©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS

(HINGLISH)

HYPERBOLA

Solved Examples And Exercises

1. Find the equation of the hyperbola whose foci
are $(8,3)$ and $(0,3)$ and eccentricity is $\frac{4}{3}$.

Watch Video Solution

2. Show that the set all points such that the difference of their distances from
$(4,0) \operatorname{and}(-4,0)$ is always equal to 2 represents a hyperbola.

- Watch Video Solution

3. If e and \bar{e} the eccentricities of a hyperbola
and its conjugate, prove that $\frac{1}{e^{2}}+\frac{1}{\bar{e}^{2}}=1$.
4. Find the locus of the point of intersection of the
$\sqrt{3 x}-y-4 \sqrt{3} t=0 a n d \sqrt{3} t x+t y-4 \sqrt{3}=0$
for different values of λ.

D Watch Video Solution

5. Show that the equation
$9 x^{2}-16 y^{2}-18 x+32 y-151=0$ represents
a hyperbola. Find the coordinates of the centre,
lengths of the axes, eccentricity, latus-rectum,
coordinates of foci and vertices, equations of the directrices of the hyperbola.

D Watch Video Solution

6. For the following hyperbolas find the lengths
of transverse and conjugate axes, eccentricity
and coordinates of foci and vertices, length of
the latus-rectum, equations of the directrices:
$6 x^{2}-9 y^{2}=1443 x^{2}-6 y^{2}=-18$

- Watch Video Solution

7. Find the equation of the hyperbola whose directrix is $2 x+y=1, \quad$ focu $s(1,2) \quad$ and eccentricity $\sqrt{3}$.

D Watch Video Solution
8. Find the equation of the hyperbola whose foci
are $(6,4)$ and $(-4,4)$ and eccentricity is 2.
(D) Watch Video Solution
9. Find the equation of the hyperbola, the length of whose latusrectum is 8 and eccentricity is $3 / \sqrt{5}$.

- Watch Video Solution

10. Referred to the principal axes as the axes of
coordinates find the equation of the hyperbola whose foci are at $(0, \pm \sqrt{10})$ and which passes through the point $(2,3)$.

Watch Video Solution

11. Find the equation of the hyperbola, referred to its principal axes of coordinates, in the following cases:

Verticesat $(\pm 5,0), \operatorname{Fociat}(\pm 7,0)$

D Watch Video Solution

12. Show that the equation
$x^{2}-2 y^{2}-2 x+8 y-1=0$ represents a hyperbola. Find the coordinates of the centre, lengths of the axes, eccentricity, latusrectum, .
13. If P is any point on the hyperbola whose axis are equal, prove that $S P \dot{S}^{\prime} P=C P^{2}$.

D Watch Video Solution

14. Find the equation of the hyperbola whose
conjugate axis is 5 and the distance between
the foci is 13 .
15. The foci of a hyperbola coincide with the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$. Find the equation of the hyperbola, if its eccentricity is 2 .

D Watch Video Solution

16. If the distance between the foci of a hyperbola is 16 and its eccentricity is $\sqrt{2}$, then obtain its equation.

- Watch Video Solution

17. The equation of the directrix of a hyperbola is $x-y+3=0$. Its focus is $(-1,1)$ and eccentricity 3 . Find the equation of the hyperbola.

D Watch Video Solution

18. Find the equation of the hyperbola whose :
focus is $(0,3)$ directrix is $x+y-1=0$ and eccentricity $=2$.
19. Find the equation of the hyperbola whose :
focus is $(1,1)$ directrix is $3 x+4 y+8=0$ and eccentricity $=2$

- Watch Video Solution

20. Find the equation of the hyperbola whose :
focus is $(1,1)$ directrix is $2 x+y=1$ and eccentricity $=\sqrt{3}$
21. Find the equation of the hyperbola whose :
focus is $(2,-1)$ directrix is $2 x+3 y=1$ and eccentricity $=2$

