©゙doubtnut

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

DIFFERENTIABILITY

Solved Examples And Exercises

1. Find the values of a and b so that the function $f(x)=\left\{x^{2}+3 x+a, b x 2\right.$, if $x \leq 1$ if $x>1$ is differentiable at each $x R$.

D Watch Video Solution

2. Show that $f(x)=\left\{12 x-13,2 x^{2}+5, \quad\right.$ if $x \leq 3$ if $x>3$ is differentiable at $x=3$. Also, find $f^{\prime}(3)$.
3. Show that $f(x)=x^{\frac{1}{3}}$ is not differentiable at $x=0$.

- Watch Video Solution

4. Show that $f(x)=|x-3|$ is continuous at $x=3$.

- Watch Video Solution

5. Show that the function $f(x)=\left\{x^{m} \sin \left(\frac{1}{x}\right), 0, x \neq 0, x=0\right.$ is differentiable at $x=0$,if $m>1$

- Watch Video Solution

6. Discuss the continuity and differentiability of the function $f(x)=|x|+|x-1|$ in the interval $(-1,2)$.
7. Show that the function f defined as follows $f(x)=\left\{3 x-2,0<x \leq 1 ; 2 x^{2}-x, 1<x \leq 2 ; 5 x-4, x>2\right.$, is continous at $\mathrm{x}=2$ but not differentiable.

- Watch Video Solution

8. Discuss the continuity and differentiability of $f(x)=\left\{(x-c) \cos \left(\frac{1}{x-c}\right), x \neq c\right.$ and $0, x=c$

- Watch Video Solution

9. Show that $f(x)=|x-3|$ is not differentiable at $x=3$.

- Watch Video Solution

10. Discuss the continuity and differentiability of $f(x)=|\log ||x|$.

- Watch Video Solution

11. If f is defined by $f(x)=x^{2}-4 x+7$, show that $f^{\prime}(5)=2 f^{\prime}\left(\frac{7}{2}\right)$

- Watch Video Solution

12. If f is defined by $f(x)=x^{2}$, find $f^{\prime}(2)$.

Watch Video Solution

13. Find the derivative of the function f defined by $f(x)=m x+c$ at $x=0$.

- Watch Video Solution

14. Discuss the continuity and differentiability of $f(x)=e^{|x|}$.

- Watch Video Solution

15. If for the function $\Phi(x)=\lambda x^{2}+7 x-4, \phi(5)=97$, find λ.

- Watch Video Solution

16. Examine the continuity $f(x)=\{(3 x-2, \mathrm{x} \mid \mathrm{t}=0)$,
$(x+1, x>0)\} a t x=0 `$

- Watch Video Solution

17. The setoff points where the function $f(x)$ given by $f(x)=|x-3| \cos x$ is differentiable, is R (b) $R-\{3\}$ (c) $(0, \infty)$ (d) none of these
18. If $f(x)=\left\{\frac{1-\cos x}{x \sin x}, x \neq 0\right.$ and $\frac{1}{2}, x=0$ then at $x=0, f(x)$ is (a)continuous and differentiable (b)differentiable but not continuous (c)continuous but not differentiable (d)neither continuous nor differentiable

- Watch Video Solution

19. If $f(x)=\left\{\frac{1}{1+e^{\frac{13}{x}}}, x \neq 00, x=0\right.$, then $f(x)$ is continuous as well as differentiable at $x=0$ continuous but not differentiable at $x=0$ differentiable but not continuous at $x=0$ none of these

- Watch Video Solution

20. If $f(x)=|3-x|+(3+x)$, where (x) denotes the least integer greater than or equal to x,
then $f(x)$ is continuous and differentiable at $x=3$
continuous but not differentiable at $x=3$
differentiable but not continuous at $x=3$
neither differentiable nor continuous at $x=3$

- Watch Video Solution

21. Let $f(x)=a+b|x|+c|x|^{4}$, where a, bandc are real constants. Then, $f(x)$ is differentiable at $x=0$, if $a=0$ (b) $b=0$ (c) $c=0$ (d) none of these

