©'doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

BINARY OPERATIONS

Solved Examples And Exercises

1. Discuss the commutativity and associativity of the binary
operation * on R defined by $a \cdot b=a-b+a b$ for all
$a, b \in R, \quad$ where on RHS we have usual addition, subtraction and multiplication of real numbers.
2. If $a \cdot b=a^{2}+b^{2}$, then the value of $(4 \cdot 5) \cdot 3$ is
A. $41^{2}+3^{2}$
B. $3^{2}+9^{2}$
C. $4^{2}+5^{2}+3^{2}$
D. None Of These

Answer: A

D Watch Video Solution

3. Let * be a binary operation on set of integers I, defined by $a \cdot b=2 a+b-3$. Find the value of $3 \cdot 4$.
4. Discuss the commutativity and associativity of the binary operation * on R defined by $a \cdot b=\frac{a b}{4}$ for all,$b \in R$.

- Watch Video Solution

5. Define a binary operation * on the set
$A=\{0,1,2,3,4,5\}$ as $a * b=(a+b)(\bmod 6)$. Show
that zero is the identity for this operation and each element a of the set is invertible with $6-a$ being the inverse of a.

OR

A binary operation $*$ on the set $\{0,1,2,3,4,5\}$ is
defined as $a * b=\left\{\begin{array}{c}a+b \text { if } a+b<6 \\ a+b-6 \text { if } a+b \geq 6\end{array}\right\}$
that zero is the identity for this operation and each element a of the set is invertible with $6-a$, being the inverse of a.

- Watch Video Solution

6. Consider the set $S=\{1,-1, i,-1\}$ for fourth roots
of unity. Construct the composition table for multiplication on S and deduce its various properties.

- Watch Video Solution

7. On $R-[1]$, a binary operation * is defined by $a \cdot b=a+b-a b$. Prove that * is commutative and
associative. Find the identity element for * on $R-[1]$.
Also, prove that every element of $r-[1]$ is invertible.

(D) Watch Video Solution

8. Let * be a binary operation on Q_{0} (set of non-zero rational numbers) defined by $a \cdot b=\frac{3 a b}{5}$ for all $a, b \in Q_{0}$. Find the identity element.

- Watch Video Solution

9. If the binary operation * on the set Z of integers is defined by $a \cdot b=a+3 b^{2}$, find the value of $2 \cdot 4$.
10. Let n be a positive integer. Prove that the relation R on the set Z of all integers numbers defined by $(x, y) \in R \Leftrightarrow x-y$ is divisible by n, is an equivalence relation on Z .

- Watch Video Solution

11. Define a binary operation * on the set $A=\{1,2,3,4\}$ as $a \cdot b=a b(\bmod 5)$. Show that 1 is the identity for * and all elements of the set A are invertible with $2^{-1}=3$ and
$4^{-1}=4$
12. On the set $R-\{-1\}$ a binary operation \cdot is defined by $a \cdot b=a+b+a b$ for all $a, b \in R-1\{-1\}$. Prove that * is commutative as well as associative on $R-\{-1\}$. Find the identity element and prove that every element of $R-\{-1\}$ is invertible.

- Watch Video Solution

13. Q^{+}denote the set of all positive rational numbers. If the binary operation \odot on Q^{+}is defined as a $\odot b=\frac{a b}{2}$, then the inverse of 3 is $\frac{4}{3}$ (b) 2 (c) $\frac{1}{3}$ (d) $\frac{2}{3}$

D Watch Video Solution

14. Let ' . ' be a binary operation on Q_{0} (set of all nonzero rational numbers) defined by $a \cdot b=\frac{a b}{4}$ for all $a, b \in Q_{0}$. Then, find the identity element in Q_{0} inverse of an element in Q_{0}.

- Watch Video Solution

15. If the binary operation * on Z is defined by $a \cdot b=a^{2}-b^{2}+a b+4$, then value of $(2 \cdot 3) \cdot 4$ is`
A. 21
B. 33
C. 37
D. 41

Answer: B

D Watch Video Solution

16. Is * defined by $a^{*} b=\frac{a+b}{2}$ is binary operation on Z.

D Watch Video Solution

17. Let '.' be a binary operation on N given by $a \cdot b=L \dot{C} \dot{M} a, b$ for all $a, b \in N$. Find $5 \cdot 7,20 \cdot 16$ (ii) Is * commutative? Is * associative? Find the identity element in
N Which element of N are invertible? Find them.
18. On the set $M=A(x)=\{[\times \times]: x \in R\} o f 2 x 2$ matrices, find the identity element for the multiplication of matrices as a binary operation.

- Watch Video Solution

19. Let $+_{6}$ (addition modulo 6) be a binary operation on
$S=\{0,1,2,3,4,5\} \quad$. Write the value of
$2+{ }_{6} 4^{-1}+{ }_{6} 3^{-1}$.

D Watch Video Solution

20. Let $A=Q x Q$ and let * be a binary operation on A defined by $(a, b) \cdot(c, d)=(a c, b+a d)$ for
$(a, b),(c, d) \in A$. Then, with respect to * on A Find the identity element in A Find the invertible elements of A.

(D) Watch Video Solution

21. Let $A=N x N$, and let * be a binary operation on A defined by $\quad(a, b) \cdot(c, d)=(a d+b c, b d) \quad$ for all $(a, b), c, d) \in N x N$. Show that : ' . ' is commutative on
$A^{\prime} .^{\prime}$ is associative on A has no identity element.

- Watch Video Solution

22. Discuss the commutativity and associativity of binary operation * defined on Q by the rule $a \cdot b=a-b+a b$ for all $a, b \in Q$

D Watch Video Solution

23. Let * be a binary operation on N, the set of natural numbers, defined by $a \cdot b=a^{b}$ for all $a, b \in N$. Is '. ' associative or commutative on N ?

- Watch Video Solution

24. Let *, be a binary operation on N, the set of natural numbers defined by $a \cdot b=a^{b}$, for all $a, b \in N$. is * associative or commutative on N ?

- Watch Video Solution

25. On Q, the set of all rational numbers, a binary operation * is defined by $a \cdot b=\frac{a b}{5}$ for all $a, b \in Q$. Find the identity element for * in Q. Also, prove that every nonzero element of Q is invertible.

- Watch Video Solution

26. Let * be a binary operation on set $Q-[1]$ defined by $a \cdot b=a+b-a b$ for all $a, b \in Q-[1]$. Find the identity element with respect to • on Q. Also, prove that every element of $Q-[1]$ is invertible.

