

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

APPLICATION OF INTEGRALS

Solved Examples And Exercises

1. Find the area of the region bounded by the curve

$$y=x^2$$
 and the line $y=-4$.

5. Sketch the region lying in the first quadrant and bounded by $y = 9x^2, x = 0, y = 1$ andy = 4. Find

the area of the region using integration.

7. Find the area of the region included between the parabolas $y^2 = 4axandx^2 = 4ay$, where a > 0.

- 8. Find the area of the region bounded by the curve
- y-3 and the lines y=x+6 and y=0.

10. Find the area bounded by the curves $y = 2x - x^2$

and the straight line $y = -x_{\cdot}$

Watch Video Solution

11. Find the area of the region between the parabola

$$x=y^2-6y$$
 and the line $x=-y^2$

Watch Video Solution

12. Find the area of the region bounded by the parabola $y = x^2$ and y = |x|.

15. Find the area of the region bounded by the curves

 $y=x^3$ and the lines y=x+6 and y=0.

16. Using integration, find the area of the region bounded by the line 2y = -x + 8,x-axis is and the lines x = 2 and x = 4.

Watch Video Solution

17. If the area above $x-\mathsf{a} \mathsf{xi} \mathsf{s}$, bounded by the curves

$$y=2^{kx}andx=0andx=2israc{3}{\left(\log
ight)_{e}2},$$
 then find the

18. Using integration, find the area of the region bounded by the line y - 1 = x, thex - axis and the ordinates x = -2andx = 3.

Watch Video Solution

19. Find the area bounded by the curve
$$y = (x - 1)(x - 2)(x - 3)$$
 lying between the ordinates $x = 0$ and $x = 3$.

20. Find the area bounded by the curve $y = \sin x between x = 0 and x = 2\pi$.

Watch Video Solution

21. Sketh the graph y = |x + 1|. Evaluate $\int_{-3}^{1} |x + 1| dx$. What does this value represent on the graph?

22. Compute the area bounded by the lines x + 2y = 2,

$$y - x = 1 and 2x + y = 7.$$

24. Using integration, find the area of the region bounded by the following curves after making a rough sketch: y = 1 + |x + 1|, x = -2, x = 3, y = 0.

25. Draw a rough sketch of the curves $y = \sin x$ and $y = \cos x$ varies from 0 to $\frac{\pi}{2}$ and find the area of the region enclosed by them and x-axis

Watch Video Solution

26. Sketch the curves and identify the region bounded

by the curves $x=rac{1}{2}, x=2, y=\log xany=2^x$. Find

the area of this region.

27. Compute the area of the figure bounded by the straight lines x=0, x=2 and the curves $y=2^x, y=2x-x^2$

Watch Video Solution

28. If the area enclosed between the curves $y = ax^2 andx = ay^2(a > 0)$ is 1 square unit, then

find the value of a.

29. Find the area bounded by the curves
$$y = 6x - x^2 andy = x^2 - 2x$$
.
Watch Video Solution
30. Find the area of the region bounded by $y = \sqrt{x} andy = x$.

Watch Video Solution

31. Calculate the area of the region bounded by the

parabolas $y^2=6xandx^2=6y_{\cdot}$

32. If the area bounded by the parabola $y^2 = 4ax$ and the line y=mx is $\frac{a^2}{12}$ sq. units, by using integration find the value of m.

Watch Video Solution

33. If the area enclosed by the parabolas $y^2=16axandx^2=16ay, a>0israc{1024}{3}sq$ units, find

the value of a·

34. Find the area bounded by the lines y = 4x + 5, y = 5 - xand4y = x + 5.Watch Video Solution **35.** Find the area enclosed by the curves

$$y = |x - 1|$$
 and $y = -|x - 1| + 1$.

Watch Video Solution

36. Examples: Find the area bounded by the parabola

 $y^2 = 4ax$ and its latus rectum.