- Watch Video Solution

22. The function $f(x)=\frac{\sin (\pi[x-\pi])}{4+[x]^{2}}$, where [] denotes the greatest integer function, is continuous as well as differentiable for all $x \in R$
(b) continuous for all x but not differentiable at some x
(c) differentiable for all x but not continuous at some x
.(d) none of these
23. Let $f(x)=\left\{a x^{2}+1, x>1\right.$;
$x+\frac{1}{2}, x \leq 1$. then, $f(x)$ is derivable at $x=1$, if
$a=2$
(b) $a=1$
(c) $a=0$
(d) $a=\frac{1}{2}$

- Watch Video Solution

24. Show that the function defined by $g(x)=x \quad[x]$ is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x .
25. Find all points of discontinuity of f, where f is defined by $f(x)=\{2 x+3, \quad$ if $\quad x \leq 2$
$2 x-3$, if $x>2$

- Watch Video Solution

26. If $f(x)=\left\{x^{2}+3 x+a, x \leq 1 b x+2, f\right.$ or $x>1$ is everywhere differentiable, find the values of $a a n d b$.

- Watch Video Solution

27. Let $f(x)=|x|$ and $g(x)=\left|x^{3}\right|$, then
(a) $f(x) \operatorname{andg}(x)$ both are continuous at $x=0$
(b) $f(x) \operatorname{andg}(x)$ both are differentiable at $x=0$
(c) $f(x)$ is differentiable but $g(x)$ is not differentiable at $x=0$
(d) $f(x)$ and $g(x)$ both are not differentiable at $x=0$
28. Is $|\sin x|$ differentiable? What about $\cos |x|$?

- Watch Video Solution

29. Find the values of $a a n d b$ so that the function $f(x)=\left\{x^{2}+3 x+a\right.$, if $x \leq 1 b x+2$, if $x>1$ is differentiable at each $x \in R$.

- Watch Video Solution

30. The function $f(x)=e^{-|x|}$ is continuous everywhere but not differentiable at $x=0$ continuous and differentiable everywhere not continuous at $x=0$ none of these

- Watch Video Solution

31. Discuss the continuity and differentiability of $f(x)=\{1-x, x<1(1-x)(2-x), 1 \leq x \leq 23-x, x>2$

Watch Video Solution

32. Show that the function $f(x)=\left\{|2 x-3|[x] x \leq 0\right.$ and $\sin \left(\frac{\pi x}{2}\right)$, $x>0$ is continuous but not differentiable at $x=0$

- Watch Video Solution

33. The set of points where the function $f(x)=x|x|$ is differentiable is $(-\infty, \infty)(b)(-\infty, 0) \cup(0, \infty)(0, \infty)(d)[0, \infty)$

- Watch Video Solution

34. The function $f(x)=\sin ^{-1}(\cos x)$ is (a). discontinuous at $x=0$ (b). continuous at $x=0$ (c). differentiable at $x=0$ (d). non of these
35. If $f(x)=|\ln | x|\quad|$, then (a) $f(x)$ is continuous and differentiable for all x in its domain (b) $\mathrm{f}(\mathrm{x})$ is continuous for all for all x in its domain but not differentiable at $x= \pm 1$ (c) $f(x)$ is neither continuous nor differentiable at $x= \pm 1$ (d)none of these

- Watch Video Solution

36. Let $f(x)=\left\{\frac{1}{|x|} f\right.$ or $|x| \geq 1 a x^{2}+b f$ or $|x|<1 \Leftrightarrow(x)$ is continuous and differentiable at any point, then $a=\frac{1}{2}, b=-\frac{3}{2}$ $a=-\frac{1}{2}, b=\frac{3}{2} a=1, b=-1$ (d) none of these

- Watch Video Solution

37. If $f(x)=\sqrt{1-\left(\sqrt{1}-x^{2}\right)}$, then $f(x)$ is (a)continuous on $[-1,1]$ and differentiable on ($-1,1$) (b) continuous on $[-1,1]$ and differentiable on
$(-1,0) \cup(0,1)(C)$ continuous and differentiable on $[-1,1](\mathrm{d})$ none of these

