© 「’doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

APPLICATION OF INTEGRALS

Solved Examples And Exercises

1. Find the area of the region bounded by the curve
$y=x^{2}$ and the line $y=4$.
2. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$

D Watch Video Solution

3. Find the area bounded by $x=a t^{2}$ and $y=2 a t$ between the ordinates corresponding to $t=1$ and $t=2$.

D Watch Video Solution

4. Find the area enclosed by the curve $x=3 \cos t, y=2 \sin t$
5. Sketch the region lying in the first quadrant and bounded by $y=9 x^{2}, x=0, y=1 a n d y=4$. Find the area of the region using integration.

D Watch Video Solution

6. Find the area of the region bounded by $y=-1, y=2, x=y^{3}$ and $x=0$.
7. Find the area of the region included between the parabolas $y^{2}=4 a x a n d x^{2}=4 a y$, wherea >0.

D Watch Video Solution

8. Find the area of the region bounded by the curve $y-3$ and the lines $y=x+6$ and $y=0$.

(D) Watch Video Solution

9. Find the area bounded by the curves
$y=x a n d y=x^{3}$.
10. Find the area bounded by the curves $y=2 x-x^{2}$ and the straight line $y=-x$.

- Watch Video Solution

11. Find the area of the region between the parabola
$x=y^{2}-6 y$ and the line $x=-y$

D Watch Video Solution

12. Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$.

D Watch Video Solution

13. Determine the area under the curve $y=\sqrt{a^{2}-x^{2}}$ included between the lines $x=0 a n d x=a$.

- Watch Video Solution

14. Find the area of the region bounded by the parabola $y^{2}=2 x$ and straight line $x-y=4$.

D Watch Video Solution

15. Find the area of the region bounded by the curves
$y=x^{3}$ and the lines $y=x+6$ and $y=0$.

D Watch Video Solution

16. Using integration, find the area of the region bounded by the line $2 y=-x+8, \mathrm{x}$-axis is and the lines $x=2$ and $x=4$.

D Watch Video Solution

17. If the area above x - a xi s, bounded by the curves
$y=2^{k x} a n d x=0 a n d x=2 i s \frac{3}{(\log)_{e} 2}$, then find the

D Watch Video Solution

18. Using integration, find the area of the region bounded by the line $y-1=x$, the $x-\mathrm{axis}$ and the ordinates $x=-2 a n d x=3$.

- Watch Video Solution

19. Find the area bounded by the curve
$y=(x-1)(x-2)(x-3) \quad$ lying between the ordinates $x=0 a n d x=3$.
20. Find the area bounded by the curve $y=\sin$ xbetweenx $=0$ andx $=2 \pi$.

D Watch Video Solution

21. Sketh the graph $y=|x+1|$. Evaluate
$\int_{-3}^{1}|x+1| d x$. What does this value represent on the graph?

D Watch Video Solution
22. Compute the area bounded by the lines $x+2 y=2$,
$y-x=1$ and $2 x+y=7$.

D Watch Video Solution

23. Find the area of the region
$\left\{(x, y): x^{2}+y^{2} \leq 4, x+y \geq 2\right\}$

- Watch Video Solution

24. Using integration, find the area of the region bounded by the following curves after making a rough sketch: $y=1+|x+1|, x=-2, x=3, y=0$.

- Watch Video Solution

25. Draw a rough sketch of the curves $y=\sin x$ and
$y=\cos x$ varies from 0 to $\frac{\pi}{2}$ and find the area of the region enclosed by them and x-axis

D Watch Video Solution

26. Sketch the curves and identify the region bounded
by the curves $x=\frac{1}{2}, x=2, y=\log$ xany $=2^{x}$. Find the area of this region.
27. Compute the area of the figure bounded by the straight lines $x=0, x=2$ and the curves $y=2^{x}, y=2 x-x^{2}$

- Watch Video Solution

28. If the area enclosed between the curves
$y=a x^{2} a n d x=a y^{2}(a>0)$ is 1 square unit, then
find the value of a.

- Watch Video Solution

29. Find the area bounded by the curves
$y=6 x-x^{2} a n d y=x^{2}-2 x$.

D Watch Video Solution

30. Find the area of the region bounded by
$y=\sqrt{x} a n d y=x$.
(D) Watch Video Solution
31. Calculate the area of the region bounded by the parabolas $y^{2}=6 x a n d x^{2}=6 y$.
32. If the area bounded by the parabola $y^{2}=4 a x$ and the line $\mathrm{y}=\mathrm{mx}$ is $\frac{a^{2}}{12}$ sq. units, by using integration find the value of m.