- Watch Video Solution

27. On the set C of all complex numbers an operation ' o ' is defined by z_{1} o $z_{2}=\sqrt{z_{1} z_{2}}$ for all $z_{1}, z_{2} \in C$. Is o a binary operation on C ?

- Watch Video Solution

28. Let $S=\{1,2,3,4\}$ and * be an operation on S defined by $a \cdot b=r$, where r is the last non-negative remainder when product is divided by 5 . Prove that * is a binary operation on S .

- Watch Video Solution

29. Let $S=(0,1,2,3,4$,$) and * be an operation on S$ defined by $a \cdot b=r$, wherer is the least non-negative remainder when $a+b$ is divided by 5. Prove that * is a binary operation on S .

- Watch Video Solution

30. Define a binary operation * on the set
$A=\{0,1,2,3,4,5\}$ given by $a \cdot b=a b(\bmod 6)$. Show that 1 is the identity for *. 1 and 5 are the only invertible elements with $1^{-1}=1$ and $5^{-1}=5$

D Watch Video Solution

31. Let $S=\{a+\sqrt{2} b: a, b \in Z\}$. Then prove that an operation * on S defined by
$\left(a_{1}+\sqrt{2} b_{1}\right) \cdot\left(a_{2}+\sqrt{2} b_{2}\right)=\left(a_{1}+b_{2}\right)+\sqrt{2}\left(b_{1}+b_{2}\right)$
for all $b_{1}, a_{2} \in Z$ is binary operation ofn S.

- Watch Video Solution

32. Let A be a set having more than one element. Let * be a binary operation on A defined by $a \cdot b=\sqrt{a^{2}+b^{2}}$ for all $a, b, \in A$. Is ' . ' commutative or associative on A?

D Watch Video Solution

33. Let $A=N x N a n d^{\prime}$. ' be a binaryoperation on A defined by $(a, b) \cdot(C, d)=(a c, b d) \quad$ for all $a, b, c, d, \in N$. Show that '.' is commutative and associative binary operation on A .

- Watch Video Solution

34. Let S be the set of all rational numbers except 1 and * be defined on S by $a \cdot b=a+b-a b$, for all $a, b \in S$.

Find its identity element

D Watch Video Solution

35. Q , the set of all rational number, * is defined by $a \cdot b=\frac{a-b}{2}$, show that * is no associative.

- Watch Video Solution

36. Find the identity element in set Q^{+}of all positive rational numbers for the operation * defined by $a \cdot b=\frac{a b}{2}$ for all $a, b \in Q^{+}$.

- Watch Video Solution

37. If * defined on the set R of real numbers by $a \cdot b=\frac{3 a b}{7}$, find the identity element in R for the binary operation *.

- Watch Video Solution

38. Let S be a non-empty set and $P(s)$ be the power set of set S. Find the identity element for all union () as a binary operation on $P(S)$.

D Watch Video Solution

39. If * is defined on the set R of all real numbers by $a \cdot b=\sqrt{a^{2}+b^{2}}$, find the identity element in R with respect to *.

- Watch Video Solution

40. If the binary operation * on the set Z is defined by $a * b$
$=a+b-5$, then find the identity element with respect to *.

- Watch Video Solution

41. Let * be a binary operation o Q defined by $\mathrm{a} * \mathrm{~b}=\frac{a b}{4}$ for all $a, b \in Q$,find identity element in Q

- Watch Video Solution

42. If the binary operation \odot is defined on the set Q^{+}of all positive rational numbers by $a \odot b=\frac{a b}{4}$. Then,
$3 \odot\left(\frac{1}{5} \odot \frac{1}{2}\right)$ is equal to $\frac{3}{160}$ (b) $\frac{5}{160}$ (c) $\frac{3}{10}$ (d) $\frac{3}{40}$

D Watch Video Solution

43. Let $S=\{a+\sqrt{2} b: a, b \in Z\}$. Then, prove that an operation * on S defined by $\left(a_{1}+\sqrt{2} b_{1}\right) \cdot\left(a_{2}+\sqrt{2} b_{2}\right)=\left(a_{1}+a_{2}\right)+\sqrt{2}\left(b_{1}+b_{2}\right)$ for all $a_{1}, a_{2}, b_{1}, b_{2} \in Z$ is a binary operation on S.

- Watch Video Solution

44. Let $S=\{1,2,3,4\}$ and \cdot be an operation on S defined by $a \cdot b=r$, where r is the least non-negative remainder when product is divided by 5 . Prove that • is a binary operation on S.
45. Let $S=(0,1,2,3,4$,$) and * be an operation on S$ defined by $a \cdot b=r$, where r is the least non-negative remainder when $a+b$ is divided by 5. Prove that * is a binary operation on S .

D Watch Video Solution

46. Show that the operation \vee and \wedge on R defined as
$a \vee b=$ Maximum of a and $b ; a \wedge b=$ Minimum of a and b are binary operations of R.

- Watch Video Solution

47. On the set Q of all rational numbers an operation * is defined by $a \cdot b=1+a b$. Show that * is a binary operation on Q .

- Watch Video Solution

48. On the set W of all non-negative integers . is defined by $a \cdot b=a^{b}$. Prove that \cdot is not a binary operation on W.

- Watch Video Solution

49. On the set C of all complex numbers an operation ' o '
is defined by z_{1} o $z_{2}=\sqrt{z_{1} z_{2}}$ for all $z_{1}, z_{2} \in C$. Is o a
binary operation on C ?

D Watch Video Solution

50. Let M be the set of all singular matrices of the form
$[\times \times]$, where x is a non-zero real number. On M, let • be an operation defined by, $A \cdot B=A B$ for all $A, B \in M$. Prove that • is a binary operation on M.

