of the ellipse in the
following case: eccentricity $e=\frac{1}{2}$ and semi major axis $=4$.

- Watch Video Solution

41. Find the equation of the ellipse in the
following case: eccentricity $e=\frac{1}{2}$ and major axis $=12$

- Watch Video Solution

42. Find the equation of the ellipse in the following case: the ellipse passes through (1,4) and (-6,1).

- Watch Video Solution

43. Find the equation of the ellipse whose axes are along the coordinate axes, vertices are
$(\pm 5,0)$ and foci at $(\pm 4,0)$.

- Watch Video Solution

44. Find the equation of the ellipse in the following case: ends of major axis $(\pm 3,0)$ ends of minor axis $(0, \pm 2)$

- Watch Video Solution

45. Find the equation for the ellipse that satisfies the given conditions: Ends of major axis $(0, \pm \sqrt{5})$, ends of minor axis $(\pm 1,0)$
46. Find the equation for the ellipse that satisfies the given conditions: Length of major axis 26 , foci $(\pm 5,0)$

- Watch Video Solution

47. Find the equation of the ellipse in the following case: Length of minor axis 16 ,foci $(0, \pm 6)$
48. Find the equation of the ellipse in the following case: Foci $(\pm 3,0), a=4$

D Watch Video Solution

49. Find the equation of the ellipse whose foci are $(4,0)$ and ($-4,0$), eccentricity $=1 / 3$.

- Watch Video Solution

50. Find the equation of the ellipse whose minor axis is equal to distance between the
foci and latus rectum is 10 .

D Watch Video Solution

51. Find the equation of the ellipse whose centre is ($-2,3$) and whose semi axes are 3 and

2 when major axis is (i.) parallel to x-axis (ii.) parallel to y-axis.

- Watch Video Solution

52. If the latus rectum of an ellipse is equal to
the half of minor axis, then find its eccentricity.

- Watch Video Solution

53. Find the centre ,the lengths of the axes, eccentricity, foci of the following
ellipse: $2+2 y^{\wedge} 2-2 x+12 y+10=0^{\wedge}$

- Watch Video Solution

54. Find the centre, the lengths of the axes, eccentricity, foci of the following ellips $+4 y^{\wedge} 2-$ $4 x+24 y+31=0{ }^{`}$

- Watch Video Solution

55. Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
$4 x^{2}+y^{2}-8 x+2 y+1=0$
56. Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
$4 x^{2}+16 y^{2}-24 x-32 y-120=0$

- Watch Video Solution

57. Find the centre ,the lengths of the axes, eccentricity, foci of the following ellipse:
$3 x^{2}+4 y^{2}-12 x-8 y+3=0$
58. Find the centre ,the lengths of the axes, eccentricity, foci of the following ellipse:
$x^{2}+4 y^{2}-2 x+8 y+1=0$

D Watch Video Solution

59. Find the equation of an ellipse whose foci are at $(\pm 3,0)$ and which passes through $(4,1)$.

D Watch Video Solution

60. Find the equation of an ellipse whose eccentricity is $2 / 3$, the latus rectum is 5 and the centre is at the origin.

D Watch Video Solution

61. Find the equation of an ellipse with its foci on y-axis, eccentricity $\frac{3}{4}$, centre at the origin and passing through (6,4).
62. Find the equation of an ellipse whose axes
lie along coordinate axes and which passes
through (4,3) and (-1,4).

- Watch Video Solution

63. Find the equation of an ellipse whose axes
lie along the coordinate axes, which passes
through the point ($-3,1$) and has eccentricity equal to $\sqrt{2 / 5}$
64. Find the equation of an ellipse the distance between the foci is 8 units and the distance between the directrices is 18 units.

D Watch Video Solution

65. Find the equation of an ellipse whose
vertices are $(0, \pm 10)$ and eccentricity $e=\frac{4}{5}$

D Watch Video Solution

66. A rod of length 12 cm moves with its ends always touching the coordinate axes.

Determine the equation of the locus of a point
P on the rod, which is 3 cm from the end in contact with the x-axis.

- Watch Video Solution

67. If the lengths of semi major and semi minor axes of an ellipse are 2 and $\sqrt{3}$ and their corresponding equation are
$y-5=0$ and $x+3=0 \quad$ then write the equation of the ellipse.