- Watch Video Solution

33. If the area enclosed by the parabolas
$y^{2}=16 a x a n d x^{2}=16 a y, a>0 i s \frac{1024}{3} s q \cdot$ units, find the value of a.
34. Find the area bounded by the lines
$y=4 x+5, y=5-x a n d 4 y=x+5$.

D Watch Video Solution

35. Find the area enclosed by the curves
$y=|x-1| a n d y=-|x-1|+1$.

- Watch Video Solution

36. Examples: Find the area bounded by the parabola
$y^{2}=4 a x$ and its latus rectum.
37. Using integration, find the area of the region bounded by the parabola $y^{2}=16 x$ and the line $x=4$

D Watch Video Solution

38. Find the area of the region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

D Watch Video Solution

39. Draw a rough sketch of the curve $y=\cos ^{2} x$ in
$[0,1]$ and find the area enclosed by the curve,the lines
$x=0, x=\pi$ and the x -axis.

D Watch Video Solution

40. Find the area of the region bounded by the line
$y=3 x+2$, the x -axis and the ordinates $x=-1$ and
$x=1$

- Watch Video Solution

41. Using the method of integration find the area bounded by the curve $|x|+|y|=1$.
42. Find the area lying above the x-axis and under the parabola $y=4 x-x^{2}$

D Watch Video Solution

43. Draw a rough sketch to indicate the region bounded between the curve $y^{2}=4 a x$ and the line $x=3$. also, find the area of this region.

D Watch Video Solution

44. Make a rough sketch of the graph of the function
$y=4-x^{2}, 0 \leq x \leq 2$ and determine the area
enclosed by the curve, the x-axis and the lines $x=0$ and $x=2$.

D Watch Video Solution

45. Using integration, find the area bounded by the lines $x+2 y=2, y-x=1$ and $2 x+y=7$

- Watch Video Solution

46. Find the area under the curve $y=\sqrt{6 x+4}$ (above the x-axis) from $x=0$ to $x=2$
47. Draw the rough sketch of $y^{2}+1=x, x \leq 2$.

Find the area enclosed by the curve and the line $x=2$.

- Watch Video Solution

48. Draw a rough sketch of the graph of the curve $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ and evaluate the area of the region under the curve and above the x-axis.
(D) Watch Video Solution
49. Using integration, find the area of the region bounded by the line $2 y=5 x+7$, the x-axis, and the lines $x=2$ and $x=8$.

D Watch Video Solution

50. Sketch the graph of $y=|x-5|$. Evaluate $\int_{0}^{1}|x-5| d x$. What does this value of the integral represent on the graph.
51. Sketch the graph of $y=|x+3|$. Evaluate $\int_{-6}^{0}|x+3| d x$. What does the value of this integral represent?

- Watch Video Solution

52. The area of the region bounded by the curve $x y-3-2 y-10=0, \quad \mathrm{X}$-axis and the lines $x=3, x=4$, is
53. Draw a rough sketch of the curve $y=\frac{x}{\pi}+2 \sin ^{2} x$, and find the area between the x-axis, the curve and the ordinates $x=0$ and,$x=\pi$.

- Watch Video Solution

54. Draw a rough sketch of the curve $y=\frac{x}{\pi}+2 \sin ^{2} x$
, and find the area between the x-axis, the curve and the ordinates $x=0$ and,$x=\pi$.
55. Find the area bounded by the curve $y=\cos x, x$ axis and the ordinates $x=0$ and $x=2 \pi$.

D Watch Video Solution

56. Find the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the ordinates $x=0$ and $x=a e$, where, $b^{2}=a^{2}\left(1-e^{2}\right)$ ande <1.

