

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

CONTINUITY

Solved Examples And Exercises

1. Discuss the continuity of the function $f(x) = egin{cases} 2x-1 & ext{if} \ x < 2 \ rac{3x}{2} & ext{if} \ x \geq 2 \end{cases}$

Watch Video Solution

2. If $f(x)=rac{2x+3\sin x}{3x+2\sin x}, x
eq 0$ is continuous at x=0 , then find f(0) .

A. 0

B. 1

C. 2

D. 3

Answer: B

3. For what value of
$$k$$
 is the function $f(x) = \begin{cases} \frac{x^2 - 1}{x - 1}k, \\ x \neq 1, x = 1 \text{ continuousat} x = 1? \end{cases}$

Watch Video Solution

4. Find the values of a and b so that the function f given by $f(x) = \begin{cases} ax+1 & ext{if } x \leq 3 \\ ax+3 & ext{if } x > 3 \end{cases}$

5. Let
$$f(x)=rac{\logig(1+rac{x}{a}ig)-\logig(1-rac{x}{b}ig)}{x}, \ x
eq 0$$
 . Find the value of f

at x=0 so that f becomes continuous at x=0 .

Watch Video Solution

6. If
$$f(x)= egin{cases} rac{\cos^2x-\sin^2x-1}{\sqrt{x^2+1}-1} & ext{if} \quad x
eq 0 \ k & ext{if} \quad x=0 \end{cases}$$
, is continuous at $x=0$

then find `k'.

Watch Video Solution

7. Extend the definition of the following by continuity $f(x) = \frac{1 - \cos 7(x - \pi)}{5(x - \pi)^2} \text{at the point} x = \pi$ Watch Video Solution

8. Find the value of a for which the function
$$f$$
 defined by $f(x) = \left\{a \frac{\sin \pi}{2}(x+1), x \le 0 \frac{\tan x - \sin x}{x^3}, x > 0 ext{ is continous at x=0}
ight.$

Watch Video Solution

9. Show that
$$f(x)=egin{cases} 1+x^2 & ext{if} \ \ 0\leq x\leq 1 \ 2-x & ext{if} \ \ x>1 \end{bmatrix}$$
 is discontinuous at

x = 1

Watch Video Solution

10.
$$\left\{egin{array}{ccc} rac{x^2}{2} & ext{if} & 0 \leq x \leq 1 \ 2x^2 - 3x + rac{3}{2} & ext{if} & l < x \leq 2 \end{array}
ight.$$
 at $x=1$

Watch Video Solution

11. Examine the continuity of the function f(x) =

$$\left\{egin{array}{ccc} 3x-2 & x\leq 0 \ x+1 & x>0 \end{array}
ight.$$

 $\operatorname{\mathsf{at}} x = 0$

Also sketch the graph of this function.

15. Show that
$$f(x) = \begin{cases} 1+x^2 & ext{if } 0 \leq x \leq 1 \\ 2-x & ext{if } x > 1 \end{cases}$$
 is discontinuous at

x = 1

Watch Video Solution

16. Show that
$$f(x) = \left\{ rac{x-|x|}{2}, ext{ w h e } ext{ n} x
eq 0 ext{ and } 2 ext{ w h e } ext{ n} x = 0 ext{ is }
ight.$$

discontinuous at x=0.

Watch Video Solution

17. Find the relationship between a and b so that the function 'f' defined by $f(x) = \{ax + 1, if x \le 3b x + 3, if x < 3 is continuous at <math>x = 3.$

18. If $f(x) = \left\{ rac{\sin 3x}{x}, when x
eq 01, when x = 0$. Find whether f(x) is

continuous at x = 0

Watch Video Solution

19. Prove that the function $f(x) = \left\{ \frac{\sin x}{x}, x < 0, x+1, x \ge 0
ight.$ is

everywhere continuous.

Watch Video Solution

20. Let $f(x) = \left\{ rac{1-\cos x}{x^2}, when \ x
eq 01, when \ x = 0$. Show that

f(x) is discontinuous at x=0 .

Watch Video Solution

21. If $f(x) = \left\{ e^{\frac{1}{x}}, 1 \text{ if } x \neq 0 \text{ if } x = 0 \text{ Find whether } f \text{ is continuous} \right\}$

at x = 0.

22. Test the continuity of the following function at the origin;

$$f(x)=iggl\{rac{x}{|x|},x
eq 0 egin{array}{c} ext{and} \ 1,x=0 \ \end{array}iggr]$$

Watch Video Solution

23.Thefunction
$$f(x) = \left\{ \left(\frac{x^2}{a}, \text{ if } 0 \le x < 1
ight), \left(a, \text{ if } 1 \le x < \sqrt{2}
ight), \left(\frac{2b^2 - 4b}{x^2}, \text{ if } sqrt(2) ext{ le xlt } 00): \} is cont \in uous on [0, oo] dot ext{ dots } t \in uous on [0, oo] ext{ dots } t \in uous on [0, oo] ex$$

 $F \in dthemostsuitab \leq values of$ a and bdot`

24. A function
$$f(x)$$
 is defined as $f(x) = \left\{ \frac{x^2 - x - 6}{x - 3}; \text{ if } x \neq 3 \text{ and } 5 \text{ if } x = 3 \text{ Show that } f(x) \text{ is continuous at } x = 3.$

25.

$$f(x)=f(x)=egin{cases}rac{\sin(a+1)x+\sin x}{x^xc},x<0rac{\sqrt{x+bx^2}-\sqrt{x}}{bx\sqrt{x}},x\geq 0, \end{cases}$$

is continuous at
$$x=0, then$$
 $(a)a=-rac{3}{2}, b=0, c=rac{1}{2}$ (b)

$$a=~-~rac{3}{2}, b=1, c=~-~rac{1}{2}~a=~-~rac{3}{2}, b\in R-[0], c=rac{1}{2}$$
 (d) none of

these

Watch Video Solution

26.

$$f(x) \begin{cases} \frac{1-\sin^2 x}{3\cos^2 x}, x < \frac{\pi}{2} \text{ and } a, x = \frac{\pi}{2} \text{ and } \frac{b(1-\sin x)}{(\pi-2x)^2}, x > \frac{\pi}{2} \end{cases}$$

then $f(x)$ is continuous at $x = \frac{\pi}{2}$, if $(a)a = \frac{1}{3}, b = 2$ (b)
 $a = \frac{1}{3}, = \frac{8}{3}$ (c) $a = \frac{2}{3}, b = \frac{8}{3}$ (d) none of these

D Watch Video Solution

If

If

27. The value of
$$f(0)$$
, so that the function
$$f(x) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}$$
becomes continuous for all x , given by (a) $a^{\frac{3}{2}}$ (b) $a^{\frac{1}{2}}$ (c) $-a^{\frac{1}{2}}$ (d) $-a^{\frac{3}{2}}$

Watch Video Solution

28. The points of discontinuity of the function $f(x)=\frac{1}{5} (2x^2+3) \ , \ xlt=1$

6-5x ,\ \ 1

Watch Video Solution

29. The function $f(x) = \tan x$ is discontinuous on the set $(a)\{n\pi; n \in Z\}$ (b) $\{2n\pi n \in Z\}$ $\{(2n+1)\frac{\pi}{2}: n \in Z\}$ (d) $\{\frac{n\pi}{2}: n \in Z\}$

30. The function $f(x) = \tan x$ is discontinuous on the set

$$(a)\{n\pi;n\in Z\}$$
 (b) $\{2n\pi n\in Z\}$ $\left\{(2n+1)rac{\pi}{2}\colon n\in Z
ight\}$ (c)

 $\left\{rac{n\pi}{2}:n\in Z
ight\}$ is continuous and $f'ig(1^-ig)=ig(\log)_{10}e$ d. f(x) is continuous and $f'ig(1^-ig)=ig-ig(\log)_{10}e$

Watch Video Solution

31. If the function $f(x) = \left\{ (\cos x)^{rac{1}{x}}, x
eq 0k, x = 0 ext{ is continuous at}
ight.$

x=0 , then the value of k is (a)0 (b) 1 (c) -1 (d) e

Watch Video Solution

32. If $f(x) = (x+1)^{\cot x}$ be continuous at x = 0, the f(0) is equal to (a) 0 (b) $\frac{1}{e}$ (c) e (d) none of these