- Watch Video Solution

38. If $f(x)=a|\sin x|+b e^{|x|}+c|x|^{3}$ and if $f(x)$ is differentiable at $x=0$ then

- Watch Video Solution

39. If $f(x)=x^{2}+\frac{x^{2}}{1+x^{2}}+\frac{x^{2}}{\left(1+x^{2}\right)^{2}}++\frac{x^{2}}{\left(1+x^{2}\right)^{n}}+$, then at $x=0, f(x)$ has no limit (b) is discontinuous is continuous but not differentiable (d) is differentiable

- Watch Video Solution

40. If $f(x)=\left|(\log)_{2} x\right|$, then $f\left(1^{+}\right)=1$ (b) $f\left(1^{-}\right)=-1 f(1)=1$ (c)
$f^{\prime}(1)=-1$

(D) Watch Video Solution

41. If $f(x)=\left\{\frac{|x+2|}{\tan ^{-1}(x+2)}, x \neq-2\right.$ and $2, x=-2$ then $f(x)$ is continuous/discontinuous at $x=-2$?

- Watch Video Solution

42. Let $f(x)=(x+|x|)|x|$. then, for all $x . f$ is continuous (b) f is differentiable for some $x f^{\prime}$ is continuous (d) f^{\prime} ' is continuous

- Watch Video Solution

43. The function $f(x)=e^{-|x|}$ is continuous everywhere but not differentiable at $x=0$ continuous and differentiable everywhere not continuous at $x=0$ none of these
44. The function $f(x)=|\cos x|$ is everywhere continuous and differentiable everywhere continuous but not differentiable at $(2 n+1) \frac{\pi}{2}, n \in Z$. neither continuous not differentiable at $(2 x+1) \frac{\pi}{2}, n \in Z$

- Watch Video Solution

45. Discuss the continuity of the function $f(x)=\{2 x-1$ if $x<2$ $\frac{3 x}{2}$ if $x \geq 2$

- Watch Video Solution

46.

Show
that
the
function
$f(x)=\left\{x^{2} \sin \left(\frac{1}{x}\right)\right.$, if $x \neq 00$, if $x=0$ is differentiable at $x=0$ and $f^{\prime}(0)=0$

- Watch Video Solution

47. Show that $f(x)=|x|$ is not differentiable at $x=0$.

- Watch Video Solution

48.

Discuss
the
differentiability
of
$f(x)=\left\{x e-\left(\frac{1}{|x|}+\frac{1}{x}\right), x \neq 0 x, x=0 a t x=0\right.$

- Watch Video Solution

49. For what choice of a and b is the function
$f(x)=\left\{x^{2}, x \leq c\right.$ and $a x+b, x>c$ is differentiable at $x=c$

- Watch Video Solution

50. Discuss the differentiability of $f(x)=x|x|$ at $x=0$

- Watch Video Solution

51.

$x^{2} \sin \left(\frac{1}{x}\right)$, when $x \neq 0$ and $\left.0 w h e n x=0\right\}$ is differentiable at $\mathrm{x}=0$.

- Watch Video Solution

52. If $f(2)=2$ and $f^{\prime}(2)=1$, then find $(\lim)_{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2}$

- Watch Video Solution

53. A function $f: R \rightarrow R$ satisfies the equation $f(x+y)=f(x) f(y)$ for all $x, y \in R . f(x) \neq 0$ Suppose that the function is differentiable at $x=0$ and $f^{\prime}(0)=2$. Prove that $f^{\prime}(x)=2 f(x)$.

- Watch Video Solution

54. Show that $f(x)=|x|$ is not differentiable at $x=0$.

- Watch Video Solution

55.

$f(x)=\{x-1, \quad$ if $x<22 x-3, \quad$ if $x \geq 2$ is not differentiable at $x=2$.

