

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

DIFFERENTIABILITY

Solved Examples And Exercises

1. Find the values of a and b so that the function $f(x)=ig\{x^2+3x+a,bx2\ ,$ if $x\leq 1$ if x>1 is differentiable at each xR.

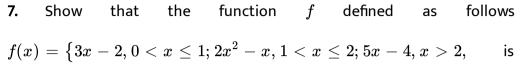
Watch Video Solution

2. Show that $f(x)=ig\{12x-13,2x^2+5,$ if $x\leq 3$ if x>3 is

differentiable at x=3 . Also, find $f^{\,\prime}(3)_{\cdot}$

3. Show that $f(x) = x^{rac{1}{3}}$ is not differentiable at x = 0.

4. Show that f(x) = |x - 3| is continuous at x = 3.


Watch Video Solution

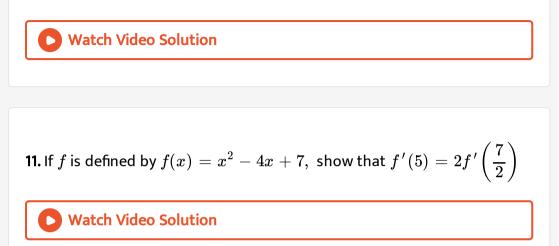
5. Show that the function
$$f(x)=iggl\{x^m\siniggl(rac{1}{x}iggr),0,x
eq 0,x=0$$
 is

differentiable at x=0,if m>1

Watch Video Solution

6. Discuss the continuity and differentiability of the function f(x) = |x| + |x-1| in the interval (-1,2).

continous at x=2 but not differentiable.

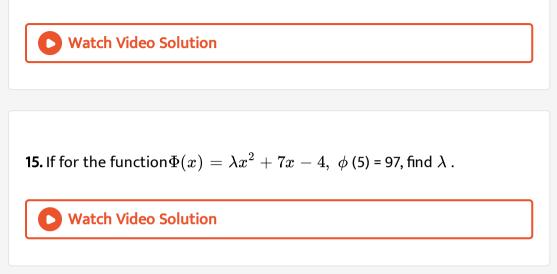

Watch Video Solution

8. Discuss the continuity and differentiability of
$$f(x) = \left\{ (x-c) \cos\left(rac{1}{x-c}\right), x
eq c ext{ and } 0, x = c
ight.$$

Watch Video Solution

9. Show that f(x) = |x-3| is not differentiable at x = 3.

10. Discuss the continuity and differentiability of $f(x) = |\mathrm{log}| |x|$.


12. If
$$f$$
 is defined by $f(x)=x^2, ext{ find } f'(2).$

Watch Video Solution

13. Find the derivative of the function f defined by f(x) = mx + c at

x = 0.

14. Discuss the continuity and differentiability of $f(x) = e^{|x|}$.

16. Examine the continuity f(x) ={(3x-2,xlt=0),

(x+1,x >0)}atx=0`

Watch Video Solution

17. The setoff points where the function f(x) given by $f(x)=|x-3|\cos x$ is differentiable, is R (b) $R-\{3\}$ (c) $(0,\infty)$ (d) none of these

18. If $f(x) = \begin{cases} \frac{1 - \cos x}{x \sin x}, & x \neq 0 \text{ and } \frac{1}{2}, x = 0 \text{ then at } x = 0, f(x) \text{ is} \end{cases}$ (a)continuous and differentiable (b)differentiable but not continuous (c)continuous but not differentiable (d)neither continuous nor differentiable

Watch Video Solution

19. If
$$f(x)=iggl\{rac{1}{1+e^{rac{1}{x}}},x
eq 00,x=0,thenf(x) ext{ is continuous as well }$$

as differentiable at x=0 continuous but not differentiable at x=0

differentiable but not continuous at x=0 none of these

Watch Video Solution

20. If f(x) = |3 - x| + (3 + x), where (x) denotes the least integer greater than or equal to x,

then f(x) is continuous and differentiable at x=3continuous but not differentiable at x=3differentiable but not continuous at x=3neither differentiable nor continuous at x=3