(Watch Video Solution

22. Find the equation of the hyperbola whose :
focus $(a, 0)$, directrix is $2 x-y+a=0$ and eccentricity $=\frac{4}{3}$

D Watch Video Solution

23. Find the equation of the hyperbola whose :
focus is $(2,2)$ directrix is $x+y=9$ and eccentricity $=2$.

- Watch Video Solution

24. Find the eccentricity, coordinates of the foci ,equations of directrices and length of the latus rectum of the hyperbola : $9 x^{2}-16 y^{2}=144$
25. Find the eccentricity, coordinates of the foci, equations of directrices and length of the latus rectum of the hyperbola $4 x^{2}-3 y^{2}=36$

(D) Watch Video Solution

26. Find the eccentricity, coordinates of the foci ,equations of directrices and length of the latus rectum of the hyperbola $2 x^{2}-3 y^{2}=5$.

D Watch Video Solution

27. Find the eccentricity, coordinates of the foci, equations of directrices and length of the latus rectum of the hyperbola $16 x^{2}-9 y^{2}=144$

D Watch Video Solution

28. Find the eccentricity, coordinates of the foci, equations of directrices and length of the latus rectum of the hyperbola $3 x^{2}-y^{2}=4$
29. Find the axes, eccentricity, latus rectum and the coordinates of the foci of the hyperbola $25 x^{2}-36 y^{2}=225$.

- Watch Video Solution

30. Find the centre, eccentricity, foci and directrices of the hyperbola
$16 x^{2}-9 y^{2}+32 x+36 y-164=0$

D Watch Video Solution

31. Find the centre, eccentricity, foci and directrices of the hyperbola : $x^{2}-y^{2}+4 x=0$

D Watch Video Solution

32. Find the centre, eccentricity, foci and directrices of the hyperbola
$x^{2}-3 y^{2}-2 x=8$.

- Watch Video Solution

33. Find the centre, eccentricity, foci and directrices of the hyperbola : $x^{2}-y^{2}+4 x=0$

D Watch Video Solution

34. Find the equation of the hyperbola whose:
focus is at $(5,2)$ vertex at $(4,2)$ and centre at
$(3,2)$
35. In each of the following find the equations of
the hyperbola satisfying he given condition:

Vertices $(\pm 2,0)$, foci $(\pm 3,0)$

- Watch Video Solution

36. Find the equations of the hyperbola satisfying the given conditions :Vertices
$(0, \pm 5)$, foci $(0, \pm 8)$
37. In each of the following find the equations of the hyperbola satisfying he given condition: vertices $(0, \pm 3)$ foci $(0, \pm 5)$

D Watch Video Solution

38. In each of the following find the equations of the hyperbola satisfying he given condition: foci $(\pm 5,0)$ transverse axis $=8$

D Watch Video Solution

39. In each of the following find the equations of
the hyperbola satisfying he given condition:
foci $(0, \pm 13)$ conjugate axis $=24$

- Watch Video Solution

40. In each of the following find the equations
of the hyperbola satisfying the given condition:
foci $(\pm 3 \sqrt{5}, 0)$, the latus rectum $=8$

D Watch Video Solution
41. In each of the following find the equations of the hyperbola satisfying the given condition: foci $(\pm 4,0)$ the latus rectum $=12$

D Watch Video Solution

42. In each of the following find the equations of the hyperbola satisfying the given condition:
vertices $(0, \pm 6), e=\frac{5}{3}$

D Watch Video Solution

43. In each of the following find the equations of
the hyperbola satisfying the given condition:
foci $(0, \pm \sqrt{10})$ passing through $(2,3)$

- Watch Video Solution

44. In each of the following find the equations
of the hyperbola satisfying the given condition:
foci $(0, \pm 12)$ latus rectum $=36$

D Watch Video Solution
45. Write the eccentricity of the hyperbola $9 x^{2}-16 y^{2}=144$.

D Watch Video Solution

46. Find the eccentricity of the hyperbola whose latusrectum is half of its transverse axis.

D Watch Video Solution

47. Write the coordinates of the foci of the hyperbola $9 x^{2}-16 y^{2}=144$.

Watch Video Solution

48. Write the equation of the hyperbola of eccentricity $\sqrt{2}$ if it is known that the distance between its foci is 16.