D Watch Video Solution

57. Examples: Find the area of the region bounded by
the curve $y^{2}=2 y-x$ and the y-axis.

- Watch Video Solution

58. Find the area bounded by the curve $y^{2}=4 a x$ and the lines $y=2$ and y-axis.

D Watch Video Solution

59. Find the area of the region lying in the first quadrant and bounded by $y=4 x^{2}$,
$x=0, y=1 a n d y=4$.
60. Find the area of the region bounded by $x^{2}=16 y, y=1, y=4$ and the y-axis in the first quadrant.

- Watch Video Solution

61. Find the area enclosed between the parabola
$4 y=3 x^{2}$ and the straight line $3 x-2 y+12=0$

D Watch Video Solution

62. Find the area bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$.

- Watch Video Solution

63. Find the area enclosed between the parabola
$y^{2}=4 a x$ and the line $y=m x$.

D Watch Video Solution

64. Find the area of the region bounded by the curves

$$
y=x^{2}+2 y=x, x=0, a n d x=3 .
$$

D Watch Video Solution

65. Find the area of the region bounded by
$y=\sqrt{x} a n d y=x$.

D Watch Video Solution

66.

$\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$
का क्षेत्रफल ज्ञात कीजिए

D Watch Video Solution

67. Find the area of the smaller region bounded by the
ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$
68. Find the area of the region
$\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$

D Watch Video Solution

69. Find the area of the region enclosed between the two circles $x^{2}+y^{2}=1$ and $(x-1)^{2}+y^{2}=1$
70. Prove that the curves $y^{2}=4 x$ and $x^{2}=4 y$ divide the area of the square bounded by $x=0, x=4, y=4 a n d y=0$ into three equal parts.

- Watch Video Solution

71. Find the area bounded by the curve $4 y^{2}=9 x$ and $3 x^{2}=16 y$

D Watch Video Solution

72. Find the area of the region bounded by

$$
y=\sqrt{x} a n d y=x
$$

- Watch Video Solution

73. Find the area bounded by the curves $y=4-x^{2}$ and the lines $y=0$ and $y=3$

D Watch Video Solution

74. Using integration, find the area of the triangle $A B C$ whose vertices are $A(-1,1), B(0,5)$ and $C(3,2)$.

-
 Watch Video Solution

75. Using integration find the area of the triangular

$$
\begin{aligned}
& \text { region whose sides have equations } \\
& y=2 x+1, y=3 x+1 \text { and } x=4
\end{aligned}
$$

D Watch Video Solution

76. Find the area of the region enclosed between the two circles: $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$.

D Watch Video Solution

77. Using integration, find the area of the region common to the circle $x^{2}+y^{2}=16$ and the parabola
$y^{2}=6 x$.

D Watch Video Solution

78. Find the area of the region included between the parabola $y^{2}=x$ and the line $x+y=2$.

- Watch Video Solution

79. Draw a rough sketch of the region $\left\{(x, y): y^{2} \leq 3 x, 3 x^{2}+3 y^{2} \leq 16\right\}$ and find the ara enclesed by the region using the method of intergraion
80. Draw a rough sketch and find the area of the region bounded by the parabolas
$y^{2}=4 x$ and $x^{2}=4 y$, using the method of integration.

D Watch Video Solution

81. Find the area of the region in the first quadrant enclosed by x-axis, line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$.
82. Find the area common to the circle $x^{2}+y^{2}=16 a^{2}$ and the parabola $y^{2}=6 a x, a>0$.

D Watch Video Solution

83. Find the area, lying above the $\mathrm{x}=\mathrm{axis}$ and included between the circle $x^{2}+y^{2}=8 x$ and the parabola $y^{2}=4 x$.

- Watch Video Solution

84. The area common to the parabolas $y=2 x^{2}$ and $y=x^{2}+4$ (in square units) is (A) $\frac{2}{3}$ (B) $\frac{3}{2}$ (C) $\frac{32}{3}$

- Watch Video Solution

85. Find the area of the region bounded by the curves
$y=x-1 \&(y-1)^{2}=4(x+1)$.

D Watch Video Solution

86. Find the area bounded by the parabola $y=2-x^{2}$ and the straight line $y+x=0$.

D Watch Video Solution

87. Using the method of integration, find the area of the region bounded by the following lines $3 x-y-3=0,2 x+y-12=0, x-2 y-1=0$.