21. Let $f(x) = a + b|x| + c|x|^4$, where a, bandc are real constants. Then, f(x) is differentiable at x = 0, if a = 0 (b) b = 0 (c) c = 0 (d) none of these

Watch Video Solution

22. The function $f(x) = rac{\sin(\pi [x-\pi])}{4+{[x]}^2}$, where [] denotes the greatest

integer function, is continuous as well as differentiable for all $x \in R$

(b) continuous for all x but not differentiable at some x

(c) differentiable for all x but not continuous at some x

.(d) none of these

23. Let
$$f(x)=\left\{ax^2+1,x>1;
ight.$$

 $x+rac{1}{2},x\leq 1.$ then, $f(x)$ is derivable at $x=1,$ if $a=2$
(b) $a=1$
(c) $a=0$
(d) $a=rac{1}{2}$

Watch Video Solution

24. Show that the function defined by $g_{-}(x) = x_{-}[x]$ is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.

25. Find all points of discontinuity of f, where f is defined by $f(x)=\{2x+3, ext{ if } x\leq 2\ 2x-3, ext{ if } x>2$

Watch Video Solution

26. If
$$f(x) = \{x^2 + 3x + a, x \le 1bx + 2, f \text{ or } x > 1 \text{ is everywhere} \}$$

differentiable, find the values of aandb-

Watch Video Solution

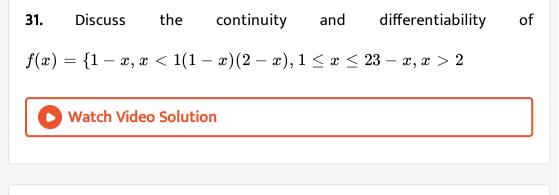
27. Let
$$f(x) = |x|$$
 and $g(x) = \left|x^3
ight|, ext{ then }$

(a) f(x)andg(x) both are continuous at x=0

(b)f(x)andg(x) both are differentiable at x=0

(c)f(x) is differentiable but g(x) is not differentiable at x=0

(d)f(x) and g(x) both are not differentiable at x=0


28. Is $|\sin x|$ differentiable? What about $\cos |x|$?

 $f(x)=ig\{x^2+3x+a, ext{ if } x\leq 1bx+2, ext{ if } x>1 ext{ is differentiable at}$ each $x\in R$

Watch Video Solution

30. The function $f(x) = e^{-|x|}$ is continuous everywhere but not differentiable at x = 0 continuous and differentiable everywhere not continuous at x = 0 none of these

32. Show that the function $f(x) = \{|2x-3| [x] | x \leq 0 \text{ and } \sin\left(rac{\pi x}{2}
ight),$

x>0 is continuous but not differentiable at x=0

Watch Video Solution

33. The set of points where the function f(x) = x |x| is differentiable is

$$(\,-\infty,\infty)$$
 (b) $(\,-\infty,0)\cup(0,\infty)$ $(0,\infty)$ (d) $[0,\infty)$

Watch Video Solution

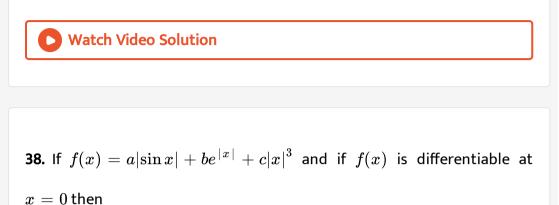
34. The function $f(x) = \sin^{-1}(\cos x)$ is (a) . discontinuous at x = 0 (b).

continuous at x = 0 (c) . differentiable at x = 0 (d) . non of these

35. If $f(x) = |\ln|x||$, then (a)f(x) is continuous and differentiable for all x in its domain (b)f(x) is continuous for all for all x in its domain but not differentiable at $x = \pm 1$ (c)f(x) is neither continuous nor differentiable at $x = \pm 1$ (d)none of these