37. Using integration, find the area of the region bounded by the parabola $y^2 = 16x$ and the line x = 4

Watch Video Solution

38. Find the area of the region bounded by the ellipse

$$rac{x^2}{a^2}+rac{y^2}{b^2}=1$$

Watch Video Solution

39. Draw a rough sketch of the curve $y = \cos^2 x$ in [0, 1] and find the area enclosed by the curve,the lines

41. Using the method of integration find the area bounded by the curve |x| + |y| = 1.

42. Find the area lying above the x-axis and under the

parabola $y=4x-x^2$

43. Draw a rough sketch to indicate the region bounded between the curve $y^2 = 4ax$ and the line x = 3. also, find the area of this region.

Watch Video Solution

44. Make a rough sketch of the graph of the function $y=4-x^2, \ 0\leq x\leq 2$ and determine the area

enclosed by the curve, the x-axis and the lines x = 0 and x = 2.

46. Find the area under the curve $y = \sqrt{6x + 4}$ (above

the x-axis) from x=0 to x=2

47. Draw the rough sketch of $y^2+1=x,\ x\leq 2.$ Find the area enclosed by the curve and the line x=2.

> Watch Video Solution

48. Draw a rough sketch of the graph of the curve $\frac{x^2}{4} + \frac{y^2}{9} = 1$ and evaluate the area of the region

under the curve and above the x-axis.

49. Using integration, find the area of the region bounded by the line 2y = 5x + 7, the x-axis, and the lines x = 2 and x = 8.

50. Sketch the graph of y=|x-5|. Evaluate $\int_0^1 |x-5| dx.$ What does this value of the integral

represent on the graph.

51. Sketch the graph of y = |x + 3|. Evaluate $\int_{-6}^{0} |x + 3| dx$. What does the value of this integral represent?

Watch Video Solution

52. The area of the region bounded by the curve xy - 3 - 2y - 10 = 0, X-axis and the lines x = 3, x = 4, is

53. Draw a rough sketch of the curve $y=rac{x}{\pi}+2\sin^2 x$

, and find the area between the x-axis, the curve and

the ordinates x = 0 and $, x = \pi$.

> Watch Video Solution

54. Draw a rough sketch of the curve $y=rac{x}{\pi}+2\sin^2 x$

, and find the area between the x-axis, the curve and

the ordinates x = 0 and $, x = \pi$.

55. Find the area bounded by the curve $y = \cos x$, x-

axis and the ordinates x=0 and $x=2\pi$.

Watch Video Solution

57. Examples: Find the area of the region bounded by the curve $y^2 = 2y - x$ and the y-axis.

58. Find the area bounded by the curve $y^2 = 4ax$ and

the lines y = 2 and y-axis.

Watch Video Solution

59. Find the area of the region lying in the first quadrant and bounded by $y=4x^2$,

x = 0, y = 1 and y = 4.

60. Find the area of the region bounded by $x^2 = 16y, \ y = 1, \ y = 4$ and the y-axis in the first quadrant.

61. Find the area enclosed between the parabola $4y = 3x^2$ and the straight line 3x - 2y + 12 = 0

Watch Video Solution

62. Find the area bounded by the curve $x^2 = 4y$ and the straight line x = 4y - 2.

64. Find the area of the region bounded by the curves

$$y=x^2+2y=x, x=0, and x=3.$$

65. Find the area of the region bounded by $y = \sqrt{x} andy = x$.

Watch Video Solution

66. (
$$x,y$$
): $0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2$ }

ጉ

का क्षेत्रफल ज्ञात कीजिए |

Watch Video Solution

67. Find the area of the smaller region bounded by the

ellipse
$$\displaystyle rac{x^2}{a^2} + \displaystyle rac{y^2}{b^2} = 1$$
and the line $\displaystyle rac{x}{a} + \displaystyle rac{y}{b} = 1$

Watch Video Solution

69. Find the area of the region enclosed between the two circles $x^2 + y^2 = 1$ and $(x - 1)^2 + y^2 = 1$

70. Prove that the curves $y^2 = 4x$ and $x^2 = 4y$ divide the area of the square bounded by x = 0, x = 4, y = 4andy = 0 into three equal parts.