D Watch Video Solution

51. Determine whether * on N defined by $a \cdot b=a^{b}$ for all
$a, b \in N$ define a binary operation on the given set or not:
52. Determine whether O on Z defined by $a O b=a^{b}$ for all $a, b \in Z$ define a binary operation on the given set or not:

- Watch Video Solution

53. Determine whether * on N defined by $a \cdot b=a+b-2$ for all $a, b \in N$ define a binary operation on the given set or not:
54. Determine whether ' ${ }_{6}$ ' on $S=\{1,2,3,4,5\}$ defined by $a \times_{6} b=$ Remainder when $a b$ is divided by 6 define a binary operation on the given set or not:

- Watch Video Solution

55. Determine whether ${ }^{\prime}{ }_{+6}{ }^{\prime}$ on $S=\{0,1,2,3,4,5\}$ defined by
$a+{ }_{6} b=\{a+b, \quad$ if $\quad a+b<6 a+b-6, \quad$ if $\quad a+b \geq 6$
define a binary operation on the given set or not:

- Watch Video Solution

56. 'o' on N defined by $a \operatorname{c}=a b+b$ for $a l l a, b \in N$ define a binary operation on the given set or not:

- Watch Video Solution

57. '. ' on Q defined by $a \cdot b=\frac{a-1}{b+1}$ for all $a, b \in Q$ define a binary operation on the given set or not:

D Watch Video Solution

58. Determine whether or not the definition of * On Z^{+}, defined * by $a \cdot b=a-b$ gives a binary operation. In the event that * is not a binary operation give justification of
this. Here, Z^{+}denotes the set of all non-negative integers.

- Watch Video Solution

59. Determine whether or not the definition of * On Z^{+}, defined * by $a \cdot b=a b$ gives a binary operation. In the event that * is not a binary operation give justification of this. Here, Z^{+}denotes the set of all non-negative integers.

- Watch Video Solution

60. Determine whether or not the definition of * On R, define by $a \cdot b=a b^{2}$ gives a binary operation. In the event
that * is not a binary operation give justification of this. Here, Z^{+}denotes the set of all non-negative integers.

D Watch Video Solution

61. Determine whether or not the definition of * On Z^{+}, define * by $a \cdot b=|a-b|$ gives a binary operation. In the event that * is not a binary operation give justification of this. Here, Z^{+}denotes the set of all non-negative integers.

- Watch Video Solution

62. Determine whether or not the definition of * On Z^{+}, define * by $a \cdot b=a$ gives a binary operation. In the event
that * is not a binary operation give justification of this. Here, Z^{+}denotes the set of all non-negative integers.

D Watch Video Solution

63. Determine whether or not the definition of * On R, define * by $a \cdot b=a+4 b^{2}$ gives a binary operation. In the event that * is not a binary operation give justification of this. Here, Z^{+}denotes the set of all non-negative integers.

- Watch Video Solution

64. Let * be a binary operation on set of integers I, defined by $a * b=2 a+b-3$. Find the value of $3 * 4$.

D Watch Video Solution

65. Is * defined on the set $\{1,2,3,4,5\}$ b y a * $\mathrm{b}=$ L.C.M. of a and b a binary operation? Justify your answer.

D Watch Video Solution

66. Let $S=\{a, b, c\}$. Find the total number of binary operations on S.

- Watch Video Solution

67. Find the total number of binary operations on $\{a, b\}$.
68. Prove that the operation * on the set $M=\left\{\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]: a, b \in R-\{0\}\right\}$ defined by $A^{*} B=A B$ is a binary operation.

- Watch Video Solution

69. Let S be the set of all rational numbers of the form $\frac{m}{n}$
, where $m \in Z$ and $n=1,2,3$. Prove that * on S defined by $a^{*} b=a b$ is not a binary operation.

- Watch Video Solution

70. The binary operation $*: R \times R \rightarrow R$ is defined as $a * b=2 a+b$. Find $(2 * 3) * 4$.

- Watch Video Solution

71. Let * be a binary operation of N given by a a^{*} $b=\operatorname{LCM}(a, b)$ for all a, b in N. Find $5^{*} 7$

- Watch Video Solution

72. Let * be a binary operation on $Q-\{0\}$ defined by $a \cdot b=\frac{a b}{2}$ for all $a, b \in Q-\{0\}$. Prove that * is commutative on $Q-\{0\}$.
73. Let A be a set having more than one element. Let * be a binary operation on A defined by $a \cdot b=\sqrt{a^{2}+b^{2}}$ for all $a, b, \in A$. Is * commutative or associative on A ?

- Watch Video Solution

74. If the operation * is defined on the set Q of all rational numbers by the rule $a^{*} b=\frac{a b}{3}$ for all $a, b \in Q$. Show that * is associative on Q

- Watch Video Solution

75. Examine whether the binary operation $*$ defined on R by $a * b=a b+1$ is associative or not.

- Watch Video Solution

76. Let A be a set having more than one element. Let * be a binary operation on A defined by $a^{*} b=\sqrt{a^{2}+b^{2}}$ for all $a, b, \in A$. Is * commutative or associative on A ?

- Watch Video Solution

77. Discuss the commutativity and associativity of the binary operation * on R defined by $a^{*} b=a-b+a b$ for all
$a, b \in R$, where on RHS we have usual addition, subtraction and multiplication of real numbers.

- Watch Video Solution

78. Discuss the commutativity and associativity of the binary operation * on R defined by a^{*} $b=\frac{a b}{4} f$ or alla, $b \in R$.

- Watch Video Solution

79. Discuss the commutativity and associativity of binary operation * defined on Q by the rule $a \cdot b=a-b+a b$ for all $a, b \in Q$
80. Let * be a binary operation on N, the set of natural numbers, defined by $a^{*} b=a^{b}$ for all $a, b \in N$. Is '.' associative or commutative on N ?

- Watch Video Solution

81. Let * be a binary operation on N given by a^{*} $b=\operatorname{HFC}(a, b)$ for all $a, b \in N$, then find: $12^{*} 4,18^{*}$
$24,7 * 5$

- Watch Video Solution

82. Let $*$ be the binary operation on N defined by $a \quad * \quad b \quad H \dot{C} \dot{F}$. of a and b. Is $*$ commutative? Is * associative? Does there exist identity for this binary operation on N ?

- Watch Video Solution

83. Consider the binary operations $\cdot: R \times R \rightarrow R$ and $o: R \times R \rightarrow R$ defined as $a \cdot b=|a-b|$ and $a o b=a$ for
all $a, b \in R$. Show that - is commutative but not associative, o is associative but not commutative. Further, show that * is distributive over o. Dose o distribute over *
? Justify your answer.
84. Let A be a non-empty set and S be the set of all functions from A to itself. Prove that the composition of functions ' o ' is a non-commutative binary operation on S.