Watch Video Solution

36. Let
$$f(x) = \left\{ \frac{1}{|x|} f \text{ or } |x| \ge 1ax^2 + bf \text{ or } |x| < 1 \Leftrightarrow (x) \text{ is continuous and differentiable at any point, then $a = \frac{1}{2}, b = -\frac{3}{2}$ (b)$$


$$a = -rac{1}{2}, b = rac{3}{2} \, a = 1, b = -1$$
 (d) none of these

Watch Video Solution

37. If $f(x)=\sqrt{1-\left(\sqrt{1}-x^2
ight)}$, then f(x) is (a)continuous on [-1, 1] and differentiable on (-1, 1) (b) continuous on [-1,1] and differentiable on

 $(\,-1,\,0)\cup(0,\,1)$ (C) continuous and differentiable on [-1, 1](d) none of

these

Watch Video Solution

39. If
$$f(x) = x^2 + \frac{x^2}{1+x^2} + \frac{x^2}{(1+x^2)^2} + \frac{x^2}{(1+x^2)^n} +$$
, then at $x = 0, f(x)$ has no limit (b) is discontinuous is continuous but not

differentiable (d) is differentiable

40. If
$$f(x) = |(\log)_2 x|$$
, then $f(1^+) = 1$ (b) $f(1^-) = -1$ $f(1) = 1$ (c) $f'(1) = -1$

41. If
$$f(x) = \left\{ rac{|x+2|}{ anu{tan}^{-1}(x+2)}, x
eq -2 ext{ and } 2, x = -2 ext{ then } f(x) ext{ is }
ight.$$

continuous/discontinuous at x = -2?

Watch Video Solution

42. Let f(x) = (x+|x|)|x| then, for all x . f is continuous (b) f is

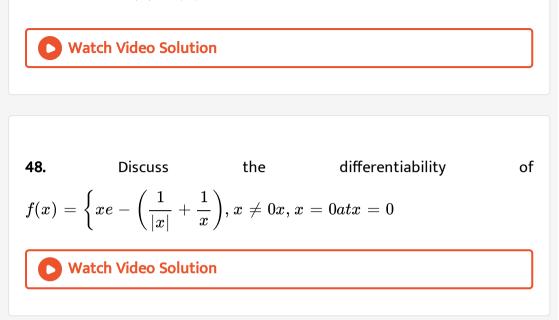
differentiable for some x f' is continuous (d) f'' is continuous

Watch Video Solution

43. The function $f(x) = e^{-|x|}$ is continuous everywhere but not differentiable at x = 0 continuous and differentiable everywhere not continuous at x = 0 none of these

44. The function $f(x) = |\cos x|$ is everywhere continuous and differentiable everywhere continuous but not differentiable at $(2n+1)\frac{\pi}{2}, n \in Z$. neither continuous not differentiable at $(2x+1)\frac{\pi}{2}, n \in Z$

Watch Video Solution


45. Discuss the continuity of the function $f(x) = \{2x - 1 \ ext{ if } \ x < 2 \}$

$${3x\over 2}$$
 if $x\geq 2$

Watch Video Solution

46. Show that the function
$$f(x)=igg\{x^2\sinigg(rac{1}{x}igg), ext{ if } x
eq 00, ext{ if } x=0 ext{ is differentiable at } x=0 ext{ and } f'(0)=0$$

47. Show that f(x) = |x| is not differentiable at x = 0.

49. For what choice of a and b is the function $f(x)=ig\{x^2,x\leq c ext{ and } ax+b,x>c ext{ is differentiable at }x=c$

Watch Video Solution

50. Discuss the differentiability of f(x) = x |x| at x = 0

Watch Video Solution

52. If f(2) = 2 and f'(2) = 1, then find $(\lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2})$

Watch Video Solution

53. A function $f\colon R o R$ satisfies the equation f(x+y)=f(x)f(y) for all $x,y\in R.f(x)
eq 0$ Suppose that the function is differentiable at x=0 and f'(0)=2. Prove that f'(x)=2f(x).