33. If
$$f(x)=\left\{mx+1,x\leq rac{\pi}{2}{
m sin}\,x+n,x>rac{\pi}{2}
ight.$$
 is continuous at $x=rac{\pi}{2},$ then

Watch Video Solution

34. If
$$f(x) = \left\{mx + 1, x \le \frac{\pi}{2}\sin x + n, x > \frac{\pi}{2} \text{ is continuous at } x = \frac{\pi}{2}, \text{ then (A) m=1,n=0 (B)} m = \frac{n\pi}{2} + 1 \text{ (C) } n = \frac{m\pi}{2} \text{ (D)} m = n = \frac{\pi}{2} \right\}$$

Watch Video Solution

35. If
$$f(x) = \left\{ \frac{1 - \cos 10x}{x^2 a}, x < 0 \frac{\sqrt{x}}{\sqrt{625} + \sqrt{x} - 25}, x > 0, x = 0 \right.$$

then the value of a so that f(x) may be continuous at x=0, is 25 (b)

-1 (c) 1 (d) indeterminate

36. If
$$f(x) = \begin{cases} \frac{\sin(\cos x) - \cos x}{(\pi - 2x)^2}, x \neq \frac{\pi}{2}; k, x = \frac{\pi}{2} \text{ is continuous at} \\ x = \frac{\pi}{2}, \text{ then } k \text{ is equal to} \\ \text{(a) 0 (b) } \frac{1}{2} \text{ (c) 1 (d) } -1 \end{cases}$$

37. Discuss the continuity of the function f(x) given by $f(x) = \{2x - 1, ext{ if } x < 0 ext{ and } 2x + 1, ext{ if } x \geq 0$

Watch Video Solution

38. The value of a for which the function
$$f(x) = f(x) = \left\{\frac{(4^x - 1)\hat{3}}{\sin(xa)\log\{(1 + x^23)\}}, x \neq 012(\log 4)^3, x = 0 \text{ may} \right\}$$

be continuous at x = 0 is 1 (b) 2 (c) 3 (d) none of these

 $\mathbf{39. If} \ f(x) = \begin{cases} ax^2 + b & 0 \le x < 1 \\ 4 & x = 1 \\ x + 3 & 1 < x \ge 2 \end{cases} \text{ then the value of}(a, b) \text{ for which} \\ f(x) \text{ cannot be continuous at } x = 1, \text{ is } (a)(2, 2) \text{ (b) } (3, 1)(c)(4, 0) \text{ (d)} \\ (5, 2) \end{cases}$

Watch Video Solution

40. If
$$f(x)=iggl\{rac{2^{x+2}-16}{4^x-16}, ext{if } x
eq 2, ext{k if } x=2 ext{ is continuous at } x=2$$
 ,

find k

Watch Video Solution

41. Let
$$\int 1 - \cos 4x$$
 ... \sqrt{x}

$$f(x) = igg\{ rac{1-\cos 4x}{x^2 a,}, ext{ if } x < 0 rac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}, ext{ if } x > 0, ext{ if } x = 0 igg\}$$

Determine the value of a so that f(x) is continuous at x = 0.

42. if the function
$$f(x)$$
 defined by f(x)= $rac{\log(1+ax)-\log(1-bx)}{x}$, if

x
eq 0 and k if x=0 is continuous at x=0 , find k.

43. If
$$f(x)=\left\{mx+1,x\leq rac{\pi}{2},\sin x+n,x>rac{\pi}{2}
ight.$$
 is continuous at $x=rac{\pi}{2},$ then

Watch Video Solution

44. Find the value of the constant k so that the function given below is

$$ext{continuous} \qquad ext{at} \qquad x=0 \ f(x) = egin{cases} rac{1-\cos kx}{x\sin x}, & x
eq 0 & ext{ and } & rac{1}{2} & when \ x=0 \end{cases}$$

A. 1 or -1

B. -1

C.
$$\frac{1}{2}$$
 or $-\frac{1}{2}$

D. `1/2

Answer: A

45. Discuss the continuity of the f(x) at the indicated point: f(x) = |x| + |x-1| at $x = 0, \ 1$.

Watch Video Solution

46. if the function
$$f(x)$$
 defined by f(x)= $rac{\log(1+ax)-\log(1-bx)}{x}$, if

x
eq 0 and k if x=0 is continuous at x=0 , find k.

47. If
$$f(x)=rac{\sqrt{2}\cos x-1}{\cot x-1}, x
eq rac{\pi}{4}$$
. Find the value of $f\Big(rac{\pi}{4}\Big)$ so that $f(x)$ becomes continuous at $x=rac{\pi}{4}$.

48. Determine f(0) so that the function f(x) defined by $f(x) = \frac{\left(4^x - 1\right)^3}{\frac{\sin x}{4} \log\left(1 + \frac{x^2}{3}\right)}$ becomes continuous at x = 0

Watch Video Solution

49. The function
$$f(x) = \left\{x^2 a a, ext{if1lt=x}
ight.$$

50. If
$$f(x) = igg\{ rac{x-4}{|x-4|a+b, ext{ if } x=4} + a, ext{ if } x < 4rac{x-4}{|x-4|} + b, ext{ if } x > 0$$

51. Prove that the function $f(x) = \left\{ rac{x}{|x|+2x^2}, x
eq 0 ext{ and } k, x = 0
ight.$

remains discontinuous at x=0, regardless the choice of k

53. Find all point of discontinuity of the function $f(t) = rac{1}{t^2+t-2},$ where $t = rac{1}{x-1}$

54. Given the function $f(x) = rac{1}{x+2}$. Find the points of discontinuity of the function f(f(x))

55. If
$$f(x) = |x - a|\phi(x)$$
, where $\phi(x)$ is continuous function, then (a)
 $f'(a^+) = \phi(a)$ (b) $f'(a^-) = -\phi(a)$ (c) $f'(a^+) = f'(a^-)$ (d) none

of these

Watch Video Solution

56. Let
$$f(x)=rac{\logig(1+rac{x}{a}ig)-\logig(1-rac{x}{b}ig)}{x}, x
eq 0.$$
 Find the value of f

at x=0 so that f becomes continuous at x=0

Watch Video Solution

57. Let $f(x) = \frac{\tan\left(\frac{\pi}{4} - x\right)}{\cot 2x}, x \neq \frac{\pi}{4}$. The value which should be assigned to f(x) at $x = \frac{\pi}{4}$, so that it is continuous everywhere is (a) 1 (b) $\frac{1}{2}$ (c) 2 (d) none of these

58. The function $f(x) = \frac{x^3 + x^2 - 16x + 20}{x - 2}$ is not defined for x = 2. In order to make f(x) continuous at x = 2, f(2) should be defined as (a)0 (b) 1 (c) 2 (d) 3 Watch Video Solution

59. The value of b for which the function $f(x) = \{5x-4, 0x \leq 1$

, $4x^2 + 3bx, 1 < x < 2$

and continuous at x=1

60. If $f(x) = \frac{1}{1-x}$, then the set of points discontinuity of the function $f(f(f(x)))is \ (a)\{1\}(b)\{0,1\}(c)\{-1,1\}$ (d) none of these

Watch Video Solution

62. Show that f(x) = 5x - 4 , 0 < x < 1 $f(x) = 4x^3 - 3x$, 1 < x < 2

continuous at x = 1

63. If
$$f(x) = \begin{cases} a \frac{\sin \pi}{2} (x+1), \, , x \le 0 \frac{\tan x - \sin x}{x^3}, \, x > 0 \end{cases}$$
 is continuous at $x = 0$, then a equal (a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{4}$ (d) $\frac{1}{6}$