Also, prove that ' o ' is an associative binary operation on S

D Watch Video Solution

85. Let $A=N x N a n d^{\prime}$. ' be a binaryoperation on A defined by $(a, b) \cdot(C, d)=(a c, b d) \quad$ for \quad all $a, b, c, d, \in N$. Show that '.' is commutative and associative binary operation on A .
86. Let A be a set having more than one element. Let * be a binary operation on A defined by $a \cdot b=a$ for all $a, b \in A$. Is * commutative or associative on A ?

- Watch Video Solution

87. Let * be a binary operation on N defined by $a \cdot b=1 . \cdot m a, b$ for all $a, b \in N$. Find $2 \cdot 4,3 \cdot 5,1 \cdot 6$

- Watch Video Solution

88. Let '. ' be a binary operation on N given by $a \cdot b=L \dot{C} \dot{M} a, b$ for all $a, b \in N$. Find $5 \cdot 7,20 \cdot 16$ (ii) Is *
commutative? Is * associative? Find the identity element in N Which element of N are invertible? Find them.

- Watch Video Solution

89. Determine whether • on N defined by $a \cdot b=1$ for all $a, b \in N$ is associative or commutative?

- Watch Video Solution

90. Determine whether . on Q defined by $a \cdot b=\frac{a+b}{2}$ for all $a, b \in Q$ is associative or commutative?
91. Let A be any set containing more than one element.

Let * be a binary operation on A defined by $a \cdot b=b$ for all $a, b \in A$. Is * commutative or associative on A ?

- Watch Video Solution

92. Check the commutativity and associativity of * on Z defined by $a \cdot b=a+b+a b$ for all $a, b \in Z$.

- Watch Video Solution

93. Check the commutativity and associativity of * on N defined by $a \cdot b=2^{a b}$ for all $a, b \in N$.
94. Check the commutativity and associativity of * on Q defined by $a \cdot b=a-b$ for all $a, b \in Q$.

- Watch Video Solution

95. Check the commutativity and associativity of o on Q defined by $a b=a^{2}+b^{2}$ for all $a, b \in Q$.

- Watch Video Solution

96. Check the commutativity and associativity of o on Q defined by a o $b=\frac{a b}{2}$ for all $a, b \in Q$.
97. Check the commutativity and associativity of * on Q defined by $a \cdot b=a b^{2}$ for all $a, b \in Q$.

- Watch Video Solution

98. Check the commutativity and associativity of * on Q defined by $a \cdot b=a+a b$ for all $a, b \in Q$.

- Watch Video Solution

99. Check the commutativity and associativity of * on R defined by $a \cdot b=a+b-7$ for all $a, b \in Q$.
100. Check the commutativity and associativity of * on Q defined by $a \cdot b=(a-b)^{2}$ for all $a, b \in Q$.

- Watch Video Solution

101. Check the commutativity and associativity of * on Q defined by $a \cdot b=a b+1$ for all $a, b \in Q$.

- Watch Video Solution

102. Let *, be a binary operation on N , the set of natural numbers defined by $a \cdot b=a^{b}$, for all $a, b \in N$. is * associative or commutative on N ?
103. Check the commutativity and associativity of * on Z defined by $a \cdot b=a-b$ for all $a, b \in Z$.

- Watch Video Solution

104. Check the commutativity and associativity of * on Q defined by $a \cdot b=\frac{a b}{4}$ for all $a, b \in Q$.

- Watch Video Solution

105. Check the commutativity and associativity of * on Z defined by $a \cdot b=a+b-a b$ for all $a, b \in Z$.
106. Check the commutativity and associativity of * on N defined by $a \cdot b=\operatorname{gcd}(a, b)$ for all $a, b \in N$.

- Watch Video Solution

107. Let S be the set of all rational number except 1 and * be defined on S by $a \cdot b=a+b-a b$, for all $a, b S$. Prove that (i) * is a binary operation on ${ }^{`}(\mathrm{ii})$ * is commutative as well as associative.
108. Show that the binary operation * on Z defined by $a \cdot b=3 a+7 b$ is not commutative.

- Watch Video Solution

109. On the set Z of integers a binary operation * is defined by $a \cdot b=a b+1$ for all $a, b \in Z$. Prove that * is not associative on Z.

- Watch Video Solution

110. Let S be the set of all real numbers except -1 and let *
be an operation defined by $a \cdot b=a+b+a b$ for all $a, b \in S$. Determine whether * is a binary operation on S.

If yes, check its commutativity and associativity. Also, solve the equation $(2 \cdot x) \cdot 3=7$.

D Watch Video Solution

111. Q , the set of all rational number, * is defined by
$a \cdot b=\frac{a-b}{2}$, show that * is no associative.

D Watch Video Solution

112. On Z, the set of all integers, a binary operation * is defined by $a \cdot b=a+3 b-4$. Prove that * is neither commutative nor associative on Z.
113. On the set Q of all rational numbers if a binary operation * is defined by $a \cdot b=\frac{a b}{5}$, prove that * is associative on Q.

- Watch Video Solution

114. The binary operation * is defined by $a \cdot b=\frac{a b}{7}$ on the set Q of all rational numbers. Show that * is associative.

- Watch Video Solution

115. On Q, the set of all rational numbers a binary operation * is defined by $a \cdot b=\frac{a+b}{2}$. Show that * is not associative on Q.

D Watch Video Solution

116. Let S be the set of all rational number except 1 and * be defined on S by $a \cdot b=a+b-a b$, for all $a, b S$. Prove that (i) * is a binary operation on ${ }^{`}(\mathrm{i} i)$ * is commutative as well as associative.

D Watch Video Solution

117. Let S be the set of all rational number except 1 and * be defined on S by $a \cdot b=a+b-a b$, for all $a, b S$. Prove that (i) * is a binary operation on ${ }^{`}(\mathrm{i} \mathrm{i})$ * is commutative as well as associative.
118. If $*$ defined on the set R of real numbers by $a \cdot b=\frac{3 a b}{7}$, find the identity element in R for the binary operation *.

D Watch Video Solution

119. Find the identity element in set Q^{+}of all positive rational numbers for the operation * defined by
$a \cdot b=\frac{a b}{2}$ for all $a, b \in Q^{+}$.
120. If * is defined on the set R of all real numbers by $a \cdot b=\sqrt{a^{2}+b^{2}}$, find the identity element in R with respect to *.

D Watch Video Solution

121. Let S be a non-empty set and $P(s)$ be the power set of
set S. Find the identity element for all union () as a binary operation on $P(S)$.

D Watch Video Solution

122. Find the identity element in the set I^{+}of all positive integers defined by $a \cdot b=a+b$ for all $a, b \in I^{+}$.

