©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS

(HINGLISH)

PARABOLA

Solved Examples And Exercises

1. An equilateral triangle is inscribed in the parabola $y^{2}=4 a x$ whose vertex is at of the
parabola. Find the length of its side.

- Watch Video Solution

2. If the points $(0,4)$ and $(0,2)$ are respectively the vertex and focus of a parabola, then find the equation of the parabola.

D Watch Video Solution

3. $P Q$ is a double ordinate of a parabola $y^{2}=4 a x$. Find the locus of its points of
trisection.

D Watch Video Solution

4. If y_{1}, y_{2}, y_{3} be the ordinates of a vertices of the triangle inscribed in a parabola $y^{2}=4 a x$, then show that the area of the triangle is

$$
\frac{1}{8 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|
$$

D Watch Video Solution

5. If the line $l x+m y+n=0$ touches the parabola $y^{2}=4 a x$, prove that $\ln =a m^{2}$

D Watch Video Solution

6. Find the equation of the parabola whose latus-rectum is 4 units, axis is the line $3 x+4 y-4=0$ and the tangent at the vertex is the line $4 x-3+7=0$.

D Watch Video Solution

7. If the line $y=m x+1$ is tangent to the parabola $y^{2}=4 x$, then find the value of m.

D Watch Video Solution

8. Find the vertex, focus, directrix, axis and latus-rectum of the parabola $y^{2}=4 x+4 y$.

- Watch Video Solution

9. Find the vertex, axis, focus, directrix, latusrectum of the following parabolas. Also, draw their rough sketches. $y^{2}-8 y-x+19=0$
$4 y^{2}+12 x-20 y+67=0 \quad y^{=} x^{2}-2 x+3$
$x^{2}-2 y-3 x+5=0$

D Watch Video Solution

10. Find the equation of the parabola whose focus is $(1,-1)$ and whose vertex is $(2,1)$.

Also find the axis and latusrectum.
11. Find the equation of the line with points
(2,-3) and (0,5)

- Watch Video Solution

12. Find the equation of the parabola whose
focus is $(-3,2)$ and the directrix is

$$
x+y=4
$$

13. Find the equation of the lines joining the vertex of the parabola $y^{2}=6 x$ to the point on it which have abscissa 24 .

D Watch Video Solution

14. For the following parabolas find the coordinates of the foci, the equations of the directrices and the lengths of the latus rectum: $y^{2}=8 x$
15. Find the equation of the parabola whose focus is the point $(0,0)$ and the directrix is the straight line $3 x-4 y+3=0$.

- Watch Video Solution

16. Find the area of the triangle formed by the
lines joining the vertex of he parabola $x^{2}=12 y$ to the ends of its latus-rectum.
17. Find the coordinates of points on the parabola $y^{2}=8 x$ whose focal distance is 4 .

D Watch Video Solution

18. Find the length of the line segment joining
the vertex of the parabola $y^{2}=4 a x$ and a point on the parabola where the line segment make and angle θ to the $x-a \xi s$.
19. Find the equation of the parabola whose focus is $(1,1)$ and tangent at the vertex is $x+y=1$.

- Watch Video Solution

20. Find the equation of the parabola with
vertex is at $(2,1)$ and the directrix is

$$
x=y-1
$$

21. The focal distance of a point on the parabola $y^{2}=12 x$ is 4 . Find the abscissa of this point.

D Watch Video Solution

22. Find the equation of the parabola whose
focus is at (-2) and the directrix the line $x-2 y+3=0$

- Watch Video Solution

23. Find the vertex, focus and directrix of the parabola $4 y^{2}+12 x-12 y+39=0$.

- Watch Video Solution

24. Find the angle made by a double ordinate of length at the vertex of the parabola $y^{2}=4 a x$.

- Watch Video Solution

25. P is parabola, whose vertex and focus are on the positive x axis at distances a and a^{\prime} from the origin respectively, then $\left(a^{\prime}>a\right)$. Length of latus ractum of P will be

- Watch Video Solution

26. Find the locus of the middle points of the chords of the parabola $y^{2}=4 a x$ which subtend a right angle at the vertex of the parabola.
27. If a parabolic reflector is 20 cm in diameter and 5 cm deep, find its focus.

- Watch Video Solution

28. over the towers of a bridge a cable is hung
in the form of a parabola, have their tops 30 meters above the road way are 200 meters apart. If the cable is 5 meters above the road way at the centre of the bridge, then the
length of the vertical supporting cable 30 meters from the centre is

D Watch Video Solution

29. An arch is in the form of a parabola with its axis vertical. The arc is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?
A. $\sqrt{2}$
B. $\sqrt{3}$
C. $\sqrt{5}$
D. 4

Answer: C

D Watch Video Solution

30. A beam is supported at its ends by supports which are 12 metres apart. Since the
load is connected at its centre, there is a deflection of e centre and the deflected beam
is in the shape of a parabola. How far from the centre is the deflection 1 cm ?
A. $2 \sqrt{2}$
B. $3 \sqrt{2}$
C. $2 \sqrt{3}$
D. $2 \sqrt{6}$

Answer: D
(Watch Video Solution
31. Find the equation of the parabola whose:
focus is (3,0) and the directrix is $3 x+4 y=1$.

