©'doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

ALGEBRA OF VECTORS

Solved Examples And Exercises

1. Prove that a necessary and sufficient condition for three vectors \vec{a}, \vec{b} and \vec{c} to be coplanar is that there exist scalars l, m, n not all zero simultaneously such that $l \vec{a}+m \vec{b}+n \vec{c}=\overrightarrow{0}$.

- Watch Video Solution

2. Prove that the following vectors are non-coplanar: $3 \hat{i}+\hat{j}-\hat{k}, 2 \hat{i}-\hat{j}+7 \hat{k}$ and $7 \hat{i}-\hat{j}+23 \hat{k} \hat{i}+2 \hat{j}+3 \hat{k}, 2 \hat{i}+\hat{j}+3$ and $\hat{i}+\hat{j}+\hat{k}$

D Watch Video Solution

3. Using vectors show that the points $A(-2,3,5), B(7,0,-1) C(-3,-2,-5)$ and $D(3,4,7)$ are such that $A B$ and $C D$ intersect at the point $P(1,2,3)$.

(D) Watch Video Solution

4. Prove that $1,1,1$ cannot be direction cosines of a straight line.

- Watch Video Solution

5. A vector \vec{r} is inclined at equal acute angles of $x-a \xi s, y-a \xi s$ and $z-a \xi s$. if $|\vec{r}|=6$ units, find \vec{r}.

- Watch Video Solution

6. Find the angles at which the following vectors are inclined to each of the coordinate axes: $\hat{i}-\hat{j}+\hat{k} \hat{j}-\hat{k} 4 \hat{i}+8 \hat{j}+\hat{k}$

- Watch Video Solution

7. Find the direction cosines of the following vectors: $2 \hat{i}+2 \hat{j}-\hat{k}$ $6 \hat{i}-2 \hat{j}-3 \hat{k} 3 \hat{i}-4 \hat{k}$
8. Prove that the sum of three vectors determined by the medians of a triangle directed from the vertices is zero.

D Watch Video Solution

9. If P is a point and $A B C D$ is a quadrilateral and $\vec{A} P+\vec{P} B+\vec{P} D=\vec{P} C$, show that $A B C D$ is a parallelogram.

- Watch Video Solution

10. If \vec{a} is a vector and m is a scalar such that $m \vec{a}=\overrightarrow{0}$, then what are the alternatives for m and \vec{a} ?

- Watch Video Solution

11. If \vec{a}, \vec{b} are two vectors, then write the truth value of the following statements:
$\vec{a}=-\vec{b}|\vec{a}|=|\vec{b}|$
$|\vec{a}|=|\vec{b}| \vec{a}= \pm \vec{b}|\vec{a}|=|\vec{b}| \vec{a}=\vec{b}$

D Watch Video Solution

12. $A B C D$ is a quadrilateral. Find the sum the vectors $\vec{B} A, \vec{B} C$, and $\vec{D} A$.

D Watch Video Solution

13. $A B C D E$ is pentagon, prove that $\vec{A} B+\vec{B} C+\vec{C} D+$ $\vec{D} E+\vec{E} A=\overrightarrow{0} \vec{A} B+\vec{A} E+\vec{B} C+\vec{D} C+\vec{E} D+\vec{A} C=3 \vec{A} C$

- Watch Video Solution

14. If P, Q and R are three collinear points such that $\vec{P} Q=\vec{a}$ and $\vec{Q} R=\vec{b}$. Find the vector $\vec{P} R$.

D Watch Video Solution

15. Give a condition that three vectors \vec{a}, \vec{b} and \vec{c} from the three sides of a triangle. What are the other possibilities?

D Watch Video Solution

16. If \vec{a} and \vec{b} are two non-collinear vectors having the same initial point. What are the vectors represented by $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$.

D Watch Video Solution

17. Find the magnitude of the vector $\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}$.

- Watch Video Solution

18. Find the unit vector in the direction of $3 \hat{i}+4 \hat{j}-12 \hat{k}$.

D Watch Video Solution

19. The vertices A, B, C of triangle $A B C$ have respectively position vectors $\vec{a}, \vec{b}, \vec{c}$ with respect to a given origin O. Show that the point D where the bisector of $\angle A$ meets $B C$ has position vector $\vec{d}=\frac{\beta \vec{b}+\gamma \vec{c}}{\beta+\gamma}$, where $\beta=|\vec{c}-\vec{a}|$ and, $\gamma=|\vec{a}-\vec{b}|$. Hence, deduce that incentre I has position vector $\frac{\alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}}{\alpha+\beta+\gamma}$ where $\alpha=|\vec{b}-\vec{c}|$

- Watch Video Solution

20. Find a unit vector parallel to the vector $\hat{i}+\sqrt{3} \hat{j}$

D Watch Video Solution

21. Show that the found points A, B, C, D with position vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ respectively such that $3 \vec{a}-2 \vec{b}+5 \vec{c}-6 \vec{d}=\overrightarrow{0}$, are coplanar. Also, find the position vector of the point of intersection of the line segments $A C$ and $B D$.

- Watch Video Solution

22. If \vec{a}, \vec{b} are the position vectors of A, B respectively, find the position vector of a point C in $A B$ produced such that $A C=3 A B$ and that a point D in $B A$ produced such that $B D=2 B A$.

D Watch Video Solution

23. Let $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ be the position vectors of the four distinct points A, B, C, D. If $\vec{b}-\vec{a}=\vec{a}-\vec{d}$, then show that $A B C D$ is parallelogram.

D Watch Video Solution

24. 6). If $\vec{P} Q=3 \hat{i}+2 \hat{j}-\hat{k}$ and the coordinates of P are $(1,-1,2)$, find the coordinates of Q. (7). prove that the points $\hat{i}-\hat{j}, 4 \hat{i}-3 \hat{j}+\hat{k}, 2 \hat{i}-4 \hat{j}+5 \hat{k}$ are the vertices of a right angled triangle.

- Watch Video Solution

25. Prove that the points $\hat{i}-\hat{j}, 4 \hat{i}-3 \hat{j}+\hat{k}$ and $2 \hat{i}-4 \hat{j}+5 \hat{k}$ are the vertices of a right angled triangle.
26. Find the position vector from the origin O to the centroid of the triangle whose vertices are $(1,-1,2),(2,1,3)$ and $-1,2,-1)$.

- Watch Video Solution

27. Show that the four points having position vectors $6 \hat{i}-7 \hat{j}, 16 \hat{i}-19 \hat{j}-4 \hat{k}, 3 \hat{j}-6 \hat{k}, 2 \hat{i}-5 \hat{j}+10 \hat{k}$ are coplanar.

(D) Watch Video Solution

28. If $\vec{a}=3 \hat{i}-\hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}-3 \hat{k}$ and $\vec{c}=\hat{i}+2 \hat{j}-\hat{k}$, find $|3 \vec{a}-2 \hat{b}+4 \hat{c}|$.
29. Can a vector have direction angles $45^{\circ}, 60^{\circ}, 120^{\circ}$

- Watch Video Solution

30. A vector makes an angle of $\frac{\pi}{4}$ with each of x-axis and y-axis Find the angle made by it with the z-axis.

- Watch Video Solution

31. Show that the point A, B, C with position vectors $\vec{a}-2 \vec{b}+3 \vec{c}, 2 \vec{a}+3 \vec{b}-4 \vec{c}$ and $-7 \vec{b}+10 \vec{c}$ are collinear.

- Watch Video Solution

32. If $\vec{A} O+\vec{O} B=\vec{B} O+\vec{O} C$, prove that A, B, C are collinear points.

Watch Video Solution

33. If \vec{a}, \vec{b} are two non-collinear vectors, prove that the points with position vectors $\vec{a}+\vec{b}, \vec{a}-\vec{b}$ and $\vec{a}+\lambda \vec{b}$ are collinear for all real values of λ.

Watch Video Solution

34. If the points with position vectors $10 \hat{i}+3 \hat{j}, 12 \hat{i}-5 \hat{j}$ and $a \hat{i}+11 \hat{j}$ are collinear, find the value of a.

D Watch Video Solution

35. Show that the four points $A, B, C a n d D$ with position vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} respectively are coplanar if and only if $3 \vec{a}-2 \vec{b}+\vec{c}-2 \vec{d}=0$.
36. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively, in the ratio $2: 1$ (i) internally (ii) externally

- Watch Video Solution

37. Five forces $\vec{A} B, \vec{A} C, \vec{A} D, \vec{A} E$ and $\vec{A} F$ act at the vertex of a regular hexagon $A B C D E F$. Prove that the resultant is $6 \vec{A} O$, where O is the centre of heaagon.