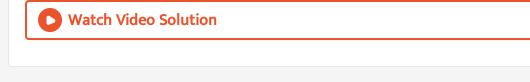
Watch Video Solution

54. Show that f(x) = |x| is not differentiable at x = 0 .

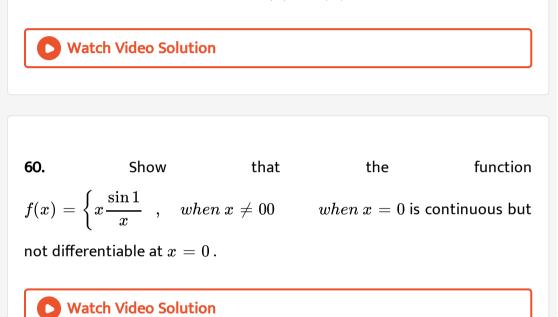
55. Show that the function
$$f(x) = \{x - 1, \text{ if } x < 22x - 3, \text{ if } x \ge 2 \text{ is not}$$
 differentiable at $x = 2$.

Watch Video Solution

56. Show that the function
$$f(x) = \begin{cases} \begin{pmatrix} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
 is


differentiable at x=0

Watch Video Solution


57. Show that $f(x)=x^2$ is differentiable at x=1 and find $f^{\,\prime}(1)$.

58. Show that the function f(x) = |x+1| + |x-1| for all $x \in R$, is

not differentiable at x = -1 and x = 1 .

59. Discuss the differentiability of f(x) = x|x| at x = 0 .

61. Discuss the differentiability of
$$f(x) = \left\{ xe - \left(\frac{1}{|x|} + \frac{1}{x}\right), x \neq 0x, x = 0atx = 0 \right\}$$
Watch Video Solution

62. If f(x) is differentiable at x=a , find $(\lim_{x
ightarrow a} rac{x^2 f(a)-a^2}{x-a} rac{f(x)}{x-a}$. Watch Video Solution For what choice of *a* and *b* is the function 63. $f(x)=ig\{x^2 \ , \ x\leq cax+b \ , \ x>c$ is differentiable at x=c . Watch Video Solution **64.** If f(2)=4 and $f^{\,\prime}(2)=1$, then find $(\ \lim \)_{x
ightarrow 2}rac{x\ f(2)-2f\left(x
ight)}{x-2}$. Watch Video Solution

65. A function $f: R \to R$ satisfies that equation f(x+y) = f(x)f(y)for all $x, y \in R$, $f(x) \neq 0$. Suppose that the function f(x) is differentiable at x = 0 and f'(0) = 2. Prove that f'(x) = 2 f(x).

66. Show that f(x) = |x - 3| is continuous but not differentiable at x = 3.

67. Show that $f(x) = x^{1/3}$ is not differentiable at x = 0 .

Watch Video Solution

68. Show that $f(x) = \{12x - 13, \text{ if } x \leq 32x^2 + 5, \text{ if } x > 3\}$

is differentiable at x=3 . Also, find $f^{\,\prime}(3)$.

Watch Video Solution

69. Show that the function f defined as follows $f(x)=\{3x-2, \setminus \setminus 02 \ iscont \in uousatx=2^{\circ}, but not differentiable thereat.$