D Watch Video Solution
32. The equation of the parabola whose focus
is $(1,1)$ and the directrix is $x+y+1=0$

- Watch Video Solution

33. Find the equation of the parabola whose:
focus is $(0,0)$ and the directrix $2 x-y-1=0$

- Watch Video Solution

34. Find the length of the latus rectum of the parabola whose focus is at $(2,3)$ and directrix is the line $x-4 y+3=0$.

- Watch Video Solution

35. Find the length of the latus rectum of the parabola whose focus is at $(2,3)$ and directrix is the line $x-4 y+3=0$.

- Watch Video Solution

36. Find the equation of the parabola, if the
focus is at $(-6,-6)$ and the vertex is at
$(-2,2)$
37. Find the equation of the parabola, if: the focus is at $(0,-3)$ and the vertex is at $(0,0)$

D Watch Video Solution

38. Find the equation of the parabola, if: the focus is at $(a, 0)$ and the vertex is at $\left(a^{\prime}, 0\right)$

- Watch Video Solution

39. Find the equation of the parabola whose focus is $(0,0)$ and the vertex is the point of intersection of the lines $x+y=1$ and $x-y=3$.

- Watch Video Solution

40. Find the vertex, focus, axis, directrix and
latus rectum of the following parabola:
$y^{2}=8 x$
41. Find the vertex, focus, directrix, axis and
latus-rectum of the parabola $y^{2}=4 x+4 y$.

- Watch Video Solution

42. Find the vertex, focus, axis, directrix and
latus rectum of the following parabola:
$4 x^{2}+y=0$
43. Find the vertex, focus, axis, directrix and latus rectum of the following parabola:
$y^{2}+4 x+4 y-3=0$

- Watch Video Solution

44. Find the vertex, focus, axis, directrix and
latus rectum of the following parabola:

$$
y^{2}=5 x-4 y-9
$$

- Watch Video Solution

45. Find the vertex, focus, axis, directrix and latus rectum of the following parabola:
$y^{2}-4 y-3 x+1=0$

D Watch Video Solution

46. Find the vertex, focus, axis, directrix and
latus rectum of the following parabola:
$y^{2}=8 x+8 y$

D Watch Video Solution
47. Find the vertex, focus, axis, directrix and latus rectum of the following parabola:
$x^{2}+y=6 x-14$

- Watch Video Solution

48. For the parabola $y^{2}=4 p x$ find the extremities of a double ordinate of length $8 p$.

Prove that the lines from the vertex to its extremities are at right angles.
49. Find the coordinates of the point of intersection of the axis and the directrix of the parabola whose focus is $(3,3)$ and directrix is $3 x-4 y=2$. Find also the length of the latus rectum.

D Watch Video Solution

50. At what point of the parabola $x^{2}=9 y$ is the abscissa three times that of ordinate?
51. The equation of the parabola with vertex at the origin passing through $(2,3)$ and the axis along x-axis is

- Watch Video Solution

52. Find the equation of a parabola with vertex at the origin and the directrix, $y=2$.
53. The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m . Find t

D Watch Video Solution

54. Write the axis of symmetry of the parabola $y^{2}=x$.
55. Write the distance between the vertex and focus of the parabola $y^{2}+6 y+2 x+5=0$.

- Watch Video Solution

56. The directrix of the parabola
$x^{2}-4 x-8 y+12=0$ is

- Watch Video Solution

57. Write the equation of the parabola with
focus $(0,0)$ and directrix $x+y-4=0$.

D Watch Video Solution

58. Write the length of the chord of the parabola $y^{2}=4 a x$ which passes through the vertex and in inclined to the axis at $\frac{\pi}{4}$.

D Watch Video Solution

59. If b and c are lengths of the segments of any focal chord of the parabola $y^{2}=4 a x$, then write the length of its latus rectum.

D Watch Video Solution

60. PSQ is a focal chord of the parabola $y^{2}=8 x \dot{I} f S P=6$, then write SQ.

D Watch Video Solution

61. vertex and focus of a parabola are $(-1,1)$ and
$(2,3)$ respectively. find the equation of the directrix.

- Watch Video Solution

62. If the parabola $y^{2}=4 a x$ passes through
the point $(3,2)$ then find the length of its latus rectum.
63. If the vertex of a parabola is the point $(-3,0)$ and the directrix is the line $x+5=0$, then find its equation.