- Watch Video Solution

123. Find the identity element in the set of all rational numbers except -1 with respect to * defined by $a \cdot b=a+b+a b$.

- Watch Video Solution

124. If the binary operation * on the set Z is defined by $a * b$
$=a+b-5$, then find the identity element with respect to *.
125. On the set Z of integers, if the binary operation * is defined by $a \cdot b=a+b+2$, then find the identity element.

- Watch Video Solution

126. On Q, the set of all rational numbers, a binary operation * is defined by $a \cdot b=\frac{a b}{5}$ for all $a, b \in Q$. Find the identity element for * in Q. Also, prove that every nonzero element of Q is invertible.

- Watch Video Solution

127. Let * be a binary operation on set $Q-[1]$ defined by $a \cdot b=a+b-a b$ for alla, $b \in Q-[1]$. Find the identity element with respect to \cdot on Q. Also, prove that every element of $Q-[1]$ is invertible.

- Watch Video Solution

128. Show that the binary operation * on $A=R-\{-1\}$ defined as $a \cdot b=a+b+a b$ for all $a, b A$ is commutative and associative on A. Also find the identity element of \cdot in A and prove that every element of A is invertible.

- Watch Video Solution

129. Let ' . ' be a binary operation on Q_{0} (set of all nonzero rational numbers) defined by $a \cdot b=\frac{a b}{4}$ for all $a, b \in Q_{0}$. Then, find the identity element in Q_{0} inverse of an element in Q_{0}.

- Watch Video Solution

130. Let ' . ' be a binary operation on Q_{0} (set of all nonzero rational numbers) defined by $a \cdot b=\frac{a b}{4}$ for all $a, b \in Q_{0}$. Then, find the identity element in Q_{0} inverse of an element in Q_{0}.

D Watch Video Solution

131. Let * be a binary operation on N given by $a \cdot b=L \dot{C} \dot{M}(a, b)$ for all $a, b \in N$. (i) Find $5^{*} 7,20^{*} 16$ (ii) Is * commutative?

- Watch Video Solution

132. Let '.' be a binary operation on N given by $a \cdot b=L \dot{C} \dot{M} a, b$ for all $a, b \in N$. Find $5 \cdot 7,20 \cdot 16$ (ii) Is * commutative? Is * associative? Find the identity element in N Which element of N are invertible? Find them.

- Watch Video Solution

133. Define a binary operation * on the set
$A=\{0,1,2,3,4,5\}$ given by $a \cdot b=a b(\bmod 6)$. Show that 1 is the identity for *. 1 and 5 are the only invertible elements with $1^{-1}=1$ and $5^{-1}=5$

- Watch Video Solution

134. On the set $M=A(x)=\{[\times \times]: x \in R\}$ of $2 x 2$ matrices, find the identity element for the multiplication of matrices as a binary operation. Also, find the inverse of an element of M.

D Watch Video Solution

135. Let X be a non-empty set and let * be a binary operation on $P(X)$ (the power set of set X) defined by
$A \cdot B=A \cup B$ for all $A, B \in P(X)$. Prove that * is both commutative and associative on $P(X)$. Find the identity element with respect to * on $P(X)$. Also, show that $\varphi \in P(X)$ is the only invertible element of $P(X)$.

- Watch Video Solution

136. Let X be a nonempty set and *be a binary operation on $P(X)$, the power set of X, defined by $A \cdot B=A \cap B$ for all $A, B \in P(X)$. (

- Watch Video Solution

137. Let X be a non-empty set and let * be a binary operation on $P(X)$ (the power set of set X) defined by
$A \cdot B=(A-B) \cup(B-A)$ for all $A, B \in P(X)$. Show that φ is the identity element for * on $P(X)$.

- Watch Video Solution

138. Let X be a non-empty set and let * be a binary operation on $P(X)$ (the power set of set $X)$ defined by
$A \cdot B=(A-B) \cup(B-A)$ for all $A, B \in P(X)$. Show that φ is the identity element for * on $P(X)$.

D Watch Video Solution

139. Let $A=Q \times Q$ and let $*$ be a binary operation on A defined by $\quad(a, b) \cdot(c, d)=(a c, b+a d) \quad$ for
$(a, b),(c, d) \in A$. Then, with respect to $*$ on A. Find the identity element in A.

- Watch Video Solution

140. Let $A=Q \times Q$ and let * be a binary operation on A
defined by $\quad(a, b) \cdot(c, d)=(a c, b+a d) \quad$ for
$(a, b),(c, d) \in A$. Then, with respect to * on A. Find the invertible elements of A.

- Watch Video Solution

141. Let $A=N \cup\{0\} \times N \cup\{0\}$ and let * be a binary operation on A defined by
$(a, b) \cdot(c, d)=(a+c, b+d)$ for all
$(a, b),(c, d) \in A$. Show that * is commutative on A.

- Watch Video Solution

142. Let $A=N \cup\{0\} \times N \cup\{0\}$ and let * be a binary operation on

A
defined
by
$(a, b) \cdot(c, d)=(a+c, b+d)$
for
all
$(a, b),(c, d) \in A$. Show that * is associative on A.

- Watch Video Solution

143. Let $A=N \times N$, and let * be a binary operation on A defined by $(a, b) \cdot(c, d)=(a d+b c, b d)$ for all $(a, b),(c, d) \in N \times N$. Show that: * is commutative on A. (ii) * is associative on A.

- Watch Video Solution

144. Let $A=N \times N$, and let * be a binary operation on A defined by $(a, b) \cdot(c, d)=(a d+b c, b d)$ for all $(a, b),(c, d) \in N \times N$. Show that A has no identity element.

- Watch Video Solution

145. Show that the number of binary operations on
$\{1, \quad 2\}$ having 1 as identity and having 2 as the inverse of 2 is exactly one.

- Watch Video Solution

146. Determine the total number of binary operations on the set $S=\{1,2\}$ having 1 as the identity element.

- Watch Video Solution

147. Let * be a binary operation on Z defined by $a \cdot b=a+b-4$ for all $a, b \in Z$. Show that * is both commutative and associative.

D Watch Video Solution

148. Let * be a binary operation on Z defined by $a \cdot b=a+b-4$ for all $a, b \in Z$. Find the identity element in Z. (ii) Find the invertible elements in Z.