- Watch Video Solution

38. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$, find a vector of magnitude 6 units which is parallel to the vector
$2 \vec{a}-\vec{b}+3 \overrightarrow{ }$

D Watch Video Solution

39. Answer the following as true or flase: \vec{a} and \vec{b} are collinear. Two collinear vectors are always equal in magnitude. Zero vector is unique. Two vectors having same magnitude are collinear. Two collinear vectors having the same magnitude are equal.

- Watch Video Solution

40. In Fig. $A B C D$ is a regular hexagon, which vectors are: Collinear

Equal Coinitial Collinear but not equal

- Watch Video Solution

41. Find the coordinates of the tip of the position vector which is equivalent to $\vec{A} B$, where the coordinates of A and B are $(-1,3)$ and ($-2,1$) respectively.

D Watch Video Solution

42. Express $\vec{A} B$ in terms of unit vectors \hat{i} and \hat{j}, when the points are: i) $A(4,-1), B(1,3)$ ii) $A(-6,3), B(-2,-5)$ Find $|\vec{A} B|$ in each case.

D Watch Video Solution

43. If the position vectors of the points $A(3,4), B(5,-6)$ and $(4,-1)$ are $\vec{a}, \vec{b}, \vec{c}$ respectively compute $\vec{a}+2 \vec{b}-3 \vec{b}$

- Watch Video Solution

44. $A B C D$ is parallelogram. If the coordinates of A, B, C are $(-2,-1),(3,0)$ and $(1,-2)$ respectively, find the coordinates of D.

- Watch Video Solution

45. If the position vector of a point $(-4,-3)$ be \vec{a}, find $|a|$.

- Watch Video Solution

46. Find a vector of magnitude 4 units which is parallel to the vector $\sqrt{3} \hat{i}+\hat{j}$.
47. If the position vector \vec{a} of a point $(12, n)$ is such that $|\vec{a}|=13$, find the value (s) of n.

(D) Watch Video Solution

48. Show that the sum of three vectors determined by the medians of a triangle directed from the vertices is zero.

D Watch Video Solution

49. $A B C D$ is parallelogram and P is the point of intersection of its diagonals. If O is the origin of reference, show that $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=4 \vec{O} P$
50. If O is a point in space, $A B C$ is a triangle and D, E, F are the mid-points of the sides $B C, C A$ and $A B$ respectively of the triangle, prove that $\vec{O} A+\vec{O} B+\vec{O} C=\vec{O} D+\vec{O} E+\vec{O} F$.

D Watch Video Solution

51. Show that the point $2 \hat{i},-\hat{i}-4 \hat{j}$ and $-\hat{i}+4 \hat{j}$ from an isosceles triangle.

D Watch Video Solution

52. If \vec{a} be the position vector whose tip is $(5,-3)$, find the coordinates of a point B such that $\overrightarrow{A B}=\vec{a}$, the coordinates of A being $(4,-1)$.
53. Show that the line segments joining the mid-points of opposite sides of a quadrilateral bisects each other.

D Watch Video Solution

54. $A B C D$ are four points in a plane and Q is the point of intersection of the lines joining the mid-points of $A B$ and $C D ; B C$ and $A D$. Show that $\vec{P} A+\vec{P} B+\vec{P} C+\vec{P} D=4 \vec{P} Q$, where P is any point.

(D) Watch Video Solution

55. If \vec{a} and \vec{b} are non-collinear vectors, find the value of x for which the vectors $\vec{\alpha}=(2 x+1) \vec{a}-\vec{b} \operatorname{and} \vec{\beta}=(x-2) \vec{a}+\vec{b}$ are collinear.
56. The projection of a vector on the coordinate axes are $6,-3,2$.

Find its length and direction cosines.

- Watch Video Solution

57. If $\vec{a}, \vec{b}, \vec{c}$ are three non- null vectors such that any two of them are non-collinear. If $\vec{a}+\vec{b}$ is collinear with \vec{c} and $\vec{b}+\vec{c}$ is collinear with \vec{a}, then find $\vec{a}+\vec{b}+\vec{c}$

D Watch Video Solution

 coplanar vectors (where $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors)
59. Show that the points A, B, C with position vectors $-2 \vec{a}+3 \vec{b}+5 \vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}$ and $7 \vec{a}-\vec{c}$ respectively, are collinear.

D Watch Video Solution

60. Prove that the line joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides of trapezium and is half of their difference.

- Watch Video Solution

61. Prove that the segment joining the middle points of two nonparallel sides of a trapezium is parallel to the parallel sides and half of their sum.
62. Using vector method, prove that the line segments joining the mid-points of the adjacent sides of a quadrilateral taken in order form a parallelogram.

(D) Watch Video Solution

63. If the points with position vectors $60 \hat{i}+2 \hat{j}, 40 \hat{i}-8 \hat{j}$ and $a \hat{i}-52 \hat{j}$ are collinear, find the value of a.

- Watch Video Solution

64. If $A B C D$ is quadrilateral and $E a n d F$ are the mid-points of $A C a n d B D$ respectively, prove that $\vec{A} B+\vec{A} D+\vec{C} B+\vec{C} D=4$ $\vec{E} F$.
65. If DandE are the mid-points of sides $A B a n d A C$ of a triangle $A B C$ respectively, show that $\vec{B} E+\vec{D} C=\frac{3}{2} \vec{B} C$.

D Watch Video Solution

66. If G is the centroid of a triangle $A B C$, prove that $\vec{G} A+\vec{G} B+\vec{G} C=\overrightarrow{0}$.

- Watch Video Solution

67. Prove using vectors: Medians of a triangle are concurrent.

- Watch Video Solution

68. Points L, M, N divide the sides $B C, C A, A B$ of $A B C$ in the ratio $1: 4$, 3:2, 3:7 respectively. Prove thatAL + BM + CN is a vector parallel to CK
where K divides $A B$ in the ratio 1:3.

- Watch Video Solution

69. Prove using vectors: The diagonals of a quadrilateral bisect each other iff it is a parallelogram.

- Watch Video Solution

70. Prove that the sum of the vectors directed from the vertices to the mid-points of opposite sides of a triangle is zero.

- Watch Video Solution

71. Prove that the line segment joining the mid points of two side of a triangle is parallel to the third side and equal to half of it.
72. If $A B C a n d A^{\prime} B^{\prime} C$ are two triangles and G, G^{\prime} be their centriods, prove that $\overrightarrow{\forall^{\prime}}+\vec{B} B^{\prime}+\overrightarrow{\mathbb{C}}{ }^{\prime}=3 \vec{G} G^{\prime}$

- Watch Video Solution

73. A vector \vec{r} is inclined at equal to $O X, O Y a n d O Z$. If the magnitude of \vec{r} is 6 units, find \vec{r}.

(D) Watch Video Solution

74. A vector \vec{r} has length 21 and its direction ratios are proportional to $2,-3,6$. Find the direction cosines and components of \vec{r}, is given that \vec{r} Makes an acute angle with $x-$ axis.
75. Show plane whose vector equation is $\vec{r} \cdot(\hat{i}+2 \hat{j}-\hat{k})=3$ contains the line $\vec{r}=\hat{i}+j+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$

- Watch Video Solution

76. Find the angle between line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 x+2 y-11 z-3=0$.

- Watch Video Solution

77. If a, b, c are non-coplanar vectors such that $x_{1} \vec{a}+y_{1} \vec{b}+z_{1} \vec{c}=x_{2} \vec{a}+y_{2} \vec{b}+z_{2} \vec{c}$, prove that $x_{1}=x_{2}, y+1=y+2 a n d z_{1}=z_{2}$.

(D) Watch Video Solution

78. Show that the vectors a, b, c given by $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}+3 \hat{k} a n d \vec{c}=\hat{i}+\hat{j}+\hat{k}$ are noncoplanar. Express vector $\vec{d}=2 \hat{i}-3 \hat{k}$ as a liner combination of the vectors \vec{a}, \vec{b}, and \vec{c}.

D Watch Video Solution

79. A vector $\overrightarrow{O P}$ is inclined to $O X a t 45^{\circ} a n d O Y a t 60^{\circ}$. Find the angle at which $\overrightarrow{O P}$ is inclined to $O Z$.

D Watch Video Solution

80. If a vector makes angles $\alpha, \beta, \gamma w i t h O X, O Y$ andOZ respectively, prove that $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$.
81. $A B C D$ is a parallelogram. If LandM are the mid-points of $B C a n d D C$ respectively, then express $\vec{A} \operatorname{Land} \vec{A} M$ in terms of \vec{A} Band $\vec{A} D$. Also, prove that $\vec{A} L+\vec{A} M=\frac{3}{2} \vec{A} C$.

- Watch Video Solution

82. Find a unit vector in the direction of the resultant of the vectors $\hat{i}-\hat{j}+3 \hat{k}, 2 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}+2 \hat{j}-2 \hat{k}$.