- Watch Video Solution

64. The coordinates of the focus of the parabola $y^{2}-x-2 y+2=0$ are a. $(5 / 4,1)$ b.
$(1 / 4,0)$ c. $(1,1)$ d. none of these
65. The vertex of the parabola $(y+a)^{2}=8 a(x-a) \quad$ is a. $(-a,-a) \quad$ b. $(a,-a) c .(-a, a)$ d. none of these

D Watch Video Solution

66. If the focus of a parabola is $(-2,1)$ and the directrix has the equation $x+y=3$ then its
vertex is a. (0,3) b. $(-1,1 / 2)$ c. $(-1,2)$ d. $(2,-1)$

D Watch Video Solution
67. The equation of the parabola whose vertex
is $(a, 0)$ and the directrix has the equation
$x+y=3 a$
is a.
$x^{2}+y^{2}+2 x y+6 a x+10 a y+7 a^{2}=0 \quad$ b.
$x^{2}-2 x y+y^{2}-6 a x+10 a y+7 a^{2}=0$
$x^{2}-2 x y+y^{2}+6 a x+10 a y+7 a^{2}=0$ d.None of these
68. The parametric equations of a parabola are
$x=t^{2}+1, y=2 t+1 . \quad$ The Cartesian
equation of its directrix is $\mathrm{a} . x=0 \quad \mathrm{~b}$.
$x+1=0$ c. $y=0 \mathrm{~d}$. none of these

- Watch Video Solution

69. vertex and focus of a parabola are ($-1,1$) and
$(2,3)$ respectively. find the equation of the directrix.
70. The equation of the directrix of the parabola whose vertex and focus are (1,4) and
$(2,6)$ respectively is a. $x+2 y=4$ b. $x-y=3$
c. $2 x+y=5$ d. $x+3 y=8$

- Watch Video Solution

71. If V and S are respectively the vertex and focus of the parabola $y^{2}+6 y+2 x+5=0$, then $S V=$ a. $2 \mathrm{~b} .1 / 2 \mathrm{c} .1 \mathrm{~d}$. none of these
72. The directrix of the parabola $x^{2}-4 x-8 y+12=0$ is

D Watch Video Solution

73. The equation of the parabola with focus
$(0,0)$ and directrix $x+y=4$ is a.
$x^{2}+y^{2}-2 x y+8 x+8 y-16=0 \quad$ b.
$x^{2}+y^{2}+8 x+8 y-16=0 \quad 2-2 x \quad y+8 x+8 y=0$
d. $x^{\wedge} 2-y^{\wedge} 2+8 x+8 y-16=0 `$

Watch Video Solution

74. The line $2 x-y+4=0$ cuts the parabola $y^{2}=8 x$ in P and Q. The mid-point of PQ is
(a) $(1,2)$
(b) $(1,-2)$
(c) $(-1,2)$
$(-1,-2)$

- Watch Video Solution

75. In the parabola $y^{2}=4 a x$, the length of the chord pasing through the vertex and
inclined to the axis at $\pi / 4$ is a. $4 \sqrt{2} a$ b. $2 \sqrt{2} a$
c. $\sqrt{2} a \mathrm{~d}$. none of these

D Watch Video Solution
76. The length of the latus rectum of the
parabola $y^{2}+8 x-2 y+17=0$ is a. 2 b. 4 c. 8 d. 16

D Watch Video Solution
77. The vertex of the parabola $(y-2)^{2}=16(x-1)$ is a. $(1,2)$ b. $(-1,2)$ c.
$(1,-2)$ d. $(2,1)$

D Watch Video Solution

78. The length of latus rectum of the parabola $4 y^{2}+2 x-20 y+17=0$ is (a) 3 (b) 6 (c) $\frac{1}{2}$ (d) 9
79. The focus of the parabola $y=2 x^{2}+x$ is a.
$(0,0) \quad$ b. $\quad(1 / 2,1 / 4)$
c. $(-1 / 4,0)$ d.
$(-1 / 4,1 / 8)$

- Watch Video Solution

80. Which of the following points lie on the parabola $\quad x^{2}=4 a y ? \quad$ a. $x=a t^{2}, y=2 a t \quad$ b. $x=2 a t, y=a t^{2} \quad$ c. $\quad x=2 a t^{2}, y=a t \quad \mathrm{~d}$.
$x=2 a t, y=a t^{2}$
81. The equation of the parabola whose focus
is $(1,-1)$ and the directrix is $x+y+7=0$ is
(a). $x^{2}+y^{2}-2 x y-18 x-10 y=0$
$x^{2}+y^{2}-18 x-10 y-45=0$
$x^{2}-18 x-10 y-45=0$
$x^{2}+y^{2}-2 x y-18 x-10 y-45=0$

- Watch Video Solution

Others

1. The locus of the points of trisection of the double ordinates of a parabola is a a. pair of lines b. circle
c. parabola d.
straight line

D View Text Solution

2.

The
equation
$16 x^{2}+y^{2}+8 x y-74 x-78 y+212=0$
represents a. a circle b. a parabola c. an ellipse d. a hyperbola