D Watch Video Solution

88. Find the area bounded by the curves $x=y^{2}$ and $x=3-2 y^{2}$.

- Watch Video Solution

89. Find the area of the region in the first quadrant enclosed by the x-axis, the line $y=x$ and the circle $x^{2}+y^{2}=32$.

D Watch Video Solution

> 90. Find the area of the circle
> $x^{2}+y^{2}=16$ whichisexteri or \rightarrow theparabolay $^{2}=6 x$ by using integration.

D Watch Video Solution

91. Find the area of the region enclosed by the parabola $x^{2}=y$, the line $y=x+2$ and the x-axis.
92. Make a rough sketch of the region given below and

> find its area using $\left\{(x, y): 0 \leq y \leq x^{2}+3,0 \leq y \leq 2 x+3,0 \leq x \leq 3\right\}$

D Watch Video Solution

> 93. Find the area of the region
> $\left\{(x, y): x^{2}+y^{2} \leq 4, x+y \geq 2\right\}$
94. In what ratio does the x-axis divide the area of the

$$
\begin{aligned}
& \text { region bounded by the parabolas } \\
& y=4 x-x^{2} \text { and } y=x^{2}-x ?
\end{aligned}
$$

(D) Watch Video Solution

95. Using integration, find the area bounded by the
curves $y=|x-1|$ and $y=3-|x|$.

D Watch Video Solution

96. Find the area of the region between the parabola
$x=4 y-y^{2}$ and the line $x=2 y-3$.

- Watch Video Solution

97. The area bounded by the parabolay $y^{2}=4 x$ and the line $y=2 x-4$ on the Y-axis.

D Watch Video Solution

98. If the area above the x-axis, bounded by the curves
$y=2^{k x}$ and $\mathrm{x}=0$, and $\mathrm{x}=2$ is $\frac{3}{\log _{e}(2)}$, then the value of k is
99. Find the area included between the curves $x^{2}=4 y$ and $y^{2}=4 x$.

D Watch Video Solution

100. The area bounded by the curve $y=\log _{e} x$, the x axis and the line $x=e$ is (A) e sq. units (B) 1 sq. unit
(C) $\left(1-\frac{1}{e}\right)$ sq. units (D) $\left(1+\frac{1}{e}\right)$ sq. units

D Watch Video Solution

101. If A_{n} be the area bounded by the curve $y=\left(\tan x^{n}\right)$ ands the lines $x=0, y=0, x=\pi / 4$

Prove that for $n>2 ., A_{n}+A_{n+2}=\frac{1}{n+1}$ and deduce $\frac{1}{2 n+2}<A_{n}<\frac{1}{2 n-2}$

D Watch Video Solution

102. The area enclosed between the curves $y=(\log)_{e}(x+e), x=(\log)_{e}\left(\frac{1}{y}\right)$, and the x-axis is $2 s q u n i t s$ (b) 1squinits 4 squinits (d) none of these

D Watch Video Solution

103. The area of the figure bounded by the parabola $(y-2)^{2}=x-1$, the tangent to it at the point with
the ordinate $x=3$, and the $x-a \xi s$ is 7 squinites (b) 6squinites 9 squinites (d) None of these

D Watch Video Solution

104. Find the area bounded by the parabola $y=x^{2}+1$ and the straight line $x+y=3$.

D Watch Video Solution

105. The ratio of the areas between the curves
$y=\cos x$ and $y=\cos 2 x$ and x-axis from $x=0$ to
$x=\frac{\pi}{3}$ is (A) $1: 3$ (B) $2: 1$ (C) $\sqrt{3}: 1$ (D) none of these
106. Area between the x -axis and the curve $y=\cos x$, when $0 \leq x \leq 2 \pi$ is (A) 0 (B) 2 (C) 3 (D) 4