- Watch Video Solution

149. Let * be a binary operation on Q_{0} (set of non-zero rational numbers) defined by $a \cdot b=\frac{3 a b}{5}$ for all $a, b \in Q_{0}$. Show that * is commutative as well as associative. Also, find the identity element, if it exists.
150. Let * be a binary operation on $Q-\{-1\}$ defined by $a^{*} b=a+b+a b$ for all $a, b \in Q-\{-1\}$. Then, Show that * is both commutative and associative on $Q-\{-1\}$
.(ii) Find the identity element in $Q-\{-1\}$

- Watch Video Solution

151. Let * be a binary operation on $Q-\{-1\}$ defined by $a \cdot b=a+b+a b$ for all $a, b \in Q-\{-1\}$. Then, Show that every element of $Q-\{-1\}$ is invertible. Also, find the inverse of an arbitrary element.
152. Let R_{0} denote the set of all non-zero real numbers and let $A=R_{0} \times R_{0}$. If * is a binary operation on A defined by $(a, b) \cdot(c, d)=(a c, b d) \quad$ for all $(a, b),(c, d) \in A$. Show that * is both commutative and associative on A (ii) Find the identity element in A

- Watch Video Solution

153. Let ' o ' be a binary operation on the set Q_{0} of all nonzero rational numbers defined by $a o b=\frac{a b}{2}$, for all $a, b \in Q_{0}$. Show that ' o ' is both commutative and associate (ii) Find the identity element in Q_{0} (iii) Find the invertible elements of Q_{0}.
154. On $R-[1]$, a binary operation * is defined by $a \cdot b=a+b-a b$. Prove that * is commutative and associative. Find the identity element for * on $R-[1]$.

Also, prove that every element of $r-[1]$ is invertible.

- Watch Video Solution

155. Let R_{0} denote the set of all non-zero real numbers and let $A=R_{0} \times R_{0}$. If * is a binary operation on A defined by $(a, b) \cdot(c, d)=(a c, b d) \quad$ for \quad all
$(a, b),(c, d) \in A$. Show that * is both commutative and associative on A (ii) Find the identity element in A
156. Let R_{0} denote the set of all non-zero real numbers and let $A=R_{0} \times R_{0}$. If * is a binary operation on A defined by $(a, b) \cdot(c, d)=(a c, b d) \quad$ for all $(a, b),(c, d) \in A$. Find the invertible element in A.

- Watch Video Solution

157. Let * be the binary operation on N defined by $a \cdot b=H C F$ of a and b. Does there exist identity for this binary operation on N ?

- Watch Video Solution

158. Consider the set $S=\{1,-1\}$ of square roots of unity and multiplication (\times) as a binary operation on S. Construct the composition table for multiplication (\times) on S. Also, find the identity element for multiplication on S and the inverses of various elements.

- Watch Video Solution

159. Consider the set $S=\left\{1, \omega, \omega^{2}\right\}$ of all cube roots of unity. Construct the composition table for multiplication (\times) on S. Also, find the identity element for multiplication on S. Also, check its commutativity and find the identity element. Prove that every element of S is invertible.
160. Consider the set $S=\{1,-1, i,-i\}$ of fourth roots of unity. Construct the composition table for multiplication on S and deduce its various properties.

- Watch Video Solution

161. Consider the set $S=\{1,2,3,4\}$. Define a binary operation * on S as follows: $a \cdot b=r$, where r is the least non-negative remainder when $a b$ is divided by 5 . Construct the composition table for * on S.

| \begin\{tabular\}\{\|||||||||||| }
 1\& 1 \& 2 \& $3 \& 4$ \& $5^{\prime} \backslash \backslash$
 1\&1\&1\&1\&1\&1
 $2 \& 1 \& 2 \& 2 \& 2 \& 2^{\prime} \backslash \backslash$
 $3 \& 1 \& 2 \& 3 \& 3 \& 3^{\prime} \backslash \backslash$
 4\& 1\& 2\& 3\& 4\& 4' $\backslash \backslash$
 5\& 1\& 2 \& 3 \& 4 \& $5^{\prime} \backslash \backslash$
 Thline
 \end\{tabular\} } |
| :---: |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

- Watch Video Solution

163. Consider a binary operation * on the set $\{1,2,3,4,5\}$ given by the following multiplication table
(FIGURE)

Compute (2*3) *4 and 2* (3*4) Is * commutative?

Compute (2*3)*(4*5)

D Watch Video Solution

164. Define a binary operation * on the set
$A=\{0,1,2,3,4,5\}$ as $a \cdot b=a+b(\bmod 6)$. Show that zero is the identity for this operation and each element a of the set is invertible with $6-a$ being the inverse of a.

D Watch Video Solution

165. Define a binary operation * on the set
$A=\{0,1,2,3,4,5\}$ as $a \cdot b=a+b(\bmod 6)$. Show that
zero is the identity for this operation and each element a of the set is invertible with $6-a$ being the inverse of a. OR A binary operation * on the set $\{0,1,2,3,4,5\}$ is defined
$a \cdot b=\{a+b, \quad$ if $a+b<6 a+b-6, \quad$ if $a+b \geq 6$

Show that zero is the identity for this operation and each element a of set is invertible with $6-a$, being the inverse of a.

- Watch Video Solution

166. Define a binary operation * on the set
$A=\{1,2,3,4\}$ as $a \cdot b=a b(\bmod 5)$. Show that 1 is the identity for * and all elements of the set A are invertible with $2^{-1}=3$ and $4^{-1}=4$.

- Watch Video Solution

167. Construct the composition table for the composition of functions (o) defined on the $S=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ of
four functions from C (the set of all complex numbers) to itself, defined by
$f_{1}(z)=z, f_{2}(z)=-z, f_{3}(z)=\frac{1}{z}, f_{4}(z)=-\frac{1}{z}$
for all $z \in C$.

- Watch Video Solution

168. Construct the composition table for \times_{4} on set $S=\{0,1,2,3\}$.

- Watch Video Solution

169. Construct the composition table for $+_{5}$ on set $S=\{0,1,2,3,4\}$.
170. Construct the composition table for \times_{6} on set $S=\{0,1,2,3,4,5\}$.

- Watch Video Solution

171. Construct the composition table for \times_{5} on $Z_{5}=\{0,1,2,3,4\}$.

- Watch Video Solution

172. For the binary operation \times_{10} on set $S=\{1,3,7,9\}$, find the inverse of 3.
173. For the binary operation x_{7} on the set $S=\{1,2,3,4,5,6\}$, compute $3^{-1} \times_{7} 4$.