64. If
$$f(x) = \frac{1 - \sin x}{(\pi - 2x)^2}$$
, when $x \neq \frac{\pi}{2}$ and $f\left(\frac{\pi}{2}\right) = \lambda$, the $f(x)$ will be continuous function at $x = \frac{\pi}{2}$, where $\lambda = ?$ (a) $\frac{1}{8}$ (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) none

of these

Watch Video Solution

65. The value of k which makes $f(x) = \left\{ \frac{\sin x}{x}, x
eq 0, ext{ and } k, x = 0
ight.$

continuous at x=0,is (a) 8 (b) 1 (c) -1 (d) none of these

Watch Video Solution

66. Show that the function f(x) = 2x - |x| is continuous at x = 0.

67. If the function $f(x) = rac{2x - \sin^{-1}x}{2x + \tan^{-1}x}$ is continuous at each point of

its domain, then the value of f(0)

(A)
$$rac{4}{3}$$
 (B) $rac{1}{3}$ (C) $-rac{1}{3}$ (D) $rac{2}{3}$

Watch Video Solution

68. Let
$$f(x) = \begin{cases} \frac{x-4}{|x-4|a+b} + a, x < 0 \frac{x-4}{|x-4|} + b, x > 0 \end{cases}$$
 Then,
 $f(x)$ is continuous at $x = 4$ when (a) $a = 0, b = 0$ (b) $a = 1, b = 1$ (c)
 $a = -1, b = 1$ (d) $a = 1, b = -1$

Watch Video Solution

69. $Letf(x) = iggl\{ rac{x^4-5x^2+4}{|(x-1)(x-2)|},$ x!=1,2 & 6, x=1 & 12 , x = 2 then f(x) is

continuous on the set` (a) R (b) R-{1} (c) R-{2} (d) R-{1,2}

70. The values of the constants a, b and c for which the function $f(x) = \begin{cases} (1+ax)^{1/x}b, x < 0\frac{(x+c)^{\frac{1}{3}}-1}{(x+1)^{\frac{1}{2}}-1}, x > 0x = 0 & \text{may} & \text{be} \end{cases}$ continuous at x = 0, are $a = (\log)_e \left(\frac{2}{3}\right), b = -\frac{2}{3}, c = 1 \ a = \log)e$ $\left(\frac{2}{3}\right), b\frac{2}{3}, c = -1 \ a = (\log)_e \left(\frac{2}{3}\right), b = \frac{2}{3}, c = 1 \ (d) \text{ none of these}$

Watch Video Solution

71. Determine the value of the constant m so that the function $f(x)=ig\{mig(x^2-2xig),\ ext{ if }\ x<0\cos x,\ ext{ if }\ x\geq 0 ext{ is continuous.}ig\}$

Watch Video Solution

72. The value of
$$f(0)$$
, so that the function
 $f(x) = \frac{(27-2x)^{\frac{1}{3}}-3}{9-3(243+5x)^{1/5}} (x \neq 0)$ is continuous, is given by (a) $\frac{2}{3}$ (b)
6 (c) 2 (d) 4

73. The function $f(x)=iggl\{rac{e^{rac{1}{x}}-1}{e^{rac{1}{x}}+1},x
eq 00,x=0$ (a)is continuous at

x=0 (b)is not continuous at x=0 (c)is not continuous at $x=0,\,$ but

can be made continuous at x=0 (d) none of these

Watch Video Solution

74. The points of discontinuity of the function `f(x)={2sqrt(x),0lt=xlt=1 4-

2x,1

Watch Video Solution

75. If
$$f(x) = \frac{\tan(\frac{\pi}{4} - x)}{\cot 2x}$$
 for $x \neq \frac{\pi}{4}$, find the value of which can be assigned to $f(x)$ at $x = \frac{\pi}{4}$ so that the function $f(x)$ becomes continuous every where in $\left[0, \frac{\pi}{2}\right]$

76. Find the values of aandb so that the function f(x) defined by f(x)=

{x^2+a x+b,0lt=x<2 3x+2,2lt=xlt=42a x+5b ,4

77.
$$f(x) = \left\{rac{\sqrt{1+px}-\sqrt{1-px}}{x}, \ -1 \leq x < 0rac{2x+1}{x-2}, 0 \geq x \geq 1 ext{ is }
ight.$$

continuous in the interval [-1,1], then p is equal to -1 (b) $-rac{1}{2}$ (c) $rac{1}{2}$

(d) 1

Watch Video Solution

78. The value of
$$f(0)$$
 so that the function $f(x)=rac{2-(256-7x)^{rac{1}{8}}}{(5x+32)^{1/5}-2}, x
eq 0$ is continuous everywhere, is given by

 $-\,1$ (b) 1 (c) 26 (d) none of these

79. The function $f(x) = \left\{ \frac{\sin 3x}{x}, x \neq 0 \ rac{k}{2}, x = 0 ext{ is continuous of } x = 0 ext{, then} \ k = ext{ 3 (b) 6 (d) 9 (d) 12}
ight.$

Watch Video Solution

80. Discuss the continuity of the function
$$f(x) = \left\{ \frac{\sin 2x}{x}, \text{ if } x < 0x + 2, \text{ if } x \ge 0
ight.$$
 Watch Video Solution

81. Test the continuity of the following function at the origin: $f(x) = \left\{ \frac{|x|}{x}; x
eq 0
ight.$

82. Show that the function f(x) given by $f(x) = \begin{cases} x \sin\left(rac{1}{x}
ight) & x
eq 0 \\ 0 & x = 0 \end{cases}$ is

85. Discuss the continuity of the function
$$f(x)$$
 given by $f(x) = \{2 - x, x < 0$
and $2 + x, x > 0$
at $x = 0$

Watch Video Solution

86. Determine the values of
$$a, b, c$$
 for which the function
$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x} & \text{for } x < 0, \ f(x) = c \text{ for } x = 0, \ f(x) = \frac{\sqrt{x+bx^2} - \sqrt{x}}{bx^{\frac{3}{2}}}, \text{for } x > 0 \text{ is continuous at } x = 0 \end{cases}$$

Watch Video Solution

87. If
$$f(x)=\left\{\left(rac{1-\cos kx}{x\sin x},x
eq 0
ight),\left(rac{1}{2},x=0
ight)
ight\}$$
 is continuous at

x=0, find k

88. Discuss the continuity of the function of given by $f(x) = |x-1| + |x-2| atx = 1 ext{ and } x = 2$

Watch Video Solution

89. Determine the value of k for which the following function is continuous at x=3. $f(x)=\left\{rac{x^2-9}{x-3} ext{ ,} x
eq 3 ext{ and } ext{k when } x=3
ight.$

Watch Video Solution

90. Let f(x) = |x| + |x - 1|, then

(a)f(x) is continuous at $x=0,\,$ as well at x=1

(b)f(x) is continuous at x = 0, but not at x = 1

(c)f(x) is continuous at x = 1, but not at x = 0

(d)none of these

91. The function $f(x) = \frac{4-x^2}{4x-x^3}$ a)discontinuous at only one point b) discontinuous exactly at two points c)discontinuous exactly at three points d) none of these

Watch Video Solution

92. If
$$f(x)$$
 defined by $f(x) = \begin{cases} \frac{|x^2 - x|}{x^2 - |x|}, & x \neq 0, 1 - 1. \end{cases}$ Then (A)f(x) is continuous for all x (B) for all x except $x = 0$ (C) for all x except $x = 1$ (D) for all x except $x = 0$ and $x = 1$

Watch Video Solution

93. Discuss the continuity of the f(x) at the indicated points: $f(x)=|x|\mid |x-1|$ at x=0,1 f(x)=|x-1|+|x+1| at x=-1,1

94. Prove that $f(x) = \sqrt{|x| - x}$ is continuous for all $x \ge 0$.

95. Given $f(x) = \frac{1}{x-1}$. Find the points of discontinuity of the composite function f(f(x)).

Watch Video Solution

96. Test the continuity of the following function at the origin: $f(x) = \left\{ \frac{|x|}{x}; x
eq 01; x = 0
ight.$

98. Show that the function
$$f(x)$$
 given by $f(x)=igg\{ \frac{\sin x}{x}+\cos x,\ x
eq 02, \qquad x=0 ext{ is continuous at } x=0 ext{ .}$

Watch Video Solution

99. Examine the function
$$f(t)$$
 given by $f(t) = \left\{ \frac{\cos t}{\pi/2 - t}; \quad t \neq \pi/21; \quad t = \pi/2 \text{ for continuity at } t = \pi/2 \right\}$

Watch Video Solution

100. Show that the function f(x) given by $f(x) = \begin{cases} rac{e^{rac{1}{x}}-1}{e^{rac{1}{x}}+1} & whenx
eq 0 \\ 0 & whenx = 0 \end{cases}$

is discontinuous at x=0 .