Watch Video Solution

72. Find the area of the region bounded by $y = \sqrt{x} andy = x$.

75. Using integration find the area of the triangular

region whose sides have equations $y=2x+1, \ y=3x+1$ and x=4

Watch Video Solution

76. Find the area of the region enclosed between the

two circles: $x^2 + y^2 = 4$ and $(x-2)^2 + y^2 = 4$.

Watch Video Solution

77. Using integration, find the area of the region common to the circle $x^2 + y^2 = 16$ and the parabola

$$y^2 = 6x.$$

Watch Video Solution
78. Find the area of the region included between the
parabola $y^2 = x$ and the line $x + y = 2$.
Watch Video Solution

79. Draw a rough sketch of the region $\{(x,y): y^2 \le 3x, 3x^2 + 3y^2 \le 16\}$ and find the ara enclesed by the region using the method of intergraion

80. Draw a rough sketch and find the area of the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$, using the method of

integration.

Watch Video Solution

81. Find the area of the region in the first quadrant enclosed by x-axis, line $x = \sqrt{3}y$ and the circle $x^2 + y^2 = 4$.

82. Find the area common to the circle $x^2 + y^2 = 16a^2$ and the parabola $y^2 = 6ax, a > 0.$

83. Find the area, lying above the x=axis and included between the circle $x^2 + y^2 = 8x$ and the parabola $y^2 = 4x$.

Watch Video Solution

84. The area common to the parabolas $y=2x^2$ and $y=x^2+4$ (in square units) is (A) $rac{2}{3}$ (B) $rac{3}{2}$ (C) $rac{32}{3}$ (D)

85. Find the area of the region bounded by the curves

$$y = x - 1 \& (y - 1)^2 = 4(x + 1).$$

Watch Video Solution

86. Find the area bounded by the parabola $y=2-x^2$

and the straight line y + x = 0.

87. Using the method of integration, find the area of the region bounded by the following lines 3x - y - 3 = 0, 2x + y - 12 = 0, x - 2y - 1 = 0.

88. Find the area bounded by the curves $x=y^2$ and

 $x = 3 - 2y^2.$

Watch Video Solution

Watch Video Solution

89. Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle $x^2 + y^2 = 32$.

91. Find the area of the region enclosed by the parabola $x^2 = y$, the line y = x + 2 and the x-axis.

92. Make a rough sketch of the region given below and

Watch Video Solution

94. In what ratio does the x-axis divide the area of the

region bounded by the parabolas $y = 4x - x^2 andy = x^2 - x$?

Watch Video Solution

95. Using integration, find the area bounded by the

curves y = |x - 1| and y = 3 - |x|.

Watch Video Solution

96. Find the area of the region between the parabola $x = 4y - y^2$ and the line x = 2y - 3.

Watch Video Solution

98. If the area above the x-axis, bounded by the curves $y=2^{kx}$ and x = 0, and x = 2 is $rac{3}{\log_e(2)}$, then the value

of k is

99. Find the area included between the curves $x^2 = 4y$

and $y^2 = 4x$.

Watch Video Solution

100. The area bounded by the curve $y = \log_e x$, the x-

axis and the line x = e is (A) e sq. units (B) 1 sq. unit

(C)
$$\left(1-rac{1}{e}
ight)$$
 sq. units (D) $\left(1+rac{1}{e}
ight)$ sq. units

Watch Video Solution

101. If A_n be the area bounded by the curve $y=(an x^n)$ ands the lines $x=0,\;y=0,\;x=\pi/4$

Prove that for n>2. , $A_n+A_{n+2}=rac{1}{n+1}$ and deduce $rac{1}{2n+2} < A_n < rac{1}{2n-2}$