70. Discuss the continuity and differentiability of the function f(x) = |x| + |x - 1| in the interval (-1, 2).

Watch Video Solution

71. Find whether the following function is differentiable at x = 1 and x = 2

or not :
$$f(x) = ig\{x, x < 12 - x, 1 \leq x \leq 2 - 2 + 3x - x^2, x > 2ig\}$$

Watch Video Solution

72. Show that the function $f(x) = \left\{x^m \sin\left(rac{1}{x}
ight), 0, \ x
eq 0, \ x = 0
ight.$

is differentiable at x=0 , if m>1

73. Show that the function $f(x) = \left\{ x^m \sin\left(rac{1}{x}
ight), \ x
eq 00, \qquad x=0 ext{ is continuous but }$

not differentiable at $x\,=\,0$, if `0

Watch Video Solution

74. Show that the function
$$f(x) = igg\{ x^m \sinigg(rac{1}{x}igg), x
eq 00, x = 0 ext{ is neither } igg\}$$

continuous nor differentiable, if $m \leq 0$

Watch Video Solution

75. Find the values of a and b so that the function $f(x) = \left\{x^2 + 3x + a, ext{ if } x \leq 1bx + 2, ext{ if } x > 1 ext{ is }
ight.$

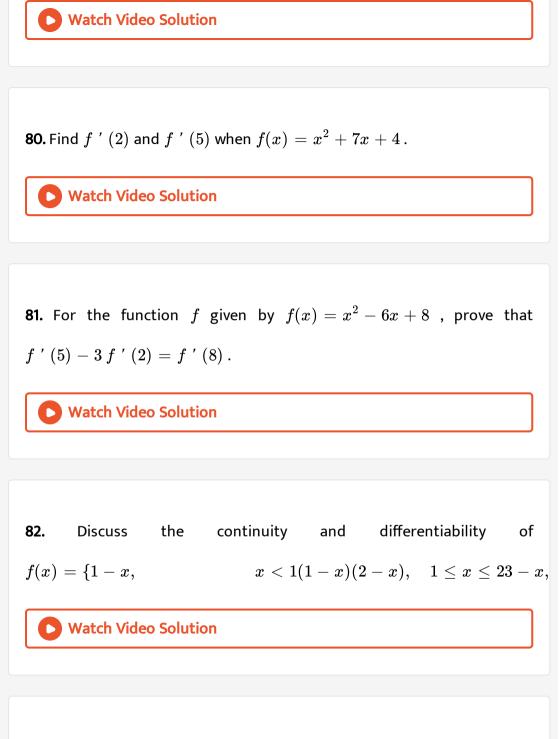
differentiable at each $x \in R$.

76. Show that the function $f(x) = \Big\{ |2x-3| \ [x], \ x \geq 1 \sin \Big(rac{\pi x}{2} \Big), \ x < 1$ is continuous but

not differentiable at x=1 .

Watch Video Solution

77. If
$$f(x)=igg\{ax^2-b, \quad ext{if} \ |x|<1rac{1}{|x|}, \quad ext{if} \ |x|\geq 1$$
 is


differentiable at x=1 , find $a,\ b$

Watch Video Solution

78. Find the values of a and b , if the function f(x) defined by $f(x)=ig\{x^2+3x+a,\ x\leq 1bx+2,\ x>1$ is differentiable at x=1 .

Watch Video Solution

79. If $f(x) = x^2 + 2x + 7$, find f ' (3) .

83. Discuss the differentiability of f(x) = |x-1| + |x-2|

84. If
$$f(x) = \{x^2 + 3x + a, f \text{ or } x \leq 1bx + 2, f \text{ or } x > 1 \text{ is } \}$$

everywhere differentiable, find the values of a and b.

Watch Video Solution

85. Discuss the differentiability of $f(x) = |(\log)_e x| x > 0$.

Watch Video Solution

86. If f is defined by $f(x) = x^2$, find f ' (2) .

Watch Video Solution

87. If f is defined by $f(x)=x^2-4x+7$, show that f ' (5)=2f ' $\left(rac{7}{2}
ight)$

88. Show that the derivative of the function f given by $f(x)=2x^3-9x^2+12x+9$, at x=1 and x=2 are equal.

Watch Video Solution

89. If for the function $\operatorname{Phi}(x) = \lambda x^2 + 7x - 4$, $\operatorname{Phiprime}(5) = 97$,

find λ .