- Watch Video Solution

56. Show that the function $f(x)=\left\{\begin{array}{cll}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } & x \neq 0 \\ 0 & \text { if } & x=0\end{array}\right)$ is differentiable at $\mathrm{x}=0$

- Watch Video Solution

57. Show that $f(x)=x^{2}$ is differentiable at $x=1$ and find $f^{\prime}(1)$.

- Watch Video Solution

58. Show that the function $f(x)=|x+1|+|x-1|$ for all $x \in R$, is not differentiable at $x=-1$ and $x=1$.
59. Discuss the differentiability of $f(x)=x|x|$ at $x=0$.

- Watch Video Solution

60.

Show
that
the
function
$f(x)=\left\{x \frac{\sin 1}{x}\right.$, when $x \neq 00$ when $x=0$ is continuous but not differentiable at $x=0$.

- Watch Video Solution

61.

Discuss
the
differentiability
of
$f(x)=\left\{x e-\left(\frac{1}{|x|}+\frac{1}{x}\right), x \neq 0 x, x=0 a t x=0\right.$

- Watch Video Solution

62. If $f(x)$ is differentiable at $x=a$, find $(\lim)_{x \rightarrow a} \frac{x^{2} f(a)-a^{2} f(x)}{x-a}$.

- Watch Video Solution

63. For what choice of a and b is the function $f(x)=\left\{x^{2} \quad, \quad x \leq c a x+b, x>c\right.$ is differentiable at $x=c$.

Watch Video Solution

64. If $f(2)=4$ and $f^{\prime}(2)=1$, then find $(\lim)_{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2}$.

B Watch Video Solution

65. A function $f: R \rightarrow R$ satisfies that equation $f(x+y)=f(x) f(y)$ for all $x, y \in R, f(x) \neq 0$. Suppose that the function $f(x)$ is differentiable at $x=0$ and $f^{\prime}(0)=2$. Prove that $f^{\prime}(x)=2 f(x)$.
66. Show that $f(x)=|x-3|$ is continuous but not differentiable at $x=3$.

- Watch Video Solution

67. Show that $f(x)=x^{1 / 3}$ is not differentiable at $x=0$.

- Watch Video Solution

68. Show that $f(x)=\left\{12 x-13, \quad\right.$ if $\quad x \leq 32 x^{2}+5, \quad$ if $\quad x>3$ is differentiable at $x=3$. Also, find $f^{\prime}(3)$.

- Watch Video Solution

69. Show that the function f defined as follows ${ }^{\mathrm{f}}(\mathrm{x})=\{3 \mathrm{x}-2, \backslash \backslash \backslash \backslash 02$ iscont \in uousatx $=2^{\prime}$, but not differentiable thereat.
70. Discuss the continuity and differentiability of the function $f(x)=|x|+|x-1|$ in the interval $(-1,2)$.

- Watch Video Solution

71. Find whether the following function is differentiable at $x=1$ and $x=2$ or not: $f(x)=\left\{x, x<12-x, 1 \leq x \leq 2-2+3 x-x^{2}, x>2\right.$

- Watch Video Solution

72. Show that the function $f(x)=\left\{x^{m} \sin \left(\frac{1}{x}\right), 0, \quad x \neq 0, \quad x=0\right.$ is differentiable at $x=0$, if $m>1$

- Watch Video Solution

$f(x)=\left\{x^{m} \sin \left(\frac{1}{x}\right), x \neq 00, \quad x=0\right.$ is continuous but not differentiable at $x=0$, if ` O

- Watch Video Solution

74.

Show
that
the
function
$f(x)=\left\{x^{m} \sin \left(\frac{1}{x}\right), x \neq 00, \quad x=0 \quad\right.$ is \quad neither continuous nor differentiable, if $m \leq 0$

- Watch Video Solution

75. Find the values of a and b so that the function $f(x)=\left\{x^{2}+3 x+a, \quad\right.$ if $\quad x \leq 1 b x+2, \quad$ if $\quad x>1$ is differentiable at each $x \in R$.

- Watch Video Solution

$f(x)=\left\{|2 x-3|[x], \quad x \geq 1 \sin \left(\frac{\pi x}{2}\right), \quad x<1\right.$ is continuous but not differentiable at $x=1$.