D Watch Video Solution

68. Write the eccentricity of the ellipse $9 x^{2}+5 y^{2}-18 x-2 y-16=0$.

- Watch Video Solution

69. Write the centre and eccentricity of the
ellipse $3 x^{2}+4 y^{2}-6 x+8 y-5=0$.
70. PSQ is a focal chord of the ellipse
$4 x^{2}+9 y^{2}=36$ such that $\mathrm{SP}=4$. If S the another focus write the value of $S^{\prime} Q$.
A. $\frac{2}{4}$
B. $\frac{15}{4}$
C. 7
D. $\frac{26}{5}$

Answer: $\frac{26}{5}$

- Watch Video Solution

71. If the latus rectum of an ellipse is equal to
the half of minor axis, then find its eccentricity.

- Watch Video Solution

72. The eccentricity of the ellipse, if the distance between the foci is equal to the
lenght of the latus rectum, is

- Watch Video Solution

73. If S and S^{\prime} are two foci of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and B is and end of the minor axis such that $\operatorname{Delta} B S S^{\prime}$ is equilateral, then write the eccentricity of the ellipse.
A. $\frac{3}{4}$
B. 7
C. $\frac{4}{5}$
D. $\frac{1}{2}$

Answer: $\frac{1}{2}$

- Watch Video Solution

74. If the minor axis of an ellipse subtends an equilateral triangle with vertex at one end of major axis, then write the eccentricity of the ellipse.
A. $\sqrt{2}$
B. $\sqrt{3^{2}}$
C. $\sqrt{\frac{2}{3}}$
D. $\sqrt{\frac{4}{5}}$

Answer: $\sqrt{\frac{2}{3}}$

- Watch Video Solution

75. If a latus rectum of an ellipse subtends a right angle at the centre of the ellipse, then write the eccentricity of the ellipse.

> A. $e=\frac{\sqrt{10}-1}{9}$
> B. $e=\frac{\sqrt{5}-1}{2}$
> C. $e=\frac{\sqrt{9}+1}{16}$
> D. $e=\frac{\sqrt{9}+1}{2}$

Answer: $e=\frac{\sqrt{5}-1}{2}$

- Watch Video Solution

76.

For
the
ellipse
$12 x^{2}+4 y^{2}+24 x-16 y+24=0$ a.centre is
$(-1,2)$ b. lengths of the axes are $\sqrt{3}$ and 1 c .
eccentricity $=\sqrt{\frac{2}{3}}$ d. all of these

- Watch Video Solution

77. The directrix of the parabola
$x^{2}-4 x-8 y+12=0$ is

- Watch Video Solution

78. The equation of the circle drawn with the two foci of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ as the end-points of
a diameter is

D Watch Video Solution

79. If the latus rectum of an ellipse is equal to the half of minor axis, then find its eccentricity.

- Watch Video Solution

80. The eccentricity of the ellipse if the
distance between the foci is equal to the
length of the latus rectum is $a \cdot \frac{\sqrt{5}-1}{2} \mathrm{~b}$. $\frac{\sqrt{5}+1}{2}$ c. $\frac{\sqrt{5}-1}{4}$ d. none of these - Watch Video Solution
81. The difference between the lengths of the major axis and the latus rectum of an ellipse is a. $a e$ b. $2 a e$ c. $a e^{2}$ d. $2 a e^{2}$
82. The eccentricity of the conic
$9 x^{2}+25 y^{2}=225$ is a. $2 / 5$ b. $4 / 5$ c. $1 / 3$ d. $1 / 5$
e. $3 / 5$

- Watch Video Solution

83. The latus rectum of the conic $3 x^{2}+4 y^{2}-6 x+8 y-5=0$ is a. 3 b. $\frac{\sqrt{3}}{2}$ c. 2 $\frac{}{\sqrt{3}}$ d. none of these

D Watch Video Solution
84. Find the equations of the tangents drawn
from the point $(2,3)$ to the ellipse
$9 x^{2}+16 y^{2}=144$.

D Watch Video Solution
85. The eccentricity of the ellipse
$4 x^{2}+9 y^{2}+8 x+36 y+4=0$ is a. $\frac{5}{6}$ b. $\frac{3}{5}$ c.
$\frac{\sqrt{2}}{3}$ d. $\frac{\sqrt{5}}{3}$

- Watch Video Solution

86. The eccentricity of the ellipse
$4 x^{2}+9 y^{2}=36$ is
a. $\frac{1}{2 \sqrt{3}}$
b. $\frac{1}{\sqrt{3}}$
c. $\frac{\sqrt{5}}{3}$
d. $\frac{\sqrt{5}}{6}$