Watch Video Solution

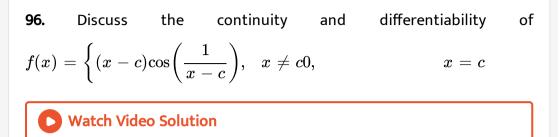
90. If $f(x) = x^3 + 7x^2 + 8x - 9$, find f ' (4) .

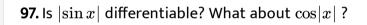
Watch Video Solution

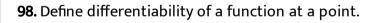
91. Find the derivative of the function f defined by f(x) = mx + c at

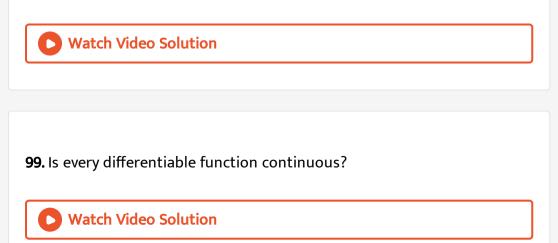
x = 0.

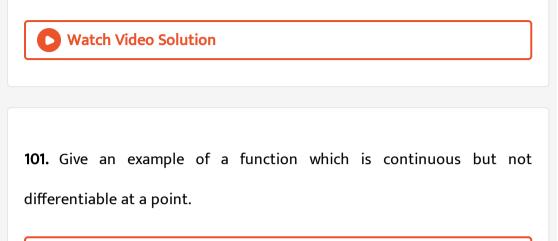
92. Examine the differentiability of the function f defined by


 $f(x) = \{2x+3, \quad ext{ if } -3 \leq x \leq -2x+1, \quad ext{ if } -2 \leq x < 0x+2,$

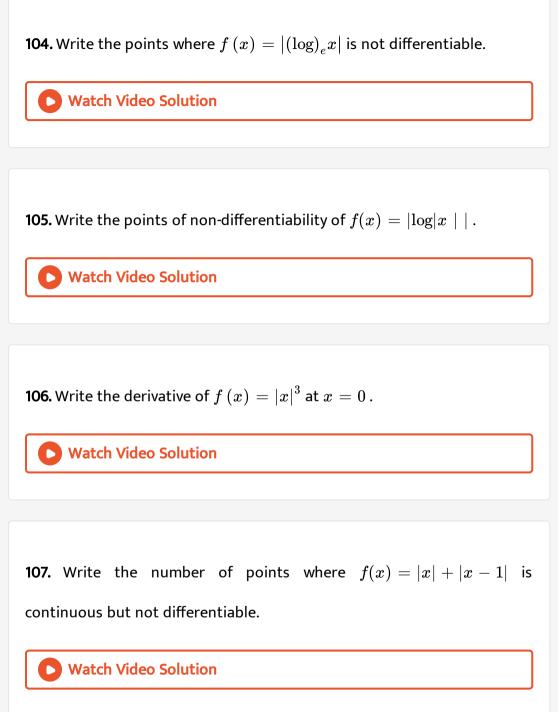

Watch Video Solution


93. Write an example of a function which is everywhere continuous but


fails to be differentiable exactly at five points.



100. Is every continuous function differentiable?



Watch Video Solution

102. If f(x) is differentiable at x=c , then write the value of $(\ \lim \)_{x o c} f(x)$.

Watch Video Solution

103. If f(x) = |x - 2| write whether f ' (2) exists or not.

108. If $(\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists finitely, write the value of $(\lim_{x \to c} f(x)$.