- Watch Video Solution

174. Find the inverse of 5 under multiplication modulo 11 on Z_{11}.

- Watch Video Solution

175. Write the multiplication table for the set of integers modulo 5.
176. Consider the binary operation * and o defined by the following tables on set $S=\{a, b, c, d\}$. (FIGURE) Show that both the binary operations are commutative and associative. Write down the identities and list the inverse of elements.

- Watch Video Solution

177. Define a binary operation * on the set
$A=\{0,1,2,3,4,5\}$ as $a \cdot b=a+b(\bmod 6)$. Show that
zero is the identity for this operation and each element a of the set is invertible with $6-a$ being the inverse of a. OR A binary operation * on the set $\{0,1,2,3,4,5\}$ is
$a \cdot b=\{a+b, \quad$ if $a+b<6 a+b-6, \quad$ if $a+b \geq 6$
Show that zero is the identity for this operation and each element a of set is invertible with $6-a$, being the inverse of a.

D Watch Video Solution

178. Write the identity element for the binary operations * on the set R_{0} of all non-zero real numbers by the rule $a \cdot b=\frac{a b}{2}$ for all $a, b \in R_{0}$
179. On the set Z of all integers a binary operation * is defined by $a \cdot b=a+b+2$ for all $a, b \in Z$. Write the inverse of 4.

- Watch Video Solution

180. Define a binary operation on a set.

- Watch Video Solution

181. Define a commutative binary operation on a set.

- Watch Video Solution

182. Define an associative binary operation on a set.

- Watch Video Solution

183. Write the total number of binary operations on a set consisting of two elements.

- Watch Video Solution

184. Write the identity element for the binary operation * defined on the set R of all real numbers by the rule $a \cdot b=\frac{3 a b}{7}$ for all $a, b \in R$.
185. Let * be a binary operation, on the set of all non-zero real numbers, given by $a \cdot b=\frac{a b}{5}$ for all $a, b \in R-\{0\}$. Write the value of x given by $2 \cdot(x \cdot 5)=10$.

- Watch Video Solution

186. Write the inverse of 5 under multiplication modulo 11 on the set $\{1,2, \ldots . ., 10\}$.

- Watch Video Solution

187. Define identity element for a binary operation defined on a set.
188. Write the composition table for the binary operation multiplication modulo $10\left(\times_{10}\right)$ on the set $S=\{2,4,6,8\}$.

D Watch Video Solution

189. Write the composition table for the binary operation multiplication modulo $10\left(\times_{10}\right)$ defined on the set $S=\{1,3,7,9\}$.

D Watch Video Solution

190. For the binary operation multiplication modulo $5\left(\times_{5}\right)$ defined on the set $S=\{1,2,3,4\}$. Write the value of $\left(3 \times{ }_{5} 4^{-1}\right)^{-1}$.

- Watch Video Solution

191. Write the composition table for the binary operation \times_{5} (multiplication modulo 5) on the set

$$
S=\{0,1,2,3,4\}
$$

- Watch Video Solution

192. A binary operation * is defined on the set R of all real numbers by the rule $a \cdot b=\sqrt{a^{2}+b^{2}}$ for all $a, b \in R$.

Write the identity element for * on R.

- Watch Video Solution

193. Let $+_{6}$ (addition modulo 6) be a binary operation on $S=\{0,1,2,3,4,5\} \quad$. Write the value of $2+{ }_{6} 4^{-1}+{ }_{6} 3^{-1}$.

- Watch Video Solution

194. Let * be a binary operation defined by $a \cdot b=3 a+4 b-2$. Find $4 * 5$.
195. If the binary operation * on the set Z of integers is defined by $a \cdot b=a+3 b^{2}$, find the value of $2 \cdot 4$.

D Watch Video Solution

196. Let * be a binary operation on N given by $a \cdot b=H C F(a, b), \quad a, b \in N$. Write the value of $22 \cdot 4$

- Watch Video Solution

197. Let * be a binary operation on set of integers I, defined by $a \cdot b=2 a+b-3$. Find the value of $3 \cdot 4$.
198. If $a \cdot b=a^{2}+b^{2}$, then the value of $(4 \cdot 5) \cdot 3$ is $a \cdot b=a^{2}+b^{2}, \quad$ then the value of $(4 \cdot 5) \cdot 3$ is
$\left(4^{2}+5^{2}\right)+3^{2}$
(ii) $\quad(4+5)^{2}+3^{2}$
$41^{2}+3^{2}$
(iv)
$(4+5+3)^{2}$

D Watch Video Solution

199. If $a \cdot b$ denote the bigger among a and b and if $a b=(a * b)+3$, then $4.7=$
A. 31
B. 14
C. 10
D. 7

Answer: C

- Watch Video Solution

200. If the binary operation ${ }^{*}$ on Z is defined by $a \cdot b=a^{2}-b^{2}+a b+4$, then value of $(2 \cdot 3) \cdot 4$ is 233
(b) 33 (c) 55 (d) -55

- Watch Video Solution

201. For the binary operation * on Z defined by $a * b=a+b+1$ the identity element is
A. -2
B. 0
C. 1
D. -1

Answer: D

D Watch Video Solution

202. If a binary operation * is defined on the set Z of integers as $a * b=3 a-b$, then the value of $(2 * 3) * 4$ is
A. 2
B. 4
C. 5
D. 6

Answer: C

- Watch Video Solution

203. Q^{+}denote the set of all positive rational numbers. If the binary operation \odot on Q^{+}is defined as a
$\odot b=\frac{a b}{2}$, then the inverse of 3 is
A. $\frac{4}{3}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{5}{3}$

Answer: A

204. If G is the set of all matrices of the form $[\times \times]$, where $x \in R-\{0\}$, then the identity element with respect to the multiplication of matrices as binary operation, is [1111] (b) $[-1 / 2-1 / 2-1 / 2-1 / 2]$
$[1 / 21 / 21 / 21 / 2]$ (d) $[-1-1-1-1]$