D Watch Video Solution

83. Find the position vector of the mid-point of the vector joining the points $P(2 \hat{i}-3 \hat{j}+4 \hat{k})$ and $\mathrm{Q}(4 \hat{i}+\hat{j}-2 \hat{k})$.

- Watch Video Solution

84. Show that the line joining one vertex of a parallelogram to the mid-point of an opposite side trisects the diagonal and is trisected there at.

(D) Watch Video Solution

85. Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero vectors such that any two of them are non-collinear. If $\vec{a}+2 \vec{b}$ is collinear with \vec{c} and $\vec{b}+3 \vec{c}$ is collinear with \vec{a} then prove that $\vec{a}+2 \vec{b}+6 \vec{c}=\overrightarrow{0}$

- Watch Video Solution

86. If \vec{a}, \vec{b} are the position vectors of the points $(1,-1),(-2, m)$, find the value of m for which \vec{a} and \vec{b} are collinear.
87. Find the position vector of a point A in space such that $\vec{O} A$ is inclined at $60^{\circ} \rightarrow O X$ and at $45^{0} \rightarrow$ OYand $|\vec{O} A|=10$ units.

D Watch Video Solution

$$
\begin{array}{cccc}
\text { 88. Show } & \text { that } & \text { the } & \text { points } \\
A(6,-7,0), B(16,-19,-4), C(0,3,-6) \text { and } & D(2,-5,10)
\end{array}
$$

are such that $A B$ and $C D$ intersect at the point $P(1,-1,2)$.

D Watch Video Solution

89. The lines joining the vertices of a tetrahedron to the centroids of opposite faces are concurrent.
90. Find a vector \vec{r} of magnitude $3 \sqrt{3}$ units which makes an angle of $\frac{\pi}{4}$ and $\frac{\pi}{2}$ with y and z-axis respectively.

- Watch Video Solution

91. Let $\vec{a}=\hat{i}+2 \hat{j}$ and $\vec{b}=2 \hat{i}+\hat{j} i s|\vec{a}|=|\vec{b}|$? Are the vectors \vec{a} and \vec{b} equal?

(D) Watch Video Solution

92. Three vectors of magnitude $a, 2 a, 3 a$ meet in a point and their directions are along the diagonals of the adjacent faces of a cube. Determine their resultant.

- Watch Video Solution

93.

$\vec{a}-2 \vec{b}+3 \vec{c}, \vec{a}-3 \vec{b}+5 \vec{c}$ and $-2 \vec{a}+3 \vec{b}-4 \vec{c} \quad$ are coplanar, where $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar.

- Watch Video Solution

94. Find the angles at which the vector $2 \hat{i}-\hat{j}+2 \hat{k}$ is inclined to each of the coordinate axes.

- Watch Video Solution

$$
\begin{aligned}
& \text { 95. } 1 \text { thove four } \\
& 2 \vec{a}+3 \vec{b}-\vec{c}, \vec{a}-2 \vec{b}+3 \vec{c}, 3 \vec{a}+4 \vec{b}-2 \vec{c} \text { and } \vec{a}-6 \vec{b}+6 \vec{c}
\end{aligned}
$$ are coplanar.

96. Find the direction cosines of the vector joining the points $A(1,2,-3) \operatorname{and} B(-1,-2,1)$, directed from $A a n d B$.

(D) Watch Video Solution

97. If \vec{a} and \vec{b} are two non-collinear vectors, show that points $l_{1} \vec{a}+m_{1} \vec{b}, l_{2} \vec{a}+m_{2} \vec{b}$ and $l_{3} \vec{a}+m_{3} \vec{b}$ are collinear if $\left|l_{1} l_{2} l_{3} m_{1} m_{2} m_{3} 111\right|=0$.

- Watch Video Solution

98. If the position vector \vec{a} of a point $(12, n)$ is such that $|\vec{a}|=13$, find the value of n.

- Watch Video Solution

99. If $A=(0,1) B=(1,0), C=(1,2), D=(2,1)$, prove that $\vec{A} B=\vec{C} D$.

(D) Watch Video Solution

100. Show that the points with position vectors $\vec{a}-2 \vec{b}+3 \vec{c},-2 \vec{a}+3 \vec{b}+2 \vec{c}$ and $-8 \vec{a}+13 \vec{b} \quad$ are collinear whatever be $\vec{a}, \vec{b}, \overrightarrow{ }$

D Watch Video Solution

101. Find the position vector of a point R which divides the line joining the two points P and Q with position vectors $\overrightarrow{O P}=2 \vec{a}+\vec{b}$ and $\overrightarrow{O Q}=\vec{a}-2 \vec{b}$, respectively in the ratio $1: 2$ internally and externally.
102. If D is the mid-point of the side $B C$ of a triangle $A B C$, prove that $\vec{A} B+\vec{A} C=2 \vec{A} D$.

D Watch Video Solution

103. Show that the found points A, B, C, D with position vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ respectively such that $3 \vec{a}-2 \vec{b}+5 \vec{c}-6 \vec{d}=\overrightarrow{0}$, are coplanar. Also, find the position vector of the point of intersection of the line segments $A C$ and $B D$.

- Watch Video Solution

104. Let $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of three distinct points A ,

B, C. If there exist scalars x, y, z (not all zero) such that $x \vec{a}+y \vec{b}+z \vec{c}=0 a n d x+y+z=0, \quad$ then show that $A, B a n d C$ lie on a line.

- Watch Video Solution

105. If \vec{a} and \vec{b} are position vectors of points $A a n d B$ respectively, then find the position vector of points of trisection of $A B$.

(D) Watch Video Solution

106. If \vec{a} and \vec{b} are position vectors of AandB respectively, find the position vector of a point $C o n B A$ produced such that $B C=1.5 B A$.

(D) Watch Video Solution

107. If $\vec{c}=3 \vec{a}+4 \vec{b}$ and $2 \vec{c}=\vec{a}-3 \vec{b}$, show that (i)
\vec{c} and \vec{a} have the same direction and $|\vec{c}|>|\vec{a}|$ (ii) \vec{b} and \vec{c}
have opposite direction and $|\vec{c}|>|\vec{b}|$
108. Find the position vectors of the points which divide the join of the points $2 \vec{a}-3 \vec{b}$ and $3 \vec{a}-2 \vec{b}$ internally and externally in the ratio 2: 3 .

D Watch Video Solution

109. Let O be the centre of a regular hexagon $A B C D E F$. Find the sum of the vectors $\vec{O} A, \vec{O} B, \overrightarrow{O C}, \vec{O} D, \vec{O} \operatorname{Eand} \vec{O} F$.

D Watch Video Solution

110. For any two vectors \vec{a} and \vec{b}, prove that $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$
111. IF $P_{1}, P_{2}, P_{3}, P_{4}$ are points in a plane or space and O is the origin of vectors, show that P_{4} coincides with
$O \Leftrightarrow(\overrightarrow{O P})_{1}+\vec{P}_{1} P_{2}+\vec{P}_{2} P_{3}+\vec{P}_{3} P_{4}=\overrightarrow{0}$.

- Watch Video Solution

112. Using vectors, find the value of λ such that the points $(\lambda,-10,3),(1,-1,3) \operatorname{and}(3,5,3)$ are collinear.

D Watch Video Solution

113. If \vec{a}, \vec{b} are any two vectors, then give the geometrical interpretation of g relation $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$

(D) Watch Video Solution

114. If $\vec{P} O+\vec{O} Q=\vec{Q} O+\vec{O} R$, show that the point, P, Q, R are collinear.

D Watch Video Solution

115. If the sum of two unit vectors is a unit vector, prove that the magnitude of their difference is $\sqrt{3}$.

- Watch Video Solution

116. If \vec{a} and \vec{b} are the vectors determined by two adjacent sides of a regular hexagon, what are the vectors determined by the other sides taken in order?
117. Vectors drawn the origin O to the points $A, B a n d C$ are respectively \vec{a}, \vec{b} and $\overrightarrow{4} a-\overrightarrow{3} b$. find $\vec{A} \operatorname{Cand} \vec{B} C$.

D Watch Video Solution

118. If \vec{a} and \vec{b} represent two adjacent sides \vec{A} Band $\vec{B} C$ respectively of a parallelogram $A B C D$, then show that its diagonals $\vec{A} \operatorname{Cand} \vec{D} B$ are equal to $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ respectively.

(D) Watch Video Solution

119. Let $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ be the position vectors of the four distinct points A, B, C, D. If $\vec{b}-\vec{a}=\vec{a}-\vec{d}$, then show that $A B C D$ is parallelogram.
120. Find a vector of magnitude 11 in the direction opposite to that of $\vec{P} Q$, where P and Q are the points $(1,3,2)$ and $(1,0,8)$ respectively.