D Watch Video Solution

107. Area bounded by the parabola $y^{2}=x$ and the line $2 y=x$ is (A) $\frac{4}{3}$ (B) 1 (C) $\frac{2}{3}$ (D) $\frac{1}{3}$

D Watch Video Solution

108. The area enclosed between the curve $y^{2}(2 a-x)=x^{3}$ and the line $x=2$ above the
$x-a \xi s$ is πa^{2} squinits (b) $\frac{3 \pi a^{2}}{2}$ squinits $2 \pi a^{2}$ squinits (d) $3 \pi a^{2}$ squinits

(D) Watch Video Solution

109. The area bounded by the curves $y=f(x)$, the x axis, and the ordinates $x=1 a n d x=b$ is $(b-1) \sin (3 b+4)$. Then $f(x)$ is. $(x-1) \cos (3 x+4)$ $\sin (3 x+4) \quad \sin (3 x+4)+3(x-1) \cos (3 x+4)$

None of these
110. The area bounded by the curve $y^{2}=8 x$ and $x^{2}=8 y$ is $\frac{16}{3}$ squinits b. $\frac{3}{16}$ squinits c.
$\frac{14}{3}$ squinits d. $\frac{3}{14}$ sqünits

- Watch Video Solution

111. Area bounded by the curve $y=x^{3}$, the x -axis and the ordinates $x=2$ and $x=1 \mathrm{is}(\mathrm{A})-9$ (B) $\frac{-15}{4}$
$\frac{15}{4}$ (D) $\frac{17}{4}$

- Watch Video Solution

112. The area bounded by the curve $y=x|x|, \mathrm{x}$-axis and the ordinates $x=-1, x=1$ is (A) $\frac{5}{3}$ (B) $\frac{4}{3}$ (C) $\frac{2}{3}$ (D) $\frac{1}{3}$

D Watch Video Solution

113. The area bounded by the y-axis, $y=\cos x$ and $y=s \in x$ when $\quad 0 \leq x \leq \frac{\pi}{2}$ is(A) $\quad 2(\sqrt{2-1})$
$\sqrt{2}-1$ (C) $\sqrt{2}+1$ (D) $\sqrt{2}$

- Watch Video Solution

114. The area of the circle $x^{2}+y^{2}=16$ exterior to the parabola $y^{2}=6 x$ is(A) $\frac{4}{3}(4 \pi-\sqrt{3})$ (B) $\frac{4}{3}(4 \pi+\sqrt{3})$
(C) $\frac{4}{3}(8 \pi-\sqrt{3})$
(D) $\frac{4}{3}(8 \pi+\sqrt{3})$

- Watch Video Solution

115. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2 \mathrm{is}(\mathrm{A}) 2(\pi-2)$ (B) $\pi-2$ (C)
$2 \pi-1$ (D) $2(\pi+2)$

- Watch Video Solution

116. Area lying between the curves $y^{2}=4 x$ and $y=2 x$
is(A) $\frac{2}{3}$ (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) $\frac{3}{4}$

D Watch Video Solution

117. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0 a n d x=2$ is(A) π (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{4}$

D Watch Video Solution

118. Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is (A) 2 (B)
$\frac{9}{4}$ (C) $\frac{9}{3}$ (D) $\frac{9}{2}$

- Watch Video Solution

Others

1. Find the area enclosed by the curve $y=x^{2}$ and straight line $x+y+2=0$.

- View Text Solution

2. Find the area bounded by the curve
$y^{2}=4 a^{2}(x-1)$ and the lines $x=1 a n d y=4 a$.
3. Find the area of region bounded by $x^{2}+16 y=0$ and its latusrectum.

- View Text Solution

4. Find the area of region bounded by the curve $a y^{2}=x^{3}, \quad$ the $\quad y-a \xi s$ and the lines
$y=a a n d y=2 a$.

- View Text Solution

5. Sketch the region bounded by $y=2 x-x^{2}$ a n d $x-\mathrm{a}$ xi s and find its area using integration.

- View Text Solution

6. Find the area enclosed by the curves $3 x^{2}+5 y=32 a n d y=|x-2|$.

- View Text Solution