109. Write the value of the derivative of f(x) = |x-1| + |x-3| at x=2 .

Watch Video Solution

110. If
$$f(x)=\sqrt{x^2+9}$$
 , write the value of $(\ \lim\)_{x
ightarrow 4}rac{f(x)-f(4)}{x-4}$.

Watch Video Solution

111. Let f(x)=|x| and $g(x)=\left|x^3\right|$, then f(x) and g(x) both are continuous at x=0 (b) f(x) and g(x) both are differentiable at x=0

(c) f(x) is differentiable but g(x) is not differentiable at x = 0 (d) f(x)and g(x) both are not differentiable at x = 0

112. The function $f(x) = \sin^{-1}(\cos x)$ is discontinuous at x = 0 (b)

continuous at x=0 (c) differentiable at x=0 (d) none of these

> Watch Video Solution

113. The set of points where the function f(x) = x|x| is differentiable is

(a)
$$(-\infty, \ \infty)$$
 (b) $(-\infty, \ 0) \cup (0, \ \infty)$ (c) $(0, \ \infty)$ (d) $[0, \ \infty]$

114. If
$$f(x) = \begin{cases} \frac{|x+2|}{\tan^{-1}(x+2)}, & x \neq -22, \\ f(x) \text{ is continuous at } x = -2 \text{ (b) not continuous at } x = -2 \text{ (c)} \end{cases}$$

differentiable at $x = -2$ (d) continuous but not derivative at $x = -2$

115. Let f(x) = |x| . Then, for all $x \; f$ is continuous (b) f is differentiable

for some x (c) f ' is continuous (d) f is continuous

Watch Video Solution

116. The function $f(x) = e^{|x|}$ is (a) Continuous everywhere but not differentiable at x = 0 (b) Continuous and differentiable everywhere (c) Not continuous at x = 0 (d) None of the above

Watch Video Solution

117. The function $f(x) = |\cos x|$ is (a) everywhere continuous and differentiable (b) everywhere continuous but not differentiable at $(2n+1)\pi/2$, $n \in Z$ (c) neither continuous nor differentiable at $(2n+1)\pi/2$, $n \in Z$ (d) none of these **118.** If $f(x) = \sqrt{1 - \sqrt{1 - x^2}}$, then f(x) is (a) continuous on [-1, 1] and differentiable on (-1, 1) (b) continuous on [-1, 1] and differentiable on $(-1, 0) \cup \varphi(0, 1)$ (c) continuous and differentiable on [-1, 1] (d) none of these

> Watch Video Solution

119. If
$$f(x)=a|\sin x|+b\,e^{|x|}+c\,|x|^3$$
 and if $f(x)$ is differentiable at $x=0$, then $a=b=c=0$ (b) $a=0,\ b=0;\ c\in R$ (c) $b=c=0,\ a\in R$ (d) $c=0,\ a=0,\ b\in R$

120. If
$$f(x) = x^2 + \frac{x^2}{1+x^2} + \frac{x^2}{(1+x^2)^2} + \frac{x^2}{(1+x^2)^n} +$$
, then at $x = 0, f(x)$ has no limit (b) is discontinuous is continuous but not differentiable (d) is differentiable

121. If $f(x)=|(\log)_e x|$, then (a) $f'ig(1^+ig)=1$ (b) $f'ig(1^-ig)=-1$ (c) f'(1)=1 (d) f'(1)=-1

Watch Video Solution

122. If $f(x) = |(\log)_e |x||$, then f(x) is continuous and differentiable for all x in its domain] (b) f(x) is continuous for all x in its domain but not differentiable at $x = \pm 1$ (c) f(x) is neither continuous nor differentiable at $x = \pm 1$ (d) none of these

123. Let
$$f(x) = \begin{cases} \frac{1}{|x|} & f \text{ or } |x| \ge 1\\ ax^2 + b & f \text{ or } |x| < 1 \end{cases}$$
. If $f(x)$ is continuous and differentiable at any point, then (A) $a = \frac{1}{2}, b = -\frac{3}{2}$ (B) $a = -\frac{1}{2}, b = \frac{3}{2}$ (C) $a = 1, b = -1$ (D) none of these

124. The function f(x) = x - [x], where [] denotes the greatest integer function is (a) continuous everywhere (b) continuous at integer points only (c) continuous at non-integer points only (d) differentiable everywhere