D Watch Video Solution

121. Find the unit vector in the direction of $3 \hat{i}-6 \hat{j}+2 \hat{k}$.

(D) Watch Video Solution

122. If \vec{a} is a position vector whose tip is $(1,-3)$. Find the coordinates of the point B such that $\vec{A} B=\vec{a}$, if A has coordinates ($-1,5$).
123. Find the coordinates of the tip of the position vector which is equivalent to $\vec{A} B$, where the coordinates of AandBare $(3,1) \operatorname{and}(5,0)$ respectively.

D Watch Video Solution

124. Write all the unit vectors in $X Y-p l a n e$.

- Watch Video Solution

125. Find a unit vector parallel to the vector $3 \hat{i}+4 \hat{j}$.

- Watch Video Solution

126. If A, B, C have position vectors $(2,0,0),(0,1,0),(0,0,2)$, show that $A B C$ is isosceles.

Watch Video Solution

127. If the points $(-1,1,2),(2, m, 5) \operatorname{and}(3,11,6)$ are collinear, find the value of m.

D Watch Video Solution

128. If $\vec{a}=3 \hat{i}-2 \hat{j}+k a n d \vec{b}=2 \hat{i}-4 \hat{j}-3 k$, find $|\vec{a}-2 \vec{b}|$.

- Watch Video Solution

129. If the position vectors of the points
$A, B, C, \operatorname{Dare} 2 \hat{i}+4 \hat{k}, 5 \hat{i}+3 \sqrt{3} \hat{j}+4 \hat{k},-2 \sqrt{3} \hat{j}+\hat{k} a n d 2 \hat{i}+\hat{k}$ respectively, prove that $C D$ is parallel to $A B a n d C D=\frac{2}{3} A B$.
130. Represent graphically
i. a displacement of $40 \mathrm{~km}, 30^{\circ}$ west of south ii $60 \mathrm{~km}, 40^{\circ}$ east of north iii. 50 km south east.

D Watch Video Solution

131. Classify the following measures as scalars and vectors
a. 10 kg b. 10 meters north -west c. 10 Newton

- Watch Video Solution

132. Classify the following measures as scalars and vectors
a. $30 \mathrm{~km} / \mathrm{hr} \mathrm{b} .50 \mathrm{~m} / \mathrm{sec}$ towards north $\mathrm{c} .10^{-19}$ coloumb

D Watch Video Solution

133. In a fig 23.4 (a square), identify the following vectors: i.Coinitial ii.Equal iii.Collinear but not equal

(D) Watch Video Solution

134. In fig 23.3, which of the vectors are: i.Collinear
ii. Equal
iii. Co-initial

- Watch Video Solution

135. Represent the following graphically:
i.A displacement of $40 \mathrm{~km}, 30^{\circ}$ east of north ii.A displacement of 50
km south east iii.A displacement of $70 \mathrm{~km}, 40^{0}$ north of west
136. Classify the following measures as scalars and vectors: a .15 kg b. 520 kg weight c. 45^{0} d. 10 meters south east e. $50 \mathrm{~m} / \mathrm{sec}^{2}$

D Watch Video Solution

137. Classify the following as scalars and vector quantities: a.Time period b. Distance
c. Displacement d.Force
e. Work

Velocity g.Acceleration

D Watch Video Solution

138. In Fig. $A B C D$ is a regular hexagon, which vectors are: Collinear Equal Coinitial Collinear but not equal
139. Answer the following as true or flase: \vec{a} and \vec{b} are collinear.

Two collinear vectors are always equal in magnitude. Zero vector is unique. Two vectors having same magnitude are collinear. Two collinear vectors having the same magnitude are equal.

- Watch Video Solution

140. If $\vec{a}, \vec{b}, \vec{c}$ be the vectors represented by the sides of a triangle, taken in order, then prove that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$.

D Watch Video Solution

141. If P, Q and R are three collinear points such that $\vec{P} Q=\vec{a}$ and $\vec{Q} R=\vec{b}$. Find the vector $\vec{P} R$.

- Watch Video Solution

142. Give a condition that three vectors \vec{a}, \vec{b} and \vec{c} from the three sides of a triangle. What are the other possibilities?

D Watch Video Solution

143. If \vec{a} and \vec{b} are two non-collinear vectors having the same initial point. What are the vectors represented by $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$.

- Watch Video Solution

144. If \vec{a} is a vector and m is a scalar such that $m \vec{a}=\overrightarrow{0}$, then what are the alternatives for m and \vec{a} ?
145. If \vec{a}, \vec{b} are two vectors, then write the truth value of the following statements:

$$
\vec{a}=-\vec{b}|\vec{a}|=|\vec{b}|
$$

$|\vec{a}|=|\vec{b}| \vec{a}= \pm \vec{b}|\vec{a}|=|\vec{b}| \vec{a}=\vec{b}$

D Watch Video Solution

146. If \vec{a}, \vec{b} are two vectors, then write the truth value of the following statements:

$$
\vec{a}=-\vec{b}|\vec{a}|=|\vec{b}|
$$

$|\vec{a}|=|\vec{b}| \vec{a}= \pm \vec{b}|\vec{a}|=|\vec{b}| \vec{a}=\vec{b}$

- Watch Video Solution

147. If \vec{a}, \vec{b} are two vectors, then write the truth value of the following statements:

$$
\vec{a}=-\vec{b}|\vec{a}|=|\vec{b}|
$$

$|\vec{a}|=|\vec{b}| \vec{a}= \pm \vec{b}|\vec{a}|=|\vec{b}| \vec{a}=\vec{b}$
148. $A B C D$ is a quadrilateral. Find the sum the vectors $\vec{B} A, \vec{B} C$, and $\vec{D} A$.

D Watch Video Solution

149. $A B C D E$ is pentagon, prove that $\vec{A} B+\vec{B} C+\vec{C} D+$ $\vec{D} E+\vec{E} A=\overrightarrow{0} \vec{A} B+\vec{A} E+\vec{B} C+\vec{D} C+\vec{E} D+\vec{A} C=3 \vec{A} C$

- Watch Video Solution

150. $A B C D E$ is pentagon, prove that $\vec{A} B+\vec{B} C+\vec{C} D+$ $\vec{D} E+\vec{E} A=\overrightarrow{0} \vec{A} B+\vec{A} E+\vec{B} C+\vec{D} C+\vec{E} D+\vec{A} C=3 \vec{A} C$

- Watch Video Solution

151. Prove that the sum of all vectors drawn from the centre of a regular octagon to its vertices is the zero vector.

D Watch Video Solution

152. If P is a point and $A B C D$ is a quadrilateral and $\vec{A} P+\vec{P} B+\vec{P} D=\vec{P} C$, show that $A B C D$ is a parallelogram.

(D) Watch Video Solution

153. Five forces $\vec{A} B, \vec{A} C, \vec{A} D, \vec{A} E$ and $\vec{A} F$ act at the vertex of a regular hexagon $A B C D E F$. Prove that the resultant is $6 \vec{A} O$, where O is the centre of heaagon.

- Watch Video Solution

154. The position vectors of A, B, C and D are $\vec{a}, \vec{b}, \overrightarrow{2} a+\overrightarrow{3} b$ and $\vec{a}-\overrightarrow{2} b$ respectively show that $\vec{D} B=3 \vec{b}-\vec{a}$ and $\vec{A} C=\vec{a}+\overrightarrow{3} b$

D Watch Video Solution

155. Let $A B C D$ be as parallelogram. If $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of A, B, C respectively with reference to the origin 0 , find the position vector of D reference to 0 .

D Watch Video Solution

156. Find the position vector of a point R which divides the line segment joining P and Q whose position vectors are $2 \vec{a}+\vec{b}$ and $\vec{a}-4 \vec{b}$, externally in the ratio $1: 2$, also show that P is the midpoint of the line segment RQ .
157. Let $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ be the position vectors of the four distinct points A, B, C, D. If $\vec{b}-\vec{a}=\vec{a}-\vec{d}$, then show that $A B C D$ is parallelogram.

- Watch Video Solution

158. If \vec{a}, \vec{b} are the position vectors of A, B respectively, find the position vector of a point C in $A B$ produced such that $A C=3 A B$ and that a point D in $B A$ produced such that $B D=2 B A$.

- Watch Video Solution

159. Show that the found points A, B, C, D with position vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ respectively such that $3 \vec{a}-2 \vec{b}+5 \vec{c}-6 \vec{d}=\overrightarrow{0}$,
are coplanar. Also, find the position vector of the point of intersection of the line segments $A C$ and $B D$.

D Watch Video Solution

160. Show that the four points P, Q, R, S with position vectors $\vec{p}, \vec{q}, \vec{r}, \vec{s}$ respectively such that $5 \vec{p}-2 \vec{q}+6 \vec{r}-9 \vec{s}=\overrightarrow{0}$, are coplanar. Also find the position vector of the point of intersection of the line segments PR and QS.