D Watch Video Solution

87. The eccentricity of the ellipse
$5 x^{2}+9 y^{2}=1$ is a. $2 / 3$ b. $3 / 4$ c. $4 / 5$ d. $1 / 2$
88. For the ellipse $x^{2}+4 y^{2}=9$ a. the eccentricity is $1 / 2 \mathrm{~b}$. the latus rectum is $3 / 2 \mathrm{c}$. a focus is $(3 \sqrt{3}, 0)$ d. a directrix is $x=-2 \sqrt{3}$

D Watch Video Solution

89. If the latus rectum of an ellipse is equal to
the half of minor axis, then find its eccentricity.

D Watch Video Solution

90. An ellipse has its centre at $(1,-1)$ and semi major axis $=8$ and it passes through the point $(1,3)$. The equation of the ellipse is
a. $\frac{(x+1)^{2}}{64}+\frac{(y+1)^{2}}{16}=1$
$\frac{(x-1)^{2}}{64}+\frac{(y-1)^{2}}{16}=1$
$\frac{(x-1)^{2}}{64}+\frac{(y+1)^{2}}{16}=1$
$\frac{(x+1)^{2}}{64}+\frac{(y-1)^{2}}{16}=1$
91. Find the sum of the focal distances of any point on the ellipse $9 x^{2}+16 y^{2}=144$.

D Watch Video Solution

92. If $(2,4)$ and $(10,10)$ are the ends of a latus rectum of an ellipse with eccentricity then the
length of semi major axis is a. $20 / 3 \mathrm{~b} .15 / 3 \mathrm{c}$.
$40 / 3 \mathrm{~d}$. none of these
93. The eccentricity of the ellipse
$9 x^{2}+25 y^{2}-18 x-100 y-116=0$ is
a. $25 / 16$ b. $4 / 5$ c. $16 / 25$ d. $5 / 4$

- Watch Video Solution

94. If the major axis of an ellipse is three times
the minor axis, then its eccentricity is equal to
a. $\frac{1}{3}$ b. $\frac{1}{\sqrt{3}}$ c. $\frac{1}{\sqrt{2}}$ d. $\frac{2 \sqrt{2}}{3}$ e. $\frac{3}{3 \sqrt{2}}$

D Watch Video Solution

95. The eccentricity of the ellipse $25 x^{2}+16 y^{2}=400$ is
a. $3 / 5$
b. $1 / 3$
c. $2 / 5$
d. $1 / 5$

D Watch Video Solution

96. The eccentricity of the ellipse
$5 x^{2}+9 y^{2}=1$ is a. $2 / 3$ b. $3 / 4$ c. $4 / 5$ d. $1 / 2$
97. The eccentricity of the ellipse
$4 x^{2}+9 y^{2}=36$ is a. $\frac{1}{2 \sqrt{3}}$ b. $\frac{1}{\sqrt{3}}$ c. $\frac{\sqrt{5}}{3}$ d.
$\frac{\sqrt{5}}{6}$

- Watch Video Solution

Others

1. The equation of the ellipse with focus ($-1,1$) directrix $x-y+3=0$ and eccentricity is a.
$7 x^{2}+2 x y+7 y^{2}+10 x+10 y+7=0$
$7 x^{2}+2 x y+7 y^{2}+10 x-10 y+7=0$
c.
$7 x^{2}+2 x y+7 y^{2}+10 x-10 y+7=0$
None of these
A. a.

$$
7 x^{2}+2 x y+7 y^{2}+10 x+10 y+7=0
$$

B. b.

$$
7 x^{2}+2 x y+7 y^{2}+10 x-10 y+7=0
$$

C. c.

$$
7 x^{2}+2 x y+7 y^{2}+10 x-10 y+7=0
$$

D. d. None of these

Answer:

$7 x^{2}+2 x y+7 y^{2}+10 x-10 y+7=0$

D View Text Solution

2. The difference of het ellipse, if the minor is equal to the distance between the foci is a.

$$
\begin{aligned}
& \frac{\sqrt{3}}{2} \text { b. } \frac{2}{\sqrt{3}} \text { c. } \frac{1}{\sqrt{2}} \text { d. } \frac{\sqrt{2}}{3} \\
& \text { A. } \frac{\sqrt{3}}{2} \\
& \text { B. } \frac{2}{\sqrt{3}} \\
& \text { C. } \frac{1}{\sqrt{2}}
\end{aligned}
$$

D. . $\frac{\sqrt{2}}{3}$

Answer: $\frac{1}{\sqrt{2}}$
D View Text Solution
3. The equation $\frac{x^{2}}{2-\lambda}+\frac{y^{2}}{\lambda-5}+1=0$ represents an elipse, if
(D) View Text Solution