D Watch Video Solution

49. If the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide write the value of b^{2}.
50. Write the length of the latus rectum of the hyperbola $16 x^{2}-9 y^{2}=144$.

D Watch Video Solution

51. If the latus rectum through one focus subtends a right angle at the farther vertex of the hyperbola then its eccentricity is

- Watch Video Solution

52. Write the distance between the directrices of the hyperbola $x=8 \sec \theta, y=8 \tan \theta$.

D Watch Video Solution

53. Write the equation of the hyperbola whose vertices are $(\pm 3,0)$ and foci at $(\pm 5,0)$

D Watch Video Solution

54. If e_{1} and e_{2} are respectively the eccentricities of the ellipse $\frac{x^{2}}{18}+\frac{y^{2}}{4}=1$ and the hyperbola
$\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$, then write the value of
$2 e_{1}^{2}+e_{2}^{2}$.

- Watch Video Solution

55. Equation of hit hyperbola whose vertices are $(\pm 3,0)$ and foci at $(\pm 5,0)$ is a. $16 x^{2}-9 y^{2}=144 \quad$ b. $9 x^{2}-16 y^{2}=144 \quad$ c.
$25 x^{2}-9 y^{2}=225$ d. $9 x^{2}-25 y^{2}=81$

D Watch Video Solution
56. If e_{1} and e_{2} are respectively the eccentricities
of the ellipse $\frac{x^{2}}{18}+\frac{y^{2}}{4}=1$ and the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$, then the relation between e_{1} and e_{2} is a. $2 e_{1}^{2}+e_{2}^{2}=3$ b. $e_{1}^{2}+2 e_{2}^{2}=3$ c.
$2 e_{1}^{2}+e_{2}^{2}=3$ d. $e_{1}^{2}+3 e_{2}^{2}=2$

D Watch Video Solution

57. The distance between the directrices of the
hyperbola $x=8 \sec \theta, y=8 \tan \theta, \quad$ a. $8 \sqrt{2}$ b.
$16 \sqrt{2}$ c. $4 \sqrt{2}$ d. $6 \sqrt{2}$
58. The equation of the conic with focus at (1,-1) directrix along $x-y+1=0$ and eccentricity
$\sqrt{2}$ is a. $x y=1$ b. $2 x y+4 x-4 y-1=0$ c.
$x^{2}-y^{2}=1$ d. $2 x y-4 x+4 y+1=0$

D Watch Video Solution

59. The eccentricity of the conic
$9 x^{2}-16 y^{2}=144$ is a. $\frac{5}{4}$ b. $\frac{4}{3}$ c. $\frac{4}{5}$ d. $\sqrt{7}$
60. The eccentricity of the hyperbola whose latus rectum is half of its transverse axis is a. $\frac{1}{\sqrt{2}}$ b. $\sqrt{\frac{2}{3}}$ c. $\sqrt{\frac{3}{2}}$ d. none of these

D Watch Video Solution

61. The eccentricity of the hyperbola
$x^{2}-4 y^{2}=1$ is a. $\frac{\sqrt{3}}{2}$ b. $\frac{\sqrt{5}}{2}$ c. $\frac{2}{\sqrt{3}}$ d. $\frac{2}{\sqrt{5}}$
62. The foci of the hyperbola $9 x^{2}-16 y^{2}=144$
are a. $(\pm 4,0) \quad$ b. $(0, \pm 4) \quad$ c. $(\pm 5,0) \quad$ d.
$(0, \pm 5)$

D Watch Video Solution

63. The distance between the foci of a hyperbola is 16 and its eccentricity is $\sqrt{2}$ then equation of the hyperbola is a. $x^{2}+y^{2}=32$
$x^{2}-y^{2}=16$ c. $x^{2}+y^{2}=16$ d. $x^{2}-y^{2}=32$
64. If e_{1} is the eccentricity of the conic $9 x^{2}+4 y^{2}=36$ and e_{2} is the eccentricity of the
conic $9 x^{2}-4 y^{2}=36$ then a. $e_{1}^{2}-e_{2}^{2}=2$ b.
$e_{2}^{2}-e_{1}^{2}=2$ c. $2<e_{2}^{2}-e_{1}^{2}<3$ d. $e_{1}^{2}-e_{2}^{2}>3$