104. Show that the function f(x)=2x-ert xert is continuous at x=0 .

105. Discuss the continuity of the function of given by f(x) = |x-1| + |x-2| at x = 1 and x = 2 .

Watch Video Solution

106. Determine the value of k for which the following function is continuous at x=3. $f(x)=\left\{rac{x^2-9}{x-3},\ x
eq 3k,\ x=3
ight.$

Watch Video Solution

107. Find the value of the constant λ so that the function given below is

continuous at
$$x=-1$$
 $f(x)=iggl\{rac{x^2-2x-3}{x+1},\ x
eq-1$ $\lambda,$ $x=-1$

108. Find the value of the constant k so that the function given below is

continuous at
$$x=0$$
 $f(x)=igg\{rac{1-\cos 2x}{2x^2},\ x
eq 0$ $k,$ $x=0$

Watch Video Solution

109. Find the value of 'a' if the function f(x) defined by $f(x)=\{2x-1,\ x<2$ a, $x=2x+1,\ x>2$ is continuous at x=2

Watch Video Solution

110. If the function
$$f(x)$$
 defined by $f(x) = \left\{ rac{\log(1+ax) - \log(1-bx)}{x}, \quad ext{if } x
eq 0 \quad k,
ight.$

is continuous at x=0 , find k .
111. Find the values of 'a' so that the function
$$f(x)$$
 defined by $f(x) = \begin{cases} \frac{\sin^2 ax}{x^2}, & x \neq 0 \ 1, & x = 0 \text{ may be continuous at } x = 0. \end{cases}$
Watch Video Solution
112. If the function $f(x)$ given by $f(x) = \{3ax + b, \text{ if } x > 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x < 1 \ 11, & \text{if } x = 15ax - 2b, & \text{if } x <$

$$f(x)=egin{cases} rac{1-\cos4x}{x^2}, & ext{ if } x<0a, & ext{ if } x=0rac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}, & ext{ if } \end{cases}$$

Let

Determine the value of a so that f(x) is continuous at x = 0.

114. Determine f(0) so that the function f(x) defined by $f(x) = \frac{\left(4^x - 1\right)^3}{\frac{\sin x}{4} \log\left(1 + \frac{x^2}{3}\right)}$ becomes continuous at x = 0

Watch Video Solution

115. If
$$f(x) = \frac{\sqrt{2}\cos x - 1}{\cot x - 1}$$
, $x \neq \frac{\pi}{4}$. Find the value of $f\left(\frac{\pi}{4}\right)$ so that $f(x)$ becomes continuous at $x = \pi/4$.

116. Prove that the greatest integer function [x] is continuous at all points except at integer points.

117. Leg
$$f(x+y) = f(x) + f(y)f$$
 or $allx, y \in R$, If

 $f(x) is cont \in uousatx = 0, show that f(x)$ is continuous at all $x \cdot$

118. Show that thefunction $f(x) = |\sin x + \cos x|$ is continuous at $x = \pi$

119. Test the continuity of the following function at the origin: $f(x)=iggl\{rac{x}{|x|},\ x
eq 01,\ x=0$

Watch Video Solution

120. A function
$$f(x)$$
 is defined as $f(x) = \left\{ \frac{x^2 - x - 6}{x - 3}; \quad ext{if } x \neq 3 \quad 5; \quad ext{if } x = 3 ext{ Show that } f(x) ext{ is continuous at } x = 3 ext{.}
ight.$

121. A function f(x) is defined as $f(x) = \left\{ \frac{x^2 - 9}{x - 3}; \quad ext{if} \quad x \neq 3 \ 6; \quad ext{if} \quad x = 3 \ ext{Show that} \ f(x) \ ext{is}$ continuous at x = 3.

Watch Video Solution

122. If
$$f(x)=iggl\{ rac{x^2-1}{x-1};\ f ext{ or } x
eq 1 2;\ f ext{ or } x=1$$
 . Find whether $f(x)$ is continuous at $x=1.$

Watch Video Solution

123. If
$$f(x)=\left\{rac{\sin 3x}{x}, when \ x
eq 01, when \ x=0$$
 . Find whether $f(x)$ is continuous at $x=0$.

124. If $f(x) = \left\{ e^{1/x}, \quad ext{if} \quad x
eq 01, \quad ext{if} \quad x = 0$. Find whether f is

continuous at x = 0

Watch Video Solution

125. Let
$$f(x)=iggl\{rac{1-\cos x}{x^2}, \hspace{0.1cm} when \hspace{0.1cm} x
eq 01, \hspace{0.1cm} when \hspace{0.1cm} x=0$$
 . Show that

f(x) is discontinuous at x=0 .

Watch Video Solution

126. Show that
$$f(x)=iggl\{rac{x-|x|}{2}, \ when \, x
eq 02, \ when \, x=0$$
 is

discontinuous at x = 0 .

Watch Video Solution

127. Show that $f(x) = \left\{ rac{|x-a|}{x-a}, when \ x
eq a1, when \ x=a$ is

discontinuous at x = a

128. Discuss the continuity of $f(x)=ig\{|x|\cosig(rac{1}{x}ig),\ x
eq 00,\ x=0$

at x=0

130. Discuss the continuity of
$$f(x) = \left\{ (x-a) \sin \left(rac{1}{x-a}
ight), \ x
eq a \qquad 0, \qquad x=a \ ext{at}$$

x = a

131.
$$f(x) = \left\{ \frac{e^x - 1}{\log(1 + 2x)}, \quad \text{if } x \neq 0 \qquad 7, \qquad \text{if } x = 0 \text{ at} \right.$$

$$x = 0$$

132.
$$f(x)=iggl\{rac{1-x^n}{1-x},\ x
eq 1\,,\ n-1,\ x=1\ n\in N$$
 at $x=1$

133.
$$f(x) = \left\{ rac{|x^2 - 1|}{x - 1}, \ f \ ext{or} \ x
eq 12, \ f \ ext{or} \ x = 1 \ ext{at} \ x = 1
ight.$$

Watch Video Solution

134.
$$f(x)=iggl\{rac{2|x|+x^2}{x},\ x
eq 0,\ ext{ and } 0 ext{ at }x=0 ext{ is continuous at }x=0$$

0 or not.

135.
$$f(x) = \left\{ |x-a| \sin\left(\frac{1}{x-a}\right), f \text{ or } x \neq a0, f \text{ or } x = a \text{ at } x = a
ight\}$$

136. Show that
$$f(x)=ig\{1+x^2, \quad ext{ if } \ 0\leq x\leq 12-x, \quad ext{ if } \ x>1$$

is discontinuous at x=1 .

Watch Video Solution

137. Show that
$$f(x) = \left\{ \frac{\sin 3x}{\tan 2x}, \quad ext{if} \quad x < 0 \frac{3}{2}, \quad ext{if} \quad x = 0 \frac{\log(1+3x)}{e^{2x}-1}, \quad ext{if} \quad x > 0 \right\}$$

is continuous at x=0

138. Find the value of 'a' for which the function
$$f$$
 defined by
 $f(x) = \left\{a\frac{\sin\pi}{2}(x+1), x \le 0\frac{\tan x - \sin x}{x^3}, x > 0 \text{ is continuous} \right.$

139. Examine the continuity of the function $f(x)=\{3x-2,\ x\leq 0x+1,\ x>0 ext{ at }x=0 ext{ . Also sketch the graph}$

of this function.

140. Discuss the continuity of the function
$$f(x) = \{x, x > 01, x = 0 - x, x < 0 \text{ at the point } x = 0.$$

141. Discuss the continuity of the function f(x)= $\begin{cases} x & 0 \le x < \frac{1}{2}12\\ 12 & x = \frac{1}{2}\\ 1-x & \frac{1}{2} < x \le 1 \end{cases}$

at the point x=1/2 .