- Watch Video Solution

205. Q^{+}is the set of all positive rational numbers with the binary operation * defined by $a \cdot b=\frac{a b}{2}$ for all $a, b \in Q^{+}$. The inverse of an element $a \in Q^{+}$is a (b) $\frac{1}{a}$
(c) $\frac{2}{a}$ (d) $\frac{4}{a}$
206. If the binary operation \odot is defined on the set Q^{+} of all positive rational numbers by $a \odot b=\frac{a b}{4}$. Then,
$3 \odot\left(\frac{1}{5} \odot \frac{1}{2}\right)$ is equal to
A. $\frac{3}{160}$
B. $\frac{5}{160}$
C. $\frac{3}{10}$
D. $\frac{3}{40}$

Answer: A

D Watch Video Solution
207. Let * be a binary operation defined on set $Q-\{1\}$ by the rule $a^{*} b=a+b-a b$. Then, the identity element for * is
A. 1
B. $\frac{a-1}{a}$
C. $\frac{a}{a-1}$
D. 0

Answer: D

- Watch Video Solution

208. Which of the following is true? * defined by $a \cdot b=\frac{a+b}{2}$ is a binary operation on $Z(\mathrm{~b})$ * defined by $a \cdot b=\frac{a+b}{2}$ is a binary operation on Q (c) all binary commutative operations are associative (d) subtraction is a binary operation on N

- Watch Video Solution

209. The binary operation * defined on N by $a \cdot b=a+b+a b$ for all $a, b \in N$ is (a) commutative only (b) associative only (c) commutative and associative both (d) none of these
A. commutative and associative both
B. associative only
C. commutative and associative both
D. None of these

Answer: C

D Watch Video Solution

210. If a binary operation * is defined by $a \cdot b=a^{2}+b^{2}+a b+1$, then $(2 \cdot 3) \cdot 2$ is equal to (a)

20 (b) 40 (c) 400 (d) 445

- Watch Video Solution

211. Let * be a binary operation on R defined by $a \cdot b=a b+1$. Then, * is commutative but not associative associative but not commutative neither commutative nor associative (d) both commutative and associative
A. (a) commutative but not associative
B. (b) associative but not commutative
C. (c) neither commutative nor associative
D. (d) both commutative and associative

Answer: (a) commutative but not associative

D Watch Video Solution

212. Subtraction of integers is
A. (a) Commutative but not associative
B. (b) Commutative and associative
C. (c) Associative but not commutative
D. (d) Neither commutative nor associative

Answer: (d) Neither commutative nor associative

D Watch Video Solution

213. The law $a+b=b+a$ is called
A. (a) closure law
B. (b) associative law
C. (c) commutative law
D. (d) distributive law

Answer: (c) commutative law

D Watch Video Solution

214. An operation * is defined on the set Z of non-zero integers by $a \cdot b=\frac{a}{b}$ for all $a, b \in Z$. Then the property satisfied is
A. (a) closure
B. (b) commutative
C. (c) associative
D. (d) none of these

Answer: (d) none of these

- Watch Video Solution

215. On Z an operation * is defined by $a^{*} b=a^{2}+b^{2}$ for all $a, b \in Z$. The operation * on Z is
A. (a) commutative and associative
B. (b) associative but not commutative
C. (c) not associative
D. (d) not a binary
216. A binary operation $*$ on Z defined by $a * b=3 a+b$ for all $a, b \in Z$, is (a) commutative (b) associative (c) not commutative (d) commutative and associative
A. (a) commutative
B. (b) associative
C. (c) not commutative
D. (d) commutative and associative

Answer: (c) not commutative

- Watch Video Solution

217. Let $*$ be a binary operation on N defined by $a * b=a+b+10$ for all $a, b \in N$. The identity element for $*$ in N is
A. (a) -10
B. (b) 0
C. (c) 10
D. (d) Does not Exist

Answer: (a) - 10

- Watch Video Solution

218. Consider the binary operation $*$ defined on $Q-\{1\}$ by the rule $a * b=a+b-a b$ for all $a, b \in Q-\{1\}$.

The identity element in $Q-\{1\}$ is
A. (a) 0
B. (b) 1
C. (c) $\frac{1}{2}$
D. (d) -1

Answer: (a) 0

D Watch Video Solution

219. For the binary operation $*$ defined on $R-\{-1\}$ by the rule $a * b=a+b+a b$ for all $a, b \in R-\{1\}$, the inverse of a is
A. (a) a
B. (b) $-\frac{a}{a+1}$
C. (c) $\frac{1}{a}$
D. (d) a^{2}

Answer: (b) $-\frac{a}{a+1}$

D Watch Video Solution

220. For the multiplication of matrices as a binary operation on the set of all matrices of the form

$$
\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right], a, b \in R \text { the inverse of }\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] \text { is }
$$

A. (a) $\left[\begin{array}{cc}-2 & 3 \\ -3 & -2\end{array}\right]$
B. (b) $[23-32]$
C. (c) $\left[\begin{array}{cc}\frac{2}{13} & \frac{-3}{13} \\ \frac{3}{13} & \frac{2}{13}\end{array}\right]$
D. (d) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Answer: (c) $\left[\begin{array}{ll}\frac{2}{13} & \frac{-3}{13} \\ \frac{3}{13} & \frac{2}{13}\end{array}\right]$

- Watch Video Solution

221. On the set Q^{+}of all positive rational numbers a binary operation * is defined by $a * b=\frac{a b}{2}$ for all $a, b \in Q^{+}$. The inverse of 8 is
A. (a) $\frac{1}{8}$
B. (b) $\frac{1}{2}$
C. (c) 2
D. (d) 4

Answer: (b) $\frac{1}{2}$

- Watch Video Solution

222. Let $*$ be a binary operation defined on Q^{+}by the rule $a * b=\frac{a b}{3}$ for all $a, b \in Q^{+}$. The inverse of $4 * 6$ is
A. (a) $\frac{9}{8}$
B. (b) $\frac{2}{3}$
C. (c) $\frac{3}{2}$
D. (d) none of these

Answer: (a) $\frac{9}{8}$

- Watch Video Solution

223. The number of binary operations that can be defined on a set of 2 elements is
A. (a) 8
B. (b) 4
C. (c) 16
D. (d) 64

Answer: (c) 16
224. The number of commutative binary operations that can be defined on a set of 2 elements is
A. (a) 1
B. (b) 2
C. (c) 4
D. (d) 16

Answer: (b) 2

- Watch Video Solution

Others

1. On the power set P of a non-empty set A, we define an operation by $X Y=(X \cap Y) \cup(X \cap Y)$ Then which are of the following statements is true about commutative and associative without an identity commutative but not associative with an identity associative but not commutative without an identity (d) associative and commutative with an identity

- View Text Solution