- Watch Video Solution

161. The vertices A, B, C of triangle $A B C$ have respectively position vectors $\vec{a}, \vec{b}, \vec{c}$ with respect to a given origin O. Show that the point D where the bisector of $\angle A$ meets $B C$ has position vector $\vec{d}=\frac{\beta \vec{b}+\gamma \vec{c}}{\beta+\gamma}$, where $\beta=|\vec{c}-\vec{a}|$ and, $\gamma=|\vec{a}-\vec{b}|$.
162. If P and Q are the mid points of the sides AB and CD of a parallelogram $A B C D$, prove that $D P$ and $B Q$ cut the diagonal $A C$ in its points of trisection which are also the points of trisection of DP and $B Q$ respectively.

D Watch Video Solution

163. If O is a point in space, $A B C$ is a triangle and D, E, F are the mid-points of the sides $B C, C A$ and $A B$ respectively of the triangle, prove that $\vec{O} A+\vec{O} B+\vec{O} C=\vec{O} D+\vec{O} E+\vec{O} F$.

- Watch Video Solution

164. Show that the sum of three vectors determined by the medians of a triangle directed from the vertices is zero.

Watch Video Solution

165. $A B C D$ is parallelogram and P is the point of intersection of its diagonals. If O is the origin of reference, show that $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=4 \overrightarrow{O P}$.

(Watch Video Solution

166. Show that the line segments joining the mid-points of opposite sides of a quadrilateral bisects each other.

- Watch Video Solution

167. $A B C D$ are four points in a plane and Q is the point of intersection of the lines joining the mid-points of $A B$ and $C D ; B C$
and $A D$. Show that $\vec{P} A+\vec{P} B+\vec{P} C+\vec{P} D=4 \vec{P} Q$, where P is any point.

D Watch Video Solution

168. Prove that the internal bisectors of the angles of a triangle are concurrent

D Watch Video Solution

169. Find the values of x and y so that the vectors $2 \hat{i}+3 \hat{j}$ and $x \hat{i}+y \hat{j}$ are equal.

- Watch Video Solution

170. $A B C D$ is a parallelogram. If the coordinates of A, B, C are $(2,3),(1,4)$ and $(0,-2)$ respectively, find the

Watch Video Solution

171. Find the vector of magnitude 5 units which is parallel to the vector $2 \hat{i}-4 \hat{j}$.

- Watch Video Solution

172. Find the components along the coordinates axes of the position vector of each of the following points: $P(5,4)$

- Watch Video Solution

173. Find the components along the coordinates axes of the position vector of each of the following points: $Q(-4,3)$
174. Find the components along the coordinates axes of the position vector of each of the following points: $R(5,-7)$

- Watch Video Solution

175. Find the components along the coordinates axes of the position vector of each of the following points: $S(-4,-5)$

- Watch Video Solution

176. Find the scalar and vector components of the vector with initial point $A(2,1)$ and terminal point $B(-5,7)$.
177. Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of x-axis.

D Watch Video Solution

178. A girl walks 4 km towards west, then she walks 3 km in a direction $30 o e a s t$ of north and stops. Determine the girls displacement from her initial point of departure.

D Watch Video Solution

179. If the position vector of a point $(-4,-3) b e \vec{a}$, find $|\vec{a}|$.
180. If the position vector \vec{a} of a point $(12, n)$ is such that $|\vec{a}|=13$, find the value of n.

D Watch Video Solution

181. Find a vector of magnitude 4 units which is parallel to the vector $\sqrt{3} \hat{i}+\hat{j}$.

- Watch Video Solution

182. Express $\vec{A} B$ in terms of unit vectors \hat{i} and \hat{j}, when the points are: i) $A(4,-1), B(1,3)$ ii) $A(-6,3), B(-2,-5)$ Find $|\vec{A} B|$ in each case.
183. Find the coordinates of the tip of the position vector which is equivalent to $\vec{A} B$, where the coordinates of A and B are $(-1,3)$ and ($-2,1$) respectively.

(D) Watch Video Solution

184. $A B C D$ is parallelogram. If the coordinates of A, B, C are $(-2,-1),(3,0)$ and $(1,-2)$ respectively, find the coordinates of D.

D Watch Video Solution

185. If the position vectors of the points $A(3,4), B(5,-6)$ and $(4,-1)$ are $\vec{a}, \vec{b}, \vec{c}$ respectively compute $\vec{a}+2 \vec{b}-3 \vec{r}$
186. If \vec{a} be the position vector whose tip is $(5,-3)$, find the coordinates of a point B such that $\vec{A} B=\vec{a}$, the coordinates of A being $(4,-1)$.

- Watch Video Solution

187. Show that the point $2 \hat{i},-\hat{i}-4 \hat{j}$ and $-\hat{i}+4 \hat{j}$ from an isosceles triangle.

D Watch Video Solution

188. Find a unit vector parallel to the vector $\hat{i}+\sqrt{3} \hat{j}$

- Watch Video Solution

189. Find the components along the coordinate axes of the position vector of each of the following points: $P(3,2)$

(D) Watch Video Solution

190. Find the components along the coordinate axes of the position vector of each of the following points: $(-5,1)$

D Watch Video Solution

191. Find the components along the coordinate axes of the position vector of each of the following points: $R(-11,-9)$
192. Find the components along the coordinate axes of the position vector of each of the following points: $S(4,-3)$

- Watch Video Solution

193. Find the value of x, y and z so that the vectors $\vec{a}=x \hat{i}+2 \hat{j}+z \hat{k}$ and $\vec{b}=2 \hat{i}+y \hat{j}+\hat{k}$ are equal.

D Watch Video Solution

$$
\begin{aligned}
& \text { 194. Find } \\
& \vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k} \text { and } \vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}
\end{aligned}
$$

195. Find the distance between the points $A(2,3,1)$ and $B(-1,2,-3)$, using vector method.

(D) Watch Video Solution

196. Show that the points A, B and C with position vectos $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$ represent, form the vertices of a right angled triangle.

D Watch Video Solution

197. Find the unit vector in the direction of $\vec{a}+\vec{b}, \quad$ if $\quad \vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$.
198. Fined the unit vector in the direction of vector $\vec{P} Q$, where P and Q are the points $(1,2,3)$ and $(4,5,6)$, respectively.

(D) Watch Video Solution

199. Find the magnitude of the vectors $\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}$.

D Watch Video Solution

200. Find the unit vector in the direction of $3 \hat{i}+4 \hat{j}-12 \hat{k}$.

- Watch Video Solution

201. The adjacent sides of a parallelogram are represented by the vectors $\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}+2 \hat{k}$. Find unit vectors parallel to the diagonals of the parallelogram.

Watch Video Solution

202.

$\vec{a}=3 \hat{i}-\hat{j}-4 \hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}-3 \hat{k}$ and $\vec{c}=\hat{i}+2 \hat{j}-\hat{k}$,
find $|3 \vec{a}-2 \vec{b}+4 \vec{c}|$.

- Watch Video Solution

203. 6). If $\vec{P} Q=3 \hat{i}+2 \hat{j}-\hat{k}$ and the coordinates of P are $(1,-1,2)$, find the coordinates of Q. (7). prove that the points $\hat{i}-\hat{j}, 4 \hat{i}-3 \hat{j}+\hat{k}, 2 \hat{i}-4 \hat{j}+5 \hat{k}$ are the vertices of a right angled triangle.

D Watch Video Solution

204. Prove that the points $\hat{i}-\hat{j}, 4 \hat{i}-3 \hat{j}+\hat{k}$ and $2 \hat{i}-4 \hat{j}+5 \hat{k}$ are the vertices of a right angled triangle.

(D) Watch Video Solution

205. If the vertices A, B, C of a triangle ABC are the point with position vectors $a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}, c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k} \quad$ respectively, what are the vectors determined by its sides? Find the length of these vectors.

D Watch Video Solution

206. Find the position vector from the origin O to the centroid of the triangle whose vertices are $(1,-1,2),(2,1,3)$ and $-1,2,-1)$.
207. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively, in the ratio $2: 1$ (i) internally (ii) externally

Watch Video Solution

208. Fined the unit vector in the direction of vector $\vec{P} Q$, where P and Q are the points ($1,2,3$) and ($4,5,6$), respectively.

D Watch Video Solution

| 209. Show that | the | points |
| :---: | :---: | :---: | :---: |
| $A(2 \hat{i}-\hat{j}+\hat{k}), B(\hat{i}-3 \hat{j}-5 \hat{k}), C(3 \hat{i}-4 \hat{j}-4 \hat{k})$ | are the | |

vertices of a right angled triangle.