142. Discuss the continuity of $f(x)=\{2x-1,\ x<02x+1,\ x\geq 0$

at x=0

Watch Video Solution

143. For what value of
$$k$$
 is the function $f(x) = \left\{ rac{x^2-1}{x-1}, \ x
eq 1k, \ x = 1 ext{ continuous at } x = 1 ext{ ?}
ight.$

144. Determine the value of the constant
$$k$$
 so that the function $f(x)=iggl\{rac{x^2-3x+2}{x-1},\ ext{if}\ x
eq 1k,\ ext{if}\ x=1 ext{ is continuous at}\ x=1\,.$

145. For what value of
$$k$$
 is the function $f(x)=iggl\{ \frac{\sin 5x}{3x}, \ ext{if} \ x
eq 0, \ k, \ ext{if} \ x=0 \ ext{continuous}$ at $x=0$?

Watch Video Solution

146. Determine the value of the constant k so that the function $f(x)=\{kx^2, \quad ext{if} \ x\leq 23, \quad ext{if} \ x>2 ext{ is continuous at } x=2 ext{.}$

147. Determine the value of the constant
$$k$$
 so that the function
 $f(x) = \begin{cases} \frac{\sin 2x}{5x}, & \text{if } x \neq 0k, & \text{if } x = 0 \text{ is continuous at } x = 0. \end{cases}$
Watch Video Solution
148. Find the values of a so that the function
 $f(x) = \{ax + 5, & \text{if } x \leq 2x - 1, & \text{if } x > 2 \text{ is continuous at } x = 2.$

149. Prove that the function $f(x)=iggl\{rac{x}{|x|+2x^2},\ x
eq 0k,\ x=0$

remains discontinuous at x=0 , regardless the choice of k .

150. Find the value of k if f(x) is continuous at $x = \pi/2$, where

$$f(x)=iggl\{rac{\kappa\cos x}{\pi-2x},\ x
eq\pi/23,\ x=\pi/2iggr\}$$

Watch Video Solution

151. Determine the values of a, b, c for which the function $f(x) = \left\{ \frac{\sin(a+1)x + \sin x}{x}, f \text{ or } x < 0c, f \text{ or } x = 0 \frac{\sqrt{x+bx^2}}{bx^{3/2}},
ight.$

is continuous at x=0

Watch Video Solution

$$Iff(x) = igg\{rac{1-\cos kx}{x\sin x}, x
eq 0rac{1}{2}, x=0 iscont \in uousatx=0, f\in dk igg\}$$

153.

$$f(x) = igg\{rac{x-4}{|x-4|} + a, \quad ext{ if } \ \ x < 4a+b, \quad ext{ if } \ \ x = 4rac{x-4}{|x-4|} + b, \quad ext{ if }$$

is continuous at x=4 , find $a,\;b$.

Watch Video Solution

154. For what value of
$$k$$
 is the function $f(x)=iggl\{ rac{\sin 2x}{x},\ x
eq 0k,\ x=0 ext{ continuous at }x=0 ext{ ?}$

Natch Video Solution

155. Let
$$f(x)=rac{\logig(1+rac{x}{a}ig)-\logig(1-rac{x}{b}ig)}{x}, \ x
eq 0$$
 . Find the value of f

at x = 0 so that f becomes continuous at x = 0 .

156. If
$$f(x) = \begin{cases} rac{2^{x+2}-16}{4^x-16}, & ext{if} \quad x \neq 2k, & ext{if} \quad x=2 ext{ is continuous} \end{cases}$$
 at $x=2$, find k .

157. If
$$f(x)=iggl\{ rac{\cos^2x-s\in^2x-1}{\sqrt{x^2+1}-1},\ x
eq 0k,\ x=0$$
 is continuous

at
$$x=0$$
 , find k

Watch Video Solution

158. Extend the definition of the following by continuity $f(x) = \frac{1 - \cos 7(x - \pi)}{5(x - \pi)^2} \text{ at the point } x = \pi \text{ .}$ Watch Video Solution

159. If $f(x)=rac{2x+3\sin x}{3x+2\sin x}$, x
eq 0 is continuous at x=0 , then find f(0)

160. Find the values of
$$k$$
 for which $f(x)=\left\{rac{1-\cos 4x}{8x^2},\ when\ x
eq 0k,\ when\ x=0$ is continuous at $x=0$.

161. Find the value of the constant k so that the given function is continuous at the indicated point: $f(x)=\left\{egin{array}{cc} rac{1-\cos 2kx}{x^2} & ext{if} \ x
eq 0 \\ 8 & ext{if} \ x=0 \end{array}
ight.$ at x = 0

Watch Video Solution

162. Find the value of the constant k so that the given function is continuous indicated at the point: f

$$\mathcal{E}(x) = egin{cases} (x-1) anigg(rac{\pi x}{2}igg) & ext{if} \quad x
eq 1 \ k & ext{if} \quad x=1 \end{cases}$$
 at $x=1$

163. Find the value of the constant k so that the given function is continuous at the indicated point: $f(x) = \{k(x^2 - 2x), \text{ if } x < 0\cos x, \text{ if } x \ge 0 \text{ at } x = 0$

Watch Video Solution

164. Find the value of the constant k so that the given function is continuous at the indicated point: $f(x) = \{kx + 1, \text{ if } x \le \pi \cos x, \text{ if } x > \pi \text{ at } x = \pi$ **Vatch Video Solution**

165. Find the value of the constant k so that the given function iscontinuousattheindicatedpoint: $f(x) = \{kx + 1,$ if $x \le 53x - 5,$ ifx > 5 at x = 5

166. Find the value of the constant k so that the given function is continuous at the indicated point: $f(x) = \left\{\frac{x^2 - 25}{x - 5}, x \neq 5k, x = 5 \right\}$ at x = 5

Watch Video Solution

167. Find the value of the constant k so that the given function is continuous at the indicated point: $f(x)=\{kx^2,\ x\geq 14,\ x<1$ at x=1

Watch Video Solution

168. Find the value of the constant k so that the given function is continuous at the indicated point: $f(x) = \{k(x^2+2), \text{ if } x \leq 03x+1, \text{ if } x > 0 \text{ at } x = 0.$ **169.** Find the value of the constant k so that the given function is

continuous at the indicated point: $f(x)=egin{cases} rac{x^3+x^2-16x+20}{\left(x-2
ight)^2}, \ x
eq 2k, \ x=2 ext{ at } x=0\,. \end{cases}$

Watch Video Solution

170. Find the values of a and b so that the function f given by $f(x)=\{1, \setminus \}$

if\ xlt=3a x+b ,\ \ \ if\ 3

Watch Video Solution

171. If $f(x)=\{(x^2)/2 \setminus , \setminus \setminus if \in 1 \\ x^2-3x+3/2 \setminus , \setminus if \\ 1 \\ x^2-3x+3/2 \setminus . \\ x^3-3x+3/2 \\ x^3-3x+3/2$

172. Discuss the continuity of the f(x) at the indicated point: f(x) = |x| + |x-1| at $x = 0, \ 1$.

Watch Video Solution

173. Discuss the continuity of the f(x) at the indicated point: f(x) = |x-1| + |x+1| at x = 1.

Watch Video Solution

174. Prove that
$$f(x)= egin{cases} rac{x-|x|}{x} & x
eq 0 \ 2 & x=0 \end{bmatrix}$$
 is discontinuous at $x=0$.

175. If $f(x)=ig\{2x^2+k$, if $x\geq 0-2x^2+k$, if x<0 ,

then what should be the value of k so that f(x) is continuous at x=0 .

176. For what value of λ is the function $f(x)=ig\{\lambdaig(x^2-2xig)\ ,$ if $x\leq 04x+1$, if x>0 continuous at x=0 ? What about the continuity at $x=\pm 1$?

Watch Video Solution

177. For what value of k is the following function continuous at x=2 ?

 $f(x) = \{2x+1 \hspace{0.1cm} ; \hspace{0.1cm} ext{if} \hspace{0.1cm} x < 2k \hspace{0.1cm} ; \hspace{0.1cm} x = 23x-1 \hspace{0.1cm} ; \hspace{0.1cm} x > 2 \}$

Watch Video Solution

178. Let
$$f(x) = \left\{ \frac{1 - \sin^3 x}{3 \cos^2 x} \right\}$$
, if $x \frac{\pi}{2}$. If $f(x)$ is continuous at $x = \frac{\pi}{2}$, find a and b .