D Watch Video Solution

65. If the eccentricity of the hyperbola
$x^{2}-y^{2} \sec ^{2} \alpha=5$ is $\sqrt{3}$ times the eccentricity the ellipse $x^{2} \sec ^{2} \alpha+y^{2}=25$ then $\alpha=$ a. $\frac{\pi}{6}$
b. $\frac{\pi}{4}$ c. $\frac{\pi}{3}$ d. $\frac{\pi}{2}$
66. The equation of the hyperbola whose foci
are $(6,4)$ and $(-4,4)$ and eccentricity 2 is a.

$$
\begin{align*}
& \frac{(x-1)^{2}}{25 / 4}-\frac{(y-4)^{2}}{75 / 4}=1 \tag{b.}\\
& \frac{(x+1)^{2}}{25 / 4}-\frac{(y+4)^{2}}{75 / 4}=1 \tag{c.}\\
& \frac{(x-1)^{2}}{75 / 4}-\frac{(y-4)^{2}}{25 / 4}=1 \text { d. none of these }
\end{align*}
$$

D Watch Video Solution

67. The length of the straight line $x-3 y=1$ intercepted by the hyperbola $x^{2}-4 y^{2}=1$ is a.
$\frac{6}{\sqrt{5}}$ b. $3 \sqrt{\frac{2}{5}}$ c. $6 \sqrt{\frac{2}{5}}$ d. none of these

D Watch Video Solution

68. The latus rectum of the hyperbola
$16 x^{2}-9 y^{2}=144$ is a. $16 / 3$ b. $32 / 3$ c. $8 / 3 \mathrm{~d}$.
$4 / 3$

D Watch Video Solution

69. The foci of the hyperbola $2 x^{2}-3 y^{2}=5$ are

$$
\text { a. }(\pm 5 \sqrt{6}, 0) \text { b. }(\pm 5 / 6,0) \text { c. }(\pm \sqrt{5} / 6,0) \text { d. }
$$

D Watch Video Solution

70. The eccentricity the hyperbola
$x=\frac{a}{2}\left(t+\frac{1}{t}\right), y=\frac{a}{2}\left(t-\frac{1}{t}\right)$ is a. $\sqrt{2} . \mathrm{b}$.
$\sqrt{3}$ c. $2 \sqrt{3}$ d. $3 \sqrt{2}$

D Watch Video Solution

71. The equation of the hyperbola whose centre is $(6,2)$ one focus is $(4,2)$ and of eccentricity 2
is
(A) $3(x-6)^{2}-(y-2)^{2}=3$
(B) $(x-6)^{2}-3(y-2)^{2}=1$
(C) $(x-6)^{2}-2(y-2)^{2}=1$
(D) $2(x-6)^{2}-(y-2)^{2}=1$

D Watch Video Solution

72. The locus of the point of intersection of the
lines
$\sqrt{3} x-y-4 \sqrt{3} \lambda=0$ and $\sqrt{3} \lambda x+\lambda y-4 \sqrt{3}=0$
is a hyperbola of eccentricity
a. 1
b. 2
c. 3
d. 4

D Watch Video Solution

Others

1. Find the eccentricity of the hyperbola, the length of whose conjugate axis is $\frac{3}{4}$ of the length of transverse axis.
2. A point moves in a plane so that its distance $P A$ and $P B$ from who fixed points A and B in the plane satisfy the relation $P A-P B=k(k \neq 0)$ then the locus of P is a.
a hyperbola b. a branch of the locus of P is c. a parabola d. an ellipse
A. a hyperbola
B. a branch of the locus of P
C. a parabola
D. an ellipse

Answer: a hyperbola

- View Text Solution