- Watch Video Solution

210. Find the position vector of the mid point of the vector joining the points $P(2,3,4)$ and $Q(4,1,-2)$.

D Watch Video Solution

211. Find the value of x for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

D Watch Video Solution

212. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$,
find a vector of magnitude 6 units which is parallel to the vector $2 \vec{a}-\vec{b}+3 \overrightarrow{ }$
213. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$ find a unit vector parallel to $2 \vec{a}-\vec{b}+3 \overrightarrow{ }$,

- Watch Video Solution

214. Two vectors $\hat{j}+\hat{k}$ and $3 \hat{i}-\hat{j}+4 \hat{k}$ represents the two side vectors $\vec{A} B$ and $\vec{A} C$ respectively of $\triangle A B C$ Find the length of median from A .

D Watch Video Solution

215. Find a vector magnitude 5 units, and parallel to the resultant of the vectors $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

216. If a and b ar non collinear vector such that $x_{1} \vec{a}+y_{1} \vec{b}=x_{2} \vec{a}+y_{2} \vec{b}$, then prove that $x_{1}=x_{2}$ and $y_{1}=y_{2}$.

(D) Watch Video Solution

217. Show that the points with position vectors $\vec{a}-2 \vec{b}+3 \vec{c},-2 \vec{a}+3 \vec{b}-\vec{c}$ and $4 \vec{a}-7 \vec{b}+7 \vec{c} \quad$ are collinear.

D Watch Video Solution

218. Show that the three points $A(-2,3,5) ; B(1,2,3)$ and $C(7,0,-1)$ are collinear.
219. The position vectors of the points P, Q, R are $\hat{i}+2 \hat{j}+3 \hat{k},-2 \hat{i}+3 \hat{j}+5 \hat{k}$ and $7 \hat{i}-\hat{k}$ respectively. Prove that P, Q and R are collinear points.

D Watch Video Solution

220. Show that the point A, B, C with position vectors $\vec{a}-2 \vec{b}+3 \vec{c}, 2 \vec{a}+3 \vec{b}-4 \vec{c}$ and $-7 \vec{b}+10 \vec{c}$ are collinear.

D Watch Video Solution

221. If a, b, c are non coplanar vectors prove that the points having the following position vectors are collinear: $\vec{a}, \vec{b}, 3 \vec{a}-2 \vec{b}$
222. If a, b, c are non coplanar vectors prove that the points having the following position vectors are collinear:
$\vec{a}+\vec{b}+\vec{c}, 4 \vec{a}+3 \vec{b}, 10 \vec{a}+7 \vec{b}-2 \vec{c}$.

(D) Watch Video Solution

223. Prove that the points having position vectors $\hat{i}+2 \hat{j}+3 \hat{k}, 3 \hat{i}+4 \hat{j}+7 \hat{k},-3 \hat{i}-2 \hat{j}-5 \hat{k}$ are collinear.

D Watch Video Solution

224. If the points with position vectors $10 \hat{i}+3 \hat{j}, 12 \hat{i}-5 \hat{j}$ and $a \hat{i}+11 \hat{j}$ are collinear, find the value of a.

- Watch Video Solution

225. If \vec{a}, \vec{b} are two non-collinear vectors, prove that the points with position vectors $\vec{a}+\vec{b}, \vec{a}-\vec{b}$ and $\vec{a}+\lambda \vec{b}$ are collinear for all real values of λ.

- Watch Video Solution

226. If $\overrightarrow{A O}+\overrightarrow{O B}=\overrightarrow{B O}+\overrightarrow{O C}$, prove that A, B, C are collinear points.

D Watch Video Solution

227. If the points $A(m,-1), B(2,1)$ and $C(4,5)$ are collinear find the value of m.

- Watch Video Solution

228. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

D Watch Video Solution

229. Show that the points (3,4), (-5, 16), (5,1) are collinear.

D Watch Video Solution

230. If the vectors $\vec{a}=2 \hat{i}-3 \hat{j}$ and $\vec{b}=-6 \hat{i}+m \hat{j}$ are collinear, find the value of m

- Watch Video Solution

231. 8. Show that the points $A(1,-2,-8), B(5,0,-2)$ and $C(11,3,7)$ are collinear and find the ratio in which B divides $A C$.

(b) Watch Video Solution

232. Using vectors show that the points $A(-2,3,5), B(7,0,-1) C(-3,-2,-5)$ and $D(3,4,7)$ are such that $A B$ and $C D$ intersect at the point $P(1,2,3)$.

D Watch Video Solution

233. Show that the points whose position vectors are as given below are collinear: $2 \hat{i}+\hat{j}-\hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$ and $\hat{i}+4 \hat{j}-3 \hat{k}$

D Watch Video Solution

234. Using vector method, prove that the following points are collinear:
$A(6,7,-1) B(2,-3,1) C(4,-5,0)$
235. Using vector method, prove that the following points are collinear:
$A(2,-1,3) B(4,3,1) C(3,1,2)$

- Watch Video Solution

236. Using vector method, prove that the following points are collinear:
$A(1,2,7) B(2,6,3) C(3,10,-1)$

D Watch Video Solution

237. Using vector method, prove that the following points are collinear: $A(-3,-2-5), B(1,2,3)$ and $C(3,4,7)$
238. If a, b, c are non zero non coplanar vectors, prove that the following vectors are coplanar. $5 \vec{a}+6 \vec{b}+7 \vec{c}, 7 \vec{a}-8 \vec{b}+9 \vec{c}$ and $3 \vec{a}+20 \vec{b}+5 \vec{c}$

D Watch Video Solution

239. Let \vec{a}, \vec{b} and \vec{c}, be non-zero non-coplanar vectors. Prove that:
$\vec{a}-2 \vec{b}+3 \vec{c},-2 \vec{a}+3 \vec{b}-4 \vec{c}$ and $\vec{c}-3 \vec{b}+5 \vec{c} \quad$ are coplanar vectors.
$2 \vec{a}-\vec{b}+3 \vec{c}, \vec{a}+\vec{b}-2 \vec{c}$ and $\vec{a}+\vec{b}-3 \vec{c}$ are noncoplanar vectors.
240. Show that the four points having position vectors $6 \hat{i}-7 \hat{j}, 16 \hat{i}-19 \hat{j}-4 \hat{k}, 3 \hat{j}-6 \hat{k}, 2 \hat{i}-5 \hat{j}+10 \hat{k}$ are not coplanar.

(D) Watch Video Solution

241. Prove that the following vectors are coplanar:
$2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$

D Watch Video Solution

242. Prove that the following vectors are coplanar: $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+3 \hat{j}-\hat{k}$ and $-\hat{i}-2 \hat{j}+2 \hat{k}$

D Watch Video Solution

243. Prove that the following vectors are non coplanar: $3 \hat{i}+\hat{j}-\hat{k}, 2 \hat{i}-\hat{j}+7 \hat{k}$ and $7 \hat{i}-\hat{j}+23 \hat{k}$

D Watch Video Solution

244. Prove that the following vectors are non-coplanar: $\hat{i}+2 \hat{j}+3 \hat{k}, 2 \hat{i}+\hat{j}+3 \hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

245. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors, prove that the following vectors are non coplanar:
$2 \vec{a}-\vec{b}+3 \vec{c}, \vec{a}+\vec{b}-2 \vec{c}$ and $\vec{a}+\vec{b}-3 \vec{c}$

D Watch Video Solution
246. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors, prove that the following vectors are non coplanar:
$\vec{a}+2 \vec{b}+3 \vec{c}, 2 \vec{a}+\vec{b}+3 \vec{c}$ and $\vec{a}+\vec{b}+\vec{c}$

D Watch Video Solution

247. Prove that a necessary and sufficient condition for three vectors \vec{a}, \vec{b} and \vec{c} to be coplanar is that there exist scalars l, m, n not all zero simultaneously such that $l \vec{a}+m \vec{b}+n \vec{c}=\overrightarrow{0}$.

(Watch Video Solution

248. Show that the four points $A, B, C a n d D$ with position vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} respectively are coplanar if and only if $3 \vec{a}-2 \vec{b}+\vec{c}-2 \vec{d}=0$.
249. The direction cosines of a vector \vec{r}, which is equally inclined to $O X, O Y$ and $O Z$ If $|\vec{r}|$ is given, the total number of such vectors is given by

- Watch Video Solution

250. Can a vector have direction angles $45^{\circ}, 60^{\circ}, 120^{\circ}$

D Watch Video Solution

251. Prove that $1,1,1$ cannot be direction cosines of a straight line.

- Watch Video Solution

252. A vector makes an angle of $\frac{\pi}{4}$ with each of x-axis and y-axis Find the angle made by it with the z-axis.