179. If the functions f(x) , defined below is continuous at x=0 , find the value of k: $f(x)=\left\{rac{1-\cos 2x}{2x^2}~,~x<0k~,~x=0,rac{x}{|x|}~,~x>0
ight.$

Watch Video Solution

180. Find the relationship between 'a' and 'b' so that the function 'f' defined by $f(x)=\{ax+1\ ,$ if $x\leq 3bx+3\ ,$ if x>3 is continuous at x=3 .

Watch Video Solution

181. If a function f is defined as $f(x) = \left\{ rac{|x-4|}{|x-4|} \;\;,\;\;x
eq 40 \;\;,\;\;x=4
ight.$

Show that f is everywhere continuous except at x=4 .

182. Discuss the continuity of the function
$$f(x) = \begin{cases} \frac{\sin 2x}{x}, & \text{if } x < 0x + 2, & \text{if } x \ge 0 \end{cases}$$

Watch Video Solution
183. Discuss the continuity of the function $f(x) = \begin{cases} \frac{|x|}{x}, & \text{if } x \ne 00, & \text{if } x = 0. \end{cases}$
Watch Video Solution
184. Discuss the continuity of the function $f(x)$ given by $f(x) = \{2x - 1, & \text{if } x < 02x + 1, & \text{if } x \ge 0 \end{cases}$
Watch Video Solution

185. Show that the function f defined by f(x) = |1 - x + |x|| is everywhere continuous.

186. Prove that
$$f(x)=\sqrt{|x|-x}$$
 is continuous for all $x\geq 0$.

187. Given $f(x) = rac{1}{x-1}$. Find the points of discontinuity of the composite function f(f(x)) .

Watch Video Solution

188. Determine the value of the constant k so that the function

 $f(x)=ig\{kx^2 \hspace{0.1cm}, \hspace{0.1cm} ext{if} \hspace{0.1cm} x\leq 23 \hspace{0.1cm}, \hspace{0.1cm} ext{if} \hspace{0.1cm} x>2 ext{ is continuous.}$

189. Determine the value of the constant m so that the function $f(x)=ig\{mig(x^2-2xig)\ , \quad ext{if}\ x<0\cos x\ , \quad ext{if}\ x\geq 0 \qquad ext{is}$

continuous.

Watch Video Solution

190. If `f(x)={1\\\,\\\ if\ xlt=3a x+b\\\,,\\\ if\ 3

Watch Video Solution

191. Prove that the function
$$f(x)=iggl\{rac{\sin x}{x}\ ,\ x<0x+1\ ,\ x\geq 0$$
 is

everywhere continuous.

Watch Video Solution

192. Discuss the continuity of the function $fx = \frac{x}{|x|} \\ x = 0 \\ x = 0$

∖x=0.

193. Find the points of discontinuity, if any, of the following function:

 $f(x) = ig\{x^3 - x^2 + 2x - 2 \hspace{0.1 cm}, \hspace{0.1 cm} ext{if} \hspace{0.1 cm} x
eq 14 \hspace{0.1 cm}, \hspace{0.1 cm} ext{if} \hspace{0.1 cm} x = 1$

Watch Video Solution

194. Find the points of discontinuity, if any, of the following function:

$$f(x) = igg\{ rac{x^4 - 16}{x - 2} \hspace{0.1 in}, \hspace{0.1 in} ext{if} \hspace{0.1 in} x
eq 216 \hspace{0.1 in}, \hspace{0.1 in} ext{if} \hspace{0.1 in} x = 2$$

Watch Video Solution

195. Find the points of discontinuity, if any, of the following function:

$$f(x)=igg\{rac{\sin x}{x} \hspace{0.1 in}, \hspace{0.1 in} ext{if} \hspace{0.1 in} x<02x+3 \hspace{0.1 in}, \hspace{0.1 in} x\geq 0$$

196. Find the points of discontinuity, if any, of the following function:

$$f(x)=igg\{rac{\sin 3x}{x} \hspace{0.1 cm}, \hspace{0.1 cm} ext{if} \hspace{0.1 cm} x
eq 04 \hspace{0.1 cm}, \hspace{0.1 cm} ext{if} \hspace{0.1 cm} x=0$$

Watch Video Solution

197. Find the points of discontinuity, if any, of the following function:

$$f(x)=igg\{rac{\sin x}{x}+\cos x \hspace{.1in}, \hspace{.1in} ext{if} \hspace{.1in} x
eq 05 \hspace{.1in}, \hspace{.1in} ext{if} \hspace{.1in} x=0$$

Watch Video Solution

198. Find the points of discontinuity, if any, of the following function:

$$f(x) = igg\{ rac{x^4 + x^3 + 2x^2}{tan^{-1}x} \hspace{0.2cm}, \hspace{0.2cm} ext{if} \hspace{0.2cm} x
eq 010 \hspace{0.2cm}, \hspace{0.2cm} ext{if} \hspace{0.2cm} x = 0$$

Watch Video Solution

199. Find the points of discontinuity, if any, of the following function:

$$f(x) = \left\{ rac{e^x - 1}{\left(\log
ight)_e (1 + 2x) }
ight. , ext{ if } x
eq 07
ight. , ext{ if } x = 0$$

200. Find the points of discontinuity, if any, of the following function:

$$f(x) = igg\{ |x-3| \hspace{0.1 in}, \hspace{0.1 in} ext{if} \hspace{0.1 in} x \geq 1rac{x^2}{4} - rac{3x}{2} + rac{13}{4} \hspace{0.1 in}, \hspace{0.1 in} ext{if} \hspace{0.1 in} x < 1 igg\}$$

Watch Video Solution

201. Find the points of discontinuity, if any, of the following function: f(x)=

 $|x|+3 \setminus , \setminus if x|t=-3-2x \setminus , \setminus if 33$

Watch Video Solution

202. Find the points of discontinuity, if any, of the following function:

$$f(x) = ig\{ x^{10} - 1 \ , \quad ext{ if } \ x \leq 1 x^2 \ , \quad ext{ if } \ x > 1 ig\}$$

203. Find the points of discontinuity, if any, of the following function: $f(x) = \{2x \ , \ ext{if} \ x < 00 \ , \ ext{if} \ 0 \le x \le 14x \ , \ ext{if} \ x > 1$

204. Find the points of discontinuity, if any, of the following function:

 $f(x) = \{ s \in \; x - \cos x \;\;, \quad ext{ if } \;\; x
eq 0 - 1 \;\;, \quad ext{ if } \;\; x = 0$

Watch Video Solution

205. Find the points of discontinuity, if any, of the following function:

206. Determine the value(s) of constant(s) involved in the definition so

that the given function is continuous:

$$f(x)=egin{cases} rac{\sin 2x}{5x} \ , \quad ext{ if } \ x
eq 03k \ , \quad ext{ if } \ x=0 \end{cases}$$

207. Determine the value(s) of constant(s) involved in the definition so

that the given function is continuous: $f(x)=\{kx+5\ , \ ext{if}\ x\leq 2x-1\ , \ ext{if}\ x>2$

Watch Video Solution

208. Determine the value(s) of constant(s) involved in the definition so

that the given function is continuous: $f(x)=ig\{kig(x^2+3ig)\ , \ ext{ if } x<0 ext{ and } \cos 2x \ , \ ext{ if } x\geq 0$

Watch Video Solution

211. Find the value of
$$k$$
, for which
$$f(x) = \begin{cases} \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x} & \text{if } -1 \le x < 0\\ \frac{2x+1}{x-1} & 0 \le x < 1 \end{cases}$$
is continuous at $x = 0$
Wetch Video Solution

212. Determine the value(s) of constant(s) involved in the definition so

that the given function is continuous: $f(x)=\{5\ ,\ ext{if}\ x\leq 2,\ ax+b\ ,\ ext{if}\ x>2$