Watch Video Solution

125. Let $f(x)=ig\{ax^2+1,\quad x>1,\quad x+1/2,\quad x\leq 1$ Then, f(x) is derivable at x=1 , if a=2 (b) b=1 (c) a=0 (d) a=1/2

Watch Video Solution

126. Let $f(x) = |\sin x|$. Then, (a) f(x) is everywhere differentiable. (b) f(x) is everywhere continuous but not differentiable at $x = n \pi$, $n \in Z$ (c) f(x) is everywhere continuous but not differentiable at $x = (2n+1)\frac{\pi}{2}$, $n \in Z$.(d) none of these 127. Let $f(x)=|\cos x|$. Then, f(x) is everywhere differentiable (b) f(x)is everywhere continuous but not differentiable at $x=n\pi,\ n\in Z$ (c) f(x) is everywhere continuous but not differentiable at $x=(2n+1)\ rac{\pi}{2},\ n\in Z$ (d) none of these

Watch Video Solution

128. The function $f(x)=1+|\cos x|$ is (a) continuous no where (b) continuous everywhere (c) not differentiable at x=0 (d) not differentiable at $x=n\pi,\ n\in Z$

Watch Video Solution

129. The function $f(x)=|\cos x|$ is differentiable at $x=(2n+1)\,\pi/2,\ n\in Z$ (b) continuous but not differentiable at

 $x=(2n+1)~\pi/2,~n\in Z$ (c) neither differentiable nor continuous at $x=n\pi,~n\in Z$ (d) none of these

Watch Video Solution

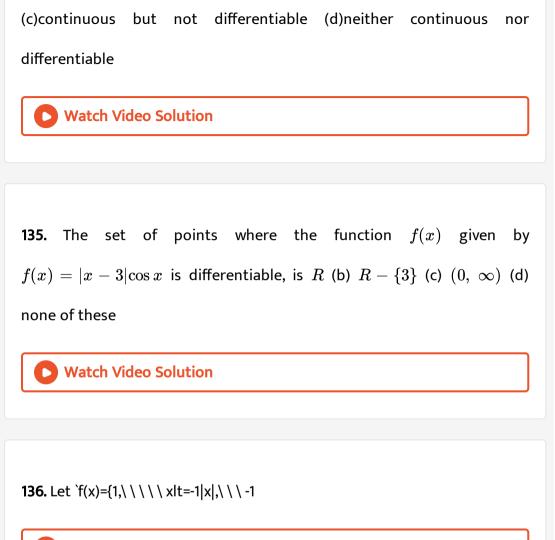
130. The function $f(x) = (\sin(\pi[x - \pi]))$, where [] denotes the greatest integer function, is continuous as well as differentiable for all $x \in R$ (b) continuous for all x but not differentiable at some x (c) differentiable for all x but not continuous at some x.(d) none of these

Watch Video Solution

131. Let $f(x) = a + b|x| + c|x|^4$, where a, b, and c are real constants.

Then, f(x) is differentiable at x=0 , if a=0 (b) b=0 (c) c=0 (d) none

of these


132. If f(x) = |3 - x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f(x) is continuous and differentiable at x = 3 (b) continuous but not differentiable at x = 3 (c) differentiable but not continuous at x = 3 (d) neither differentiable nor continuous at x = 3

Watch Video Solution

133. If
$$f(x) = \left\{\frac{1}{1+e^{1/x}}, x \neq 00, x = 0$$
, then $f(x)$ is continuous as well as differentiable at $x = 0$ (b) continuous but not differentiable at $x = 0$ (c) differentiable but not continuous at $x = 0$ (d) none of these

Watch Video Solution

134. If $f(x) = \left\{ \frac{1 - \cos x}{x \sin x}, x \neq 0 \text{ and } \frac{1}{2}, x = 0 \text{ then at } x = 0, f(x) \text{ is} \right.$ (a)continuous and differentiable (b)differentiable but not continuous