- Watch Video Solution

253. The vector \vec{r} is inclined at equal acute angles of x-axis,y axis, and z-axis. If $|\vec{r}|=6$ units, find \vec{r}.

D Watch Video Solution

254. A vector \vec{r} is inclined to x -axis at 45° and y -axis at 60°. If $|\vec{r}|=8$ units, find \vec{r}.

- Watch Video Solution

255. Find the direction cosines of the following vectors: $2 \hat{i}+2 \hat{j}-\hat{k}$ $6 \hat{i}-2 \hat{j}-3 \hat{k} 3 \hat{i}-4 \hat{k}$

D Watch Video Solution

256. Find the direction cosines of the following vectors: $2 \hat{i}+2 \hat{j}-\hat{k}$ $6 \hat{i}-2 \hat{j}-3 \hat{k} 3 \hat{i}-4 \hat{k}$

(D) Watch Video Solution

257. Find the direction cosines of the following vectors: $2 \hat{i}+2 \hat{j}-\hat{k}$ $6 \hat{i}-2 \hat{j}-3 \hat{k} 3 \hat{i}-4 \hat{k}$
258. Find the angles at which the following vectors are inclined to each of the coordinate axes: $\hat{i}-\hat{j}+\hat{k}$

(D) Watch Video Solution

259. Find the angles at which the following vectors are inclined to each of the coordinate axes: $\hat{j}-\hat{k}$

- Watch Video Solution

260. Find the angles at which the following vectors are inclined to each of the coordinate axes: $4 \hat{i}+8 \hat{j}+\hat{k}$
261. Show that the vector $i+j+k$ is equally inclined with the axes $O X, O Y$ and $O Z$.

D Watch Video Solution

262. Show that the direction cosines of a vector equally inclined to
the axes $O X, O Y$ and $O Z$ are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$.

- Watch Video Solution

263. If a unit vector \vec{a} makes an angle $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} then find θ and hence, the components of \vec{a}.

D Watch Video Solution

264. Find a vector \vec{r} of magnitude $3 \sqrt{2}$ units which makes an angle of $\frac{\pi}{4}$ and $\frac{\pi}{2}$ with y and z-axis respectively.

- Watch Video Solution

265. A vector \vec{r} is inclined at equal angle to the three axes. If the magnitude of \vec{r} is $2 \sqrt{3}$, find \vec{r}.

- Watch Video Solution

266. Define zero vector.

D Watch Video Solution

267. Define unit vector.
268. Define position vector of point.

- Watch Video Solution

269. Write $\vec{P} Q+\vec{R} P+\vec{Q} R$ in the simplified form.

D Watch Video Solution

270. If \vec{a} and \vec{b} represent two adjacent sides of a parallel then write vectors representing its diagonals.

D Watch Video Solution

271. If $\vec{a}, \vec{b}, \vec{c}$ represent the sides of a triangle taken in order, then write the value of $\vec{a}+\vec{b}+\vec{c}$

- Watch Video Solution

272. If $\vec{a}, \vec{b}, \vec{c}$ are position vectors of the vertices A, B and C respectively, of a triangle $A B C$, write the value of $\vec{A} B+\vec{B} C+\vec{C} A$.

- Watch Video Solution

273. If $\vec{a}, \vec{b}, \vec{c}$ are position vectors of the vertices of a triangle, then write the position vector of its centroid.

D Watch Video Solution

274. If $\vec{a}, \vec{b}, \vec{c}$ are position vectors o the point A, B, and C respectively, write the value of $\vec{A} B+\vec{B} C+\vec{A} C$.
275. If G denotes the centroid of Delta $A B C$, then write the value ० $\vec{G} A+\vec{G} B+\vec{G} C$.

D Watch Video Solution

276. If D is the mid point of side $B C$ of a triangle $A B C$ such that $\vec{A} B+\vec{A} C=\lambda \vec{A} D$, write the value of λ.

D Watch Video Solution

277. If D, E, F are the mid points of the side $B C, C A$ and $A B$ respectively of a triangle $A B C$, write the value of $\vec{A} D+\vec{B} E+\vec{C} F$.

- Watch Video Solution

278. If \vec{a} is a non zero vecrtor iof modulus a and m is a non zero scalar such that $m a$ is a unit vector, write the value of m.

(D) Watch Video Solution

279. If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the vertices of an equilateral triangle whose orthocentre is the origin, then write the value of $\vec{a}+\vec{b}+\vec{c}$

D Watch Video Solution

280. Write a unit vector making equal acute angle with the coordinates axes.
281. If a vector makes angle α, β, γ with OX, OY and OZ respectively, then write the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$.

(D) Watch Video Solution

282. Write a vector of magnitude 12 units which makes 45^{0} angle with X-axis 60° angle with Y-axis and an obtuse angle with Z-axis.

(D) Watch Video Solution

283. Write the length (magnitude) of a vector whose project on the coordinate axes are 12,3 and 4 units.
284. Write the position vector of a point dividing the line segment joining points A and B with position vectors \vec{a} and \vec{b} externally in the ration $1: 4$ where $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}+\hat{k}$.

D Watch Video Solution

285. Write the direction cosines of the vector $\vec{r}=6 \hat{i}-2 \hat{j}+3 \hat{k}$.

(D) Watch Video Solution

286. If $\vec{a}=i+j, \vec{b}=j+k$ and $\vec{c}=k+i$, write unit vectors parallel to $\vec{a}+\vec{b}-2 \vec{c}$.

D Watch Video Solution

287. If $\vec{a}=\hat{i}+\hat{j}, \quad \vec{b}=\hat{j}+\hat{k}$ and $\vec{c}=\hat{k}+\hat{i}$, where unit vectors parallel to $\vec{a}+\vec{b}-2 \vec{c}$.

- Watch Video Solution

288. If $\vec{a}=\hat{i}+2 \hat{j}, \vec{b}=\hat{j}+2 \hat{k}$, write a unitvector along the vector $3 \vec{a}-2 \vec{b}$.

D Watch Video Solution

289. Write the position vector of a point dividing the line segment joining points having position vectors $\hat{i}+\hat{j}-2 \hat{k}$ and $2 \hat{i}-\hat{j}+3 \hat{k}$ externally in the ratio 2:3.

Watch Video Solution

290. If $\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{j}+\hat{k}, \vec{c}=\hat{k}+\hat{i}$ find the unit vector in the direction of $\vec{a}+\vec{b}+\vec{c}$

- Watch Video Solution

291.

$\vec{a}=3 \hat{i}-\hat{j}-4 \hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}-3 \hat{k}$ and $\vec{c}=\hat{i}+2 \hat{j}-\hat{k}$,
find $|3 \vec{a}-2 \vec{b}+4 \vec{c}|$.

D Watch Video Solution

292. A unit vector \vec{r} makes angle $\frac{\pi}{3}$ and $\frac{\pi}{2}$ with \hat{j} and \hat{k} respectively and an acute angle θ with i, Find θ.

Watch Video Solution

293. Write a unit vector in the direction of $\vec{a}=3 \hat{i}-2 \hat{j}+6 \hat{k}$.

D Watch Video Solution

294. If $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=2 \hat{i}+4 \hat{j}+9 \hat{k}$ find a unit vector parallel to $\vec{a}+\vec{b}$.

D Watch Video Solution

295. Write a unit vector in the direction of $\vec{b}=2 \hat{i}+\hat{j}+2 \hat{k}$.

- Watch Video Solution

296. Find the position vector of the mid point of the line segment
$A B$, where A is the point (3, 4, -2) and B is the point (1, ,24).
297. Find a vector in the direction of $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$, which has magnitude of 6 units.

- Watch Video Solution

298. What is the cosine of the angle which the vector $\sqrt{2} \hat{i}+\hat{j}+\hat{k}$ makes with y-axis?

- Watch Video Solution

299. Write two different vectors having same magnitude.

- Watch Video Solution

300. Write two different vectors having same direction.
301. Write a vector in the direction of vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude of 8 unit.

- Watch Video Solution

302. Writhe the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$.
(D) Watch Video Solution
303. Find a unit vector in the direction of $\vec{a}=2 \hat{i}-3 \hat{j}+6 \hat{k}$
304. For what value of a the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $a \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear?

D Watch Video Solution

305. Writhe the direction cosines of the vectors $-2 \hat{i}+\hat{j}-5 \hat{k}$.

- Watch Video Solution

306. Find the sum of the following vectors $\vec{a}=\hat{i}-2 \hat{j}, \quad \vec{b}=2 \hat{i}-3 \hat{j}, \vec{c}=2 \hat{i}+3 \hat{k}$.