213. Find the value of k so that the function f defined by $f(x) = \left\{\frac{k\cos x}{\pi - 2x}, 3, \ldots, \text{ if } x \neq \frac{\pi}{2} \text{ if } x = \frac{\pi}{2} \text{ is continuous at } x = \frac{\pi}{2} \right\}$

Watch Video Solution

215.

$$f(x) = \Big\{ x + \sqrt{2}a \sin x, 0 < x < rac{\pi}{4} \, ext{ and } \, 2x \cot x + b, rac{\pi}{4} \leq x < rac{\pi}{2} \, ext{ and } \, a \in \mathbb{C} \, e^{-1} \Big\}$$

. Determine the value of a and b If function is continuous for interval $[0,\pi]$

 $f(x) = ig\{x^2 + ax + b \hspace{0.1cm}, \hspace{0.1cm} 0 \leq x < 2, \hspace{0.1cm} 3x + 2 \hspace{0.1cm}, \hspace{0.1cm} 2 \leq x \leq 4, \hspace{0.1cm} 2ax + 5b$

f is continuous them determine the value of a and b

Watch Video Solution

217. If
$$f(x) = \frac{\tan\left(\frac{\pi}{4} - x\right)}{\cot 2x}$$
 for $x \neq \frac{\pi}{4}$, find the value which can be assigned to $f(x)$ at $x = \frac{\pi}{4}$ so that the function $f(x)$ becomes continuous everywhere in $\left[0, \frac{\pi}{2}\right]$.

218. Discuss the continuity of the function $f(x) = \left\{ 2x - 1 \frac{3x}{2}
ight.$, if x < 2, if $x \ge 2$

219. Discuss the continuity of $f(x) = \sin \lvert x
vert$.

Watch Video Solution

220. Prove that the function $f(x)=iggl\{ {\sin x\over x} \ , \ x<0x+1 \ , \ x\geq 0$

is everywhere continuous.

Watch Video Solution

221. Show that the function defined by g(x) = x - [x] is discontinuous

at all integral points which [x] denotes the greatest integer function.

223. Discuss the continuity of $f(x) = \sin x - \cos x$

Watch Video Solution

224. Discuss the continuity of $f(x) = \sin x \cos x$

Watch Video Solution

225. Show that the function defined by $f(x) = \cos(x^2)$ is a continuous

function.

226. Show that the function defined by $f(x) = |\cos x|$ is a continuous

function.

229. Given the function $f(x) \frac{1}{x+2}$. Find the points of discontinuity of the function f(f(x))
230. Find all point of discontinuity of the function $f(t)=rac{1}{t^2+t-2},$ where $t=rac{1}{x-1}$

Watch Video Solution

231. Define continuity of a function at a point.

233. Find
$$f(0)$$
 , so that $f(x) = \frac{x}{1 - \sqrt{1 - x}}$ becomes continuous at $x = 0$.

Watch Video Solution

234. The function
$$f(x)= egin{cases} rac{\sin 3x}{x} & x
eq 0 \ rac{k}{2} & x=0 \end{cases}$$
 is continuous of

 $x=0, thenk=\,$ (a) 3 (b) 6 (d) 9 (d) 12

Watch Video Solution

235. If the function $f(x)=rac{\sin 10x}{x}$, x
eq 0 is continuous at x=0 , find f(0) .

236. If
$$f(x) = \left\{ \frac{x^2 - 16}{x - 4} \right.$$
, if $x \neq 4k$, if $x = 4$ is

continuous at x=4 , find k_{\cdot}

237. Determine whether
$$f(x)=iggl\{rac{\sin x^2}{x}\ ,\ x
eq 00\ ,\ x=0$$
 is

continuous at x = 0 or not.

Watch Video Solution

238. If
$$f(x)=iggl\{rac{1-\cos x}{x^2}\ ,\ x
eq 0k\ ,\ x=0$$
 is continuous at $x=0$

, find $k \cdot$

Watch Video Solution

239. If
$$f(x)=iggl\{ rac{\sin^{-1}x}{x} \ , \ x
eq 0k \ , \ x=0$$
 is continuous at $x=0$,

write the value of k.

240. The function $f(x) = \frac{4-x^2}{4x-x^3}$ discontinuous at only one point discontinuous exactly at two points discontinuous exactly at three points none of these

Watch Video Solution

241. If
$$f(x) = |(\log)_{10}x|$$
, thenat $x = 1$ $f(x)$ is continuous and $f'(1^+) = (\log)_{10}e \ f(x)$ is continuous and $f'(1^+) = (\log)_{10}e \ f(x)$ is continuous and $f'(1^-) = (\log)_{10}e \ f(x)$ is continuous and $f'(1^-) = -(\log)_{10}e$

Watch Video Solution

242. If
$$f(x) = \begin{cases} \frac{36^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, x \neq 0k, x = 0 \text{ is continuous at} \\ x = 0, \text{ then } k \text{ equal } 16\sqrt{2}\log 2\log 3 \text{ (b) } 16\sqrt{2} \in 6 16\sqrt{2} \in 2In3 \text{ (d)} \\ \text{none of these} \end{cases}$$

243. If f(x) defined by $f(x)=iggl\{ rac{|x^2-x|}{x^2-|x|}, x
eq 0, 1-1.$ Then (A)f(x) is

continuous for all x (B) for all x except x = 0 (C) for all x except x = 1

(D) for all x except x = 0 and x = 1

$$f(x) = \begin{cases} \frac{1}{(\pi - 2x)^2} \frac{\log \sin x}{(\log(1 + \pi^2 - 4\pi x + 4x^2)), x \neq \frac{\pi}{2}k, x = \frac{\pi}{2}} & \text{is} \\ \text{continuous at } x = \frac{\pi}{2}, thenk = -\frac{1}{16} \text{ (b)} - \frac{1}{32} \text{ (c)} - \frac{1}{64} \text{ (d)} - \frac{1}{28} \end{cases}$$

If

Watch Video Solution

245. If $f(x) = (x + 1)^{\cot x}$ be continuous at x = 0, the f(0) is equal to 0 (b) $\frac{1}{e}$ (c) e (d) noneof these

246.

$$f(x) = igg\{ rac{\log(1+ax) - \log(1-bx)}{x} \ , \ x
eq 0, \ k \ , \ x = 0 igg\}$$

and f(x) is continuous at x=0 , then the value of k is a-b (b) a+b

(c) $\log a + \log b$ (d) none of these

Watch Video Solution

247. The function
$$f(x)=iggl\{rac{e^{rac{1}{x}}-1}{e^{rac{1}{x}}+1},x
eq 00,x=0$$
 is continuous at

x=0 is not continuous at x=0 is not continuous at $x=0,\,$ but can be

made continuous at x = 0 (d) none of these

Watch Video Solution

248. Let
$$f(x) = \left\{ \frac{x-4}{|x-4|} + a, x < 4a+b, \frac{x-4}{|x-4|} + b, x > 4
ight.$$
 Then $f(x)$ is continuous at $x = 4$ when $a = 0, b = 0$ b. $a = 1, b = 1$ c. $a = -1, b = 1$ d. $a = -1, b = -1$

Watch Video Solution

If

249. If the function $f(x) = \left\{ (\cos x)^{rac{1}{x}}, x
eq 0k, x = 0 ext{ is continuous at } x = 0 ext{, then the value of } k ext{ is 0 (b) 1 (c) } -1 ext{ (d) } e
ight.$

250. Let f(x) = |x| + |x - 1|, then (a)f(x) is continuous at x = 0, as well at x = 1 (b)f(x) is continuous at x = 0, but not at x = 1 (c)f(x) is continuous at x = 1, but not at x = 0 (d)none of these

Watch Video Solution

251. Let
$$f(x) = igg\{ rac{x^4 - 5x^2 + 4}{|(x-1)(x-2)|} \ , \ x
eq 1, \ 16 \ , \ x = 1, \ 12, \ x = 1 igg\}$$

. Then, f(x) is continuous on the set R (b) $R-\{1\}$ (c) $R-\{2\}$ (d)

$$R - \{1, 2\}$$

252.

