

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

QUADRATIC EQUATIONS

Solved Examples And Exercises

1. The number of roots of the equation $\frac{(x+2)(x-5)}{(x-3)(x+6)} = \frac{x-2}{x+4}$ is

A. 0

B.1

 $\mathsf{C.}\,2$

D. 3

Answer: B

Watch Video Solution

2. If lpha,eta are the roots of the equation $x^2+px+1=0;\gamma,\delta$ the roots of the

equation $x^2+qx+1=0$, then $(lpha-\gamma)(lpha+\delta)(eta-\gamma)(eta+\delta)=$

A.
$$q^2-p^2$$

$$\mathsf{B.}\,p^2-q^2$$

$$\mathsf{C}.\,p^2=q^2$$

D. none of these

Answer: A

4. The number of real roots of $\left(x^2+2x
ight)^2-(x+1)^2-55=0$

5. If
$$\alpha$$
, β are the roots of the equation
 $ax^2 + bx + c = 0$, then
 $\frac{1}{a\alpha + b} + \frac{1}{a\beta + b} =$
A. $\frac{c}{ab}$
B. $\frac{a}{bc}$
C. $\frac{b}{ac}$

D. none of these

Answer: B

Watch Video Solution

6. If
$$\alpha,\beta$$
 are roots of the equation $x^2+3x+7=0, thenrac{1}{lpha}+rac{1}{eta}$ is equal to (a) $7/3$ (b) $-7/3$ (c) $3/7$ (d) $-3/7$

8. The complete set of values of k, for which the quadratic $x^2-kx+k+2=0$ has equal roots, consists of $2+\sqrt{12}$ (b) $2\pm\sqrt{12}$ (c) $2-\sqrt{12}$ (d) $-2-\sqrt{12}$

9. For the equation $\left|x^{2}
ight|+\left|x
ight|-6=0$, the sum of the real roots is (a) 1 (b) 0 (c) 2 (d) none of these

10. The equation of the smallest degree with real coefficients having 1+i as one of the roots is

A.
$$x^2 + x + 1 = 0$$

B.
$$x^2-2x+2=0$$

C.
$$x^2 + 2x + 2 = 0$$

D.
$$x^2 + 2x - 2 = 0$$

Answer: B

11. The value of p and q for which p, q are the roots of the equation $x^2 + px + q = 0$ are

12. The number of solution of $x^2 + |x - 1| = 1$ is (a) 0 (b) 1 (c) 2 (d) 3 Watch Video Solution

13. If
$$x$$
 is real and $k=rac{x^2-x+1}{x^2+x+1}$, then $k\in [1/3,3]$ (b) $k\geq 3$ (c) $k\leq 1/3$ (d) none of these

14. The one root of the equation $x^2 + px + 12 = 0$ is 4, while the equation $x^2 + px + q = 0$ has equal roots, the value of q is

A.
$$\frac{49}{4}$$

B. $\frac{4}{49}$

C. 4

D. none of these

Answer: A

Watch Video Solution

15. If the equations $x^2+2x+3\lambda=0$ and $2x^2+3x+5\lambda=0$ have a non-zero common roots, then $\lambda=$ (a) 1 (b) -1 (c) 3 (d) none of these

16. Solve the quadratic equations by using the

general expressions for the roots of a

quadratic

equation:

$$x^2-ig(3\sqrt{2}-2iig)x-6\sqrt{2}i=0$$

Watch Video Solution

17. Write the number of real roots of the equation

$${(x-1)}^2 + {(x+2)}^2 + {(x-3)}^2 = 0.$$

18. Solve:
$$x^2 - (7-i)x + (18-i) = 0$$

20. Write the roots of the equation
$$(a-b)x^2+(b-c)x+(c-a)=0.$$

21. The least value of k which makes the roots of the equation $x^2 + 5x + k = 0$ imaginary is

A. 4

B. 5

C. 6

D. 7

Answer: D

Watch Video Solution

23. Solve the equation $9x^2 - 12x + 20 = 0$ by

factorization method only.

Watch Video Solution

25. Solve the following quadratic equations by

factorization method: $x^2-5ix-6=0$

26. Solve the equation $25x^2 - 30x + 11 = 0$ by using the general expression for roots quadratic equation $ax^2 + bx + c = 0$, we get: a = 25, b = -30, and c = 11.