- Watch Video Solution

307. Find a unit vector in the direction of the vector $\vec{a}=3 \hat{i}-2 \hat{j}+6 \hat{k}$.

Watch Video Solution

308. If $\vec{a}=x \hat{i}+2 \hat{j}-z \hat{k}$ and $\vec{b}=3 \hat{i}-y \hat{j}+\hat{k}$ are two equal vectors, then write the value of $x+y+z$.

D Watch Video Solution

309. Write a unit vector in the direction of the sum of the vectors $\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}-7 \hat{k}$

D Watch Video Solution

310. Find the value of ' p ' for which the vectors $3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\hat{i}-2 p \hat{j}+3 \hat{k}$ are parallel.
311. Find a vector \vec{a} of magnitude $5 \sqrt{2}$ making an angle of $\frac{\pi}{4}$ with x -axis, $\frac{\pi}{2}$ with y-axis and an acute angle θ with z-axis.

- Watch Video Solution

312. Write a unit vector in the direction of $\overrightarrow{P Q}$ where $P Q$ are the points ($1,3,0$) and ($4,5,6$) respectively.

- Watch Video Solution

313. Find a vector in the direction of vector $2 \hat{i}-3 \hat{j}+6 \hat{k}$ which has magnitude 21 units.

(D) Watch Video Solution

314. It $|\vec{a}|=4$ and $-3 \leq \lambda \leq 2$, then write the range of $\lambda|\vec{a}|$

Watch Video Solution

315. In a triangle $\triangle O A C$, if B is the mid point of side $A C$ and $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}$, then what is $\overrightarrow{O C}$?

D Watch Video Solution

316. If in a $\triangle A B C, A=(0,0), B=(3,3 \sqrt{3}), C \equiv(-3 \sqrt{3}, 3)$ then the vector of magnitude $\sqrt{2}$ units directed along $A O$, where O is the circumcentre of $A B C$ is
A. a) $(1-\sqrt{3}) \hat{i}+(1+\sqrt{3}) \hat{j}$
B. b) $(1+\sqrt{3}) \hat{i}+(1-\sqrt{3}) \hat{j}$
C. c) $(1+\sqrt{3}) \hat{i}+(\sqrt{3}-1) \hat{j}$
D. d) None of these
317. If \vec{a}, \vec{b} are the vectors forming consecutive sides of a regular of a regular hexagon $A B C D E F$, then the vector representing side $C D$ is
A. a) $\vec{a}+\vec{b}$
B. b) $\vec{a}-\vec{b}$
C. c) $\vec{b}-\vec{a}$
D. d) $-(\vec{a}+\vec{b})$

Answer: c) $\vec{b}-\vec{a}$
318. Forces $3 O \vec{A}, 5 O \vec{B}$ act along $O A$ and $O B$ If their resultant passes through C on $A B$, then C is a
A. a) mid point of $A B$
B. b) C divides $A B$ in the ratio 2:1
C. c) $3 A C=5 C B$
D. d) $2 A C=3 C B$

Answer: null

- Watch Video Solution

319. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors, no two which are collinear and the vector $\vec{a}+\vec{b}$ is collinear with $\vec{c}, \vec{b}+\vec{c}$ is collinear with \vec{a} then, $\vec{a}+\vec{b}+\vec{c}=$
A. а) \vec{a}
B. b) \vec{b}
C. c) \vec{c}
D. d) None of these

Answer: d) None of these

(Watch Video Solution

320. If points $A(60 \hat{i}+3 \hat{j}), B(40 \hat{i}-8 \hat{j})$ and $C(a \hat{i}-52 \hat{j})$ are collinear, then a is equal to
A. a) 40
B. b) -40
C. c) 20
D. d) -20

Watch Video Solution

321. If G is the intersection of diagonals of a parallelogram $A B C D$ and O is any point then $O \vec{A}+O \vec{B}+O \vec{C}+O \vec{D}=$
A. a) $2 \overrightarrow{O G}$
B. b) $4 \overrightarrow{O G}$
C. c) $5 \overrightarrow{O G}$
D. d) $3 \overrightarrow{O G}$

Answer: null

- Watch Video Solution

322. The vector $\cos \alpha \cos \beta \hat{i}+\cos \alpha \sin \beta \hat{j}+\sin \alpha \hat{k}$ is a
A. a) null vector
B. b) unit vector
C. c) constant vector
D. d) none of these

Answer: b) unit vector

D Watch Video Solution

323. In a regular hexagon $A B C D E F, \overrightarrow{A B}=a, \overrightarrow{B C}=\vec{b}$, $\overrightarrow{C D}=c$ Then $\backslash \vec{A} E=$
A. a) $\vec{a}+\vec{b}+\vec{c}$
B. b) $2 \vec{a}+\vec{b}+\vec{c}$
C. c) $\vec{b}+\vec{c}$
D. d) $\vec{a}+2 \vec{b}+2 \vec{c}$

Watch Video Solution

324. The vector equation of the plane passing through $\vec{a}, \vec{b}, \vec{c}$ is $\vec{r}=\alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}$ provided that
A. a) $\alpha+\beta+\gamma=0$
B. b) $\alpha+\beta+\gamma=1$
C. c) $\alpha+\beta=\gamma$
D. d) $\alpha^{2}+\beta^{2}+\gamma^{2}=1$

Answer: b) $\alpha+\beta+\gamma=1$

(D) Watch Video Solution

325. If O and O^{\prime} are circumcentre and orthocentre of $A B C$, then $\vec{O} A+\vec{O} B+\vec{O} C$ equals
a. $2 \overrightarrow{O O^{\prime}}$ b. $\overrightarrow{O O} O^{\prime}$ c. $\overrightarrow{O^{\prime} O \text { d. } 2 \vec{O}^{\prime} O}$

- Watch Video Solution

326. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are the position vectors of points
A, B, C, D such that no three of them are collinear and $\vec{a}+\vec{c}=\vec{b}+\vec{d}$, then $A B C D$ is a
A. a) rhombus
B. b) rectangle
C. c) square
D. d) parallelogram

Answer: d) parallelogram

327. Let G be the centroid of $A B C$. If $\vec{A} B=\vec{a}, \vec{A} C=\vec{b}$, then the bisector $\vec{A} G$, in terms of \vec{a} and \vec{b} is $\frac{2}{3}(\vec{a}+\vec{b})$ b. $\frac{1}{6}(\vec{a}+\vec{b})$ c. $\frac{1}{3}(\vec{a}+\vec{b})$ d. $\frac{1}{2}(\vec{a}+\vec{b}) 1$

- Watch Video Solution

328. If $A B C D E F$ is a regular hexagon, them $\overrightarrow{A D}+\overrightarrow{E B}+\overrightarrow{F C}$ equals
A. а) $2 \overrightarrow{A B}$
B. b) $\overrightarrow{0}$
C. c) $3 \overrightarrow{A B}$
D. d) $4 \overrightarrow{A B}$

Answer: d) $4 \overrightarrow{A B}$
329. The position vectors of the points A, B, C are $2 \hat{i}+\hat{j}-\hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$ and $\hat{i}+4 \hat{j}-\hat{k}$ respectively. These points
A. a) Form an isosceles triangle
B. b) Form a right triangle
C. c) Are collinear
D. d) Form a scalene triangle

Answer: a) Form an isosceles triangle

D Watch Video Solution

330. If three points A, B and C have position vectors $\hat{i}+x \hat{j}+3 \hat{k}, 3 \hat{i}+4 \hat{j}+7 \hat{k}$ and $y \hat{i}-2 \hat{j}-5 \hat{k}$ respectively are collinear, them $(x, y)=$
A. a) $(2,-3)$
B. b) $(-2,3)$
C. c) $(-2,-3)$
D. d) $(2,3)$

Answer: c) ($-2,-3$)

D Watch Video Solution

331. $A B C D$ is a parallelogram with $A C$ and $B D$ as diagonals. Then, $\overrightarrow{A C}-\overrightarrow{B D}=$
A. а) $4 \overrightarrow{A B}$
B. b) $3 \overrightarrow{A B}$
C. c) $2 \overrightarrow{A B}$
D. d) $\overrightarrow{A B}$

Answer: c) $2 \overrightarrow{A B}$

D Watch Video Solution

Others

1. If O is the circumcentre adn O^{\prime} the orthocentre of a triangle $A B C$, prove that $\vec{S} A+\vec{S} B+S C=3 \vec{S} G$, is any point in the plane of triangle $A B C$ whose centroid is at G. $\vec{O} A+\vec{O} B+\vec{O} C=\vec{O} O^{\prime} \quad \vec{O}{ }^{\prime} A+\vec{O}{ }^{\prime} B+\vec{O}^{\prime} C=2 \vec{O}^{\prime} O$ $\vec{A} P^{\prime}+\vec{O}{ }^{\prime} B+\vec{O} C+=\vec{A} P$, where $\vec{A} P$ is the diameter of the circumcircle.

- View Text Solution