$$f(x) = f(x) = \left\{ egin{array}{c} rac{\sin(a+1)x+\sin x}{x^xc}, x < 0 rac{\sqrt{x+bx^2}-\sqrt{x}}{bx\sqrt{x}}, x \ge 0, x + rac{1}{bx\sqrt{x}}
ight\}, x \ge 0, x + rac{1}{bx\sqrt{x}$$

these

253. If
$$f(x) = \left\{ mx + 1 , x \le \frac{\pi}{2}, \sin x + n , x > \frac{\pi}{2} \right\}$$
 is continuous at $x = \frac{\pi}{2}$, then $m = 1, n = 0$ (b) $m = \frac{n\pi}{2} + 1$ (c) $n = \frac{m\pi}{2}$ (d) $m = n = \frac{\pi}{2}$

254. The value of
$$f(0)$$
, so that the function

$$f(x) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}$$
becomes continuous for all x , given by $a^{\frac{3}{2}}$ (b) $a^{\frac{1}{2}}$ (c) $-a^{\frac{1}{2}}$ (d) $-a^{\frac{3}{2}}$

255. The value of
$$f(0)$$
, so that the function
 $f(x) = \frac{(27-2x)^{\frac{1}{3}}-3}{9-3(243+5x)^{1/5}} (x \neq 0)$ is continuous, is given by (a) $\frac{2}{3}$ (b)

256. The value of
$$f(0)$$
 so that the function

$$f(x) = \frac{2 - (256 - 7x)^{\frac{1}{8}}}{(5x + 32)^{1/5} - 2}, x \neq 0 \text{ is continuous everywhere, is given by}$$

$$-1 \text{ (b) 1 (c) 26 (d) none of these}$$
Watch Video Solution

257.
$$f(x) = \begin{cases} \frac{\sqrt{1+px} - \sqrt{1-px}}{x}, \ -1 \le x < 0 \frac{2x+1}{x-2}, 0 \ge x \ge 1 \end{cases}$$

is continuous in the interval $[-1, 1]$, then p is equal to -1 (b) $-\frac{1}{2}$ (c) $\frac{1}{2}$ (d) 1

258. The function $f(x)=ig\{x^2a\quad,\quad 0\leq x<1,\quad a,\qquad 1\leq x$ is

continuous then find the value of constant term

Watch Video Solution

259. If
$$f(x) = \frac{1 - \sin x}{(\pi - 2x)^2}$$
, $when x \neq \frac{\pi}{2} and f\left(\frac{\pi}{2}\right) = \lambda$, the $f(x)$ will be continuous function at $x = \frac{\pi}{2}$, $where \lambda = \frac{1}{8}$ (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) none of these

these

Watch Video Solution

260. The value of a for which the function
$$f(x) = f(x) = \left\{\frac{(4^x - 1)\hat{3}}{\sin(xa)\log\{(1 + x^23)\}}, x \neq 012(\log 4)^3, x = 0 \text{ may} \right.$$

be continuous at x = 0 is 1 (b) 2 (c) 3 (d) none of these

261. The function $f(x) = \tan x$ is discontinuous on the set $\{n\pi; n \in Z\}$ (b) $\{2n\pi n \in Z\}$ $\Big\{(2n+1)rac{\pi}{2}: n \in Z\Big\}$ (d) $\Big\{rac{n\pi}{2}: n \in Z\Big\}$

Watch Video Solution

262. The function
$$f(x) = \left\{ \frac{\sin 3x}{x}, x \neq 0 \frac{k}{2}, x = 0 \text{ is continuous of } x = 0, thenk = 3 (b) 6 (d) 9 (d) 12 \right\}$$

Watch Video Solution

263. If the function $f9x = \frac{2x - \sin^{-1}x}{2x + \tan^{-1}x}$ is continuous at each point of its domain, then the value of f(0) 2 (b) $\frac{1}{3}$ (c) $-\frac{1}{3}$ (d) $\frac{2}{3}$

264. If $f(x) = \frac{1}{1-x}$, then the set of points discontinuity of the function f(f(f(x)))is {1} (b) {0,1} (c) {-1,1} (d) none of these

Watch Video Solution

265. Let $f(x) = \frac{\tan(\frac{\pi}{4} - x)}{\cot 2x}, x \neq \frac{\pi}{4}$. The value which should be assigned to f(x) at $x = \frac{\pi}{4}$, so that it is continuous everywhere is 1 (b) $\frac{1}{2}$ (c) 2 (d) none of these

Watch Video Solution

266. The function $f(x) = \frac{x^3 + x^2 - 16x + 20}{x - 2}$ is not defined for x = 2. In order to make f(x) continuous at x = 2, f(2) should be defined as 0 (b) 1 (c) 2 (d) 3

267. If
$$f(x) = \left\{ a \frac{\sin \pi}{2} (x+1), \, x \le 0 \frac{\tan x - \sin x}{x^3}, \, x > 0 \quad \text{ is } \right.$$
 continuous at $x = 0$, then a equal $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{4}$ (d) $\frac{1}{6}$

268. If `f(x)={a x^2+b\\\,\\\Olt=x<1 4\\\,\\\ x=1x+3\\\,\\\1

269. If the function
$$f(x)$$
 defined by $f(x) = \left\{ rac{\log(1+3x) - \log(1-2x)}{x} \ , \ x
eq 0 \ k \ , \ x = 0
ight.$

is continuous at x=0 , then $k=\,$ (a) 1 (b) 5 (c) -1 (d) none of these

270. If
$$f(x) = \left\{ rac{1-\cos 10x}{x^2} \ , \ x < 0a \ , \ x = 0 rac{\sqrt{x}}{\sqrt{625+\sqrt{x}-25}} \ , \ x >
ight.$$

, then the value of a so that f(x) may be continuous at x=0 , is (a) 25

(b) 50 (c) -25 (d) none of these

Watch Video Solution

271. If $f(x)=x\siniggl(rac{1}{x}iggr),\ x
eq 0$, then the value of the function at

x=0 , so that the function is continuous at x=0 , is (a) 0 (b) -1 (c) 1 (d)

indeterminate

272. The value of
$$k$$
 which makes $f(x)=igg\{rac{\sin1}{x},x
eq0k,x=0cont\in uousatx=0,is$ 8 (b) 1 (c) -1 (d)

none of these

273. The values of the constants a, bandc for which the function $f(x) = \begin{cases} (1+ax)^{1/x}b, x < 0\frac{(x+c)^{\frac{1}{3}}-1}{(x+1)^{\frac{1}{2}}-1}, x > 0x = 0 & \text{may} & \text{be} \end{cases}$ continuous at x = 0, are $a = (\log)_e \left(\frac{2}{3}\right), b = -\frac{2}{3}, c = 1 \ a = \log)e$ $\left(\frac{2}{3}\right), b\frac{2}{3}, c = -1 \ a = (\log)_e \left(\frac{2}{3}\right), b = \frac{2}{3}, c = 1 \ (d) \text{ none of these} \end{cases}$

Watch Video Solution

274. The points of discontinuity of the function $f(x)=ig\{2\sqrt{x}\ ,\ 0\leq x\leq 1,\ 4-2x\ ,\ 1< x$

Watch Video Solution

275. If $f(x){(1-sin^2x)/(3cos^2x),xpi/2t h e nf(x)} is cont \in uousatx=pi/2,if$

a=1/3,b=2(b)a=1/3,=8/3a=2/3,b=8/3` (d0 none of these

276. The points of discontinuity of the function
$$f(x) = \left\{ rac{1}{5} \left(2x^2 + 3
ight), \ x \leq 1, \ 6-5x, \ 1 < x
ight.$$

Watch Video Solution

277. If
$$f(x) = \begin{cases} \frac{\sin(\cos x) - \cos x}{(\pi - 2x)^2} , & x \neq \frac{\pi}{2} \\ \end{cases}$$
, $x = \frac{\pi}{2}$ is continuous at $x = \frac{\pi}{2}$, then k is equal to (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) -1

Watch Video Solution

Others

1. If
$$f(x) = |(\log)_{10}x|$$
, then $x = 1$ a. $f(x)$ is continuous and $f'(1) = (\log)_{10}e$ b. $f(x)$ is continuous and $f'(1) = -(\log)_{10}e$ c. $f(x)$

View Text Solution