Watch Video Solution

27. Solve:
$$2x^2 - (3+7i)x - (3-9i) = 0$$

28. The value of k for which the quadratic equation $kx^2 + 1 = kx + 3x - 11x^2$ has real and equal roots are

Watch Video Solution

29. The value of a such that $x^2 - 11x + a = 0$

and $x^2 - 14x + 2a = 0$ may have a common

root is (a)0 (b) 12 (c) 24 (d) 32.

30. If the roots of $x^2 - bx + c = 0$ are two consecutive integers, then $b^2 - 4c$ is 0 (b) 1 (c) 2 (d) none of these Watch Video Solution **31.** Solve the equation $4x^2 + 9 = 0$ by factorization method. Watch Video Solution

32. Solve the equation $x^2 - 4x + 13 = 0$ by

factorization method.

Watch Video Solution

33. Solve the quadratic equation $2x^2 - 4x + 3 = 0$ by using the general expressions for the roots of a quadratic equation.

34. Solve the following quadratic equation by

factorization method only: $x^2 + 1 = 0$

35. Solve the following quadratic equation by

factorization method only: $x^2 + 2x + 5 = 0$

36. Solve the following quadratic equation by

factorization method only: $x^2 - x + 1 = 0$

Watch Video Solution

37. Solve the following quadratic equation by

factorization method only: $9x^2 + 4 = 0$

39. Solve the following quadratic: $4x^2 + 1 = 0$

61. Solve the following equation by factorization method:

$$x^2 - (3\sqrt{2} + 2i)x + 6\sqrt{2}i = 0$$

Watch Video Solution

62. Solve the following quadratic equation by factorization method: $x^2 + 10ix - 21 = 0$

63. Solve the following quadratic equation by

factorization

method:

$$x^2-ig(2\sqrt{3}+3iig)x+6\sqrt{3}i=0$$

64. Solve the following quadratic equation by

factorization

method:

$$x^2 + (1 - 2i)x - 2i = 0$$

65. Solve the following quadratic equation by factorization method: $6x^2 - 17ix - 12 = 0$ Watch Video Solution

66. Solve the following quadratic equation: $(2+i)x^2 - (5-i)x + 2(1-i) = 0$

67. Solve the following quadratic equation:

$$ix^2 - 4x - 4i = 0$$

Watch Video Solution

68. Solve the following quadratic equation:

$$x^2 - (5-i)x + (18+i) = 0$$

69. Solve the following quadratic equation:

$$x^2 - (2+i)x - (1-7i) = 0$$

Watch Video Solution

70. Solve the following quadratic equation:

$$x^2 + 4ix - 4 = 0$$

71. Solve the following quadratic equation: $2x^2 + \sqrt{15}ix - i = 0$ Watch Video Solution

72. Solve the following quadratic equation: $ix^2 - x + 12i = 0$

73. Solve the following quadratic equation:

$$x^2-ig(3\sqrt{2}-2iig)x-\sqrt{2}i=0$$

Watch Video Solution

74. Solve the following quadratic equation: $2x^2 - (3+7i)x + (9i-3) = 0$ $lpha = rac{3}{2} + \left(rac{1}{2}
ight)i$ and eta = 3i

77. If $2+\sqrt{3}i$ is a root of the equation $x^2+px+q=0$, then write the values of $p \ and \ q$.

78. If the difference between the roots of the equation $x^2 + ax + 8 = 0$ is 2, write the values of a.

Watch Video Solution

Watch Video Solution

80. Write the number of quadratic equation with real roots, which do not change by squaring their roots.

82. If
$$a, b$$
 are the roots of the equation
 $x^{2} + x + 1 = 0, then a^{2} + b^{2} =$
a)1 b)2 c)-1 d)3

83. If
$$\alpha$$
 and β are the roots of $4x^2 + 3x + 7 = 0$ then the value of $\frac{1}{\alpha} + \frac{1}{\beta}$ is

a)
$$rac{4}{7}$$
 b) $-rac{3}{7}$ c) $rac{3}{7}$ d) $-rac{3}{4}$

84. If the difference of the roots of
$$x^2 - px + q = 0$$
 is unity, then
a) $p^2 + 4q = 1$ b) $p^2 - 4q = 1$ c)

$$p^2 + 4q^2 = (1 + 2q)^2$$

 $4p^2 + q^2 = (1 + 2p)^2$
Watch Video Solution

d)

85. If
$$\alpha$$
, β are the roots of the equation
 $x^2 - p(x+1) - c = 0$ then
 $(\alpha + 1)(\beta + 1) =$
a) c b) $c - 1$ c) $1 - c$ d) none of these