Watch Video Solution

102. The area enclosed between the curves $y = (\log)_e(x+e), x = (\log)_e\left(rac{1}{y}
ight)$, and the x-axis is

2squants (b) 1squants 4squants (d) none of these

Watch Video Solution

103. The area of the figure bounded by the parabola $\left(y-2
ight)^2=x-1,\,$ the tangent to it at the point with

the ordinate $x=3,\,$ and the $x-a\xi s$ is 7squartes (b)

6squnites 9squnites (d) None of these

106. Area between the x-axis and the curve $y = \cos x$,

when $0 \leq x \leq 2\pi$ is (A) 0 (B) 2 (C) 3 (D) 4

Watch Video Solution

107. Area bounded by the parabola $y^2 = x$ and the line 2y = x is (A) $rac{4}{3}$ (B) 1 (C) $rac{2}{3}$ (D) $rac{1}{3}$

Watch Video Solution

108. The area enclosed between the curve $y^2(2a-x)=x^3$ and the line x=2 above the

 $x-a\xi s$ is $\pi a^2 squares$ (b) $rac{3\pi a^2}{2} squares 2\pi a^2 squares$

(d) $3\pi a^2 squarts$

Watch Video Solution

109. The area bounded by the curves y = f(x), the xaxis, and the ordinates x = 1 andx = b is $(b-1)\sin(3b+4)$. Then f(x) is. $(x-1)\cos(3x+4)$ $\sin(3x+4)$ $\sin(3x+4) + 3(x-1)\cos(3x+4)$ None of these

110. The area bounded by the curve

$$y^2 = 8x \text{ and } x^2 = 8y$$
 is $\frac{16}{3}squal nits$ b. $\frac{3}{16}squal nits$ c.
 $\frac{14}{3}squal nits$ d. $\frac{3}{14}squal nits$

Watch Video Solution

111. Area bounded by the curve $y=x^3$, the x-axis and the ordinates x=2and x=1is(A) -9 (B) $\frac{-15}{4}$ (C) $\frac{15}{4}$ (D) $\frac{17}{4}$

112. The area bounded by the curve y = x|x|, x-axis and the ordinates x = -1, x = 1 is (A) $\frac{5}{3}$ (B) $\frac{4}{3}$ (C) $\frac{2}{3}$ (D) $\frac{1}{3}$

Watch Video Solution

113. The area bounded by the y-axis, $y=\cos x$ and $y=s\in x$ when $0\leq x\leq rac{\pi}{2}$ is(A) $2ig(\sqrt{2}-1ig)$ (B) $\sqrt{2}-1$ (C) $\sqrt{2}+1$ (D) $\sqrt{2}$

114. The area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$ is(A) $\frac{4}{3}(4\pi - \sqrt{3})$ (B) $\frac{4}{3}(4\pi + \sqrt{3})$ (C) $\frac{4}{3}(8\pi - \sqrt{3})$ (D) $\frac{4}{3}(8\pi + \sqrt{3})$

Watch Video Solution

115. Smaller area enclosed by the circle $x^2+y^2=4$ and the line x+y=2is(A) $2(\pi-2)$ (B) $\pi-2$ (C) $2\pi-1$ (D) $2(\pi+2)$

116. Area lying between the curves $y^2 = 4x$ and y = 2xis(A) $\frac{2}{3}$ (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) $\frac{3}{4}$ Watch Video Solution

117. Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0andx = 2is(A) π (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{4}$

Watch Video Solution

118. Area of the region bounded by the curve $y^2=4x$, y-axis and the line y=3 is (A) 2 (B)

View Text Colution

3. Find the area of region bounded by $x^2 + 16y = 0$

and its latusrectum.

View Text Solution

4. Find the area of region bounded by the curve $ay^2 = x^3$, the $y - a\xi s$ and the lines y = aandy = 2a.

View Text Solution

5. Sketch the region bounded by $y = 2x - x^2$ and

 $x - \operatorname{axi s}$ and find its area using integration.