- Watch Video Solution

77. If $f(x)= \begin{cases}a x^{2}-b, & \text { if } \quad|x|<1 \frac{1}{|x|}, \quad \text { if } \quad|x| \geq 1 \quad \text { is }\end{cases}$ differentiable at $x=1$, find a, b.

- Watch Video Solution

78. Find the values of a and b, if the function $f(x)$ defined by $f(x)=\left\{x^{2}+3 x+a, x \leq 1 b x+2, \quad x>1\right.$ is differentiable at $x=1$.

- Watch Video Solution

79. If $f(x)=x^{2}+2 x+7$, find $f^{\prime}(3)$.
80. Find $f^{\prime}(2)$ and $f^{\prime}(5)$ when $f(x)=x^{2}+7 x+4$.

- Watch Video Solution

81. For the function f given by $f(x)=x^{2}-6 x+8$, prove that $f^{\prime}(5)-3 f^{\prime}(2)=f^{\prime}(8)$.

- Watch Video Solution

82. Discuss the continuity and differentiability of $f(x)=\{1-x, \quad x<1(1-x)(2-x), \quad 1 \leq x \leq 23-x$,

- Watch Video Solution

83. Discuss the differentiability of $f(x)=|x-1|+|x-2|$
84. If $f(x)=\left\{x^{2}+3 x+a, \quad f\right.$ or $x \leq 1 b x+2, \quad f$ or $x>1$ is everywhere differentiable, find the values of a and b.

- Watch Video Solution

85. Discuss the differentiability of $f(x)=\left|(\log)_{e} x\right| x>0$.

- Watch Video Solution

86. If f is defined by $f(x)=x^{2}$, find $f^{\prime}(2)$.

- Watch Video Solution

87. If f is defined by $f(x)=x^{2}-4 x+7$, show that $f^{\prime}(5)=2 f^{\prime}\left(\frac{7}{2}\right)$
88. Show that the derivative of the function f given by $f(x)=2 x^{3}-9 x^{2}+12 x+9$, at $x=1$ and $x=2$ are equal.

- Watch Video Solution

89. If for the function $\operatorname{Phi}(x)=\lambda x^{2}+7 x-4, \operatorname{Phiprime}^{\wedge}(5)=97$, find λ.

- Watch Video Solution

90. If $f(x)=x^{3}+7 x^{2}+8 x-9$, find $f^{\prime}(4)$.

- Watch Video Solution

91. Find the derivative of the function f defined by $f(x)=m x+c$ at $x=0$.
92. Examine the differentiability of the function f defined by $f(x)=\{2 x+3, \quad$ if $\quad-3 \leq x \leq-2 x+1, \quad$ if $\quad-2 \leq x<0 x+2$,

- Watch Video Solution

93. Write an example of a function which is everywhere continuous but fails to be differentiable exactly at five points.

- Watch Video Solution

94. Discuss the continuity and differentiability of $f(x)=|\log | x| |$.

- Watch Video Solution

95. Discuss the continuity and differentiability of $f(x)=e^{|x|}$.
96. Discuss the continuity and differentiability of
$f(x)=\left\{(x-c) \cos \left(\frac{1}{x-c}\right), \quad x \neq c 0, \quad x=c\right.$

- Watch Video Solution

97. Is $|\sin x|$ differentiable? What about $\cos |x|$?

- Watch Video Solution

98. Define differentiability of a function at a point.

Watch Video Solution
99. Is every differentiable function continuous?
100. Is every continuous function differentiable?

- Watch Video Solution

101. Give an example of a function which is continuous but not differentiable at a point.

- Watch Video Solution

102. If $f(x)$ is differentiable at $x=c$, then write the value of $(\lim)_{x \rightarrow c} f(x)$.

- Watch Video Solution

103. If $f(x)=|x-2|$ write whether $f^{\prime}(2)$ exists or not.

- Watch Video Solution

104. Write the points where $f(x)=\left|(\log)_{e} x\right|$ is not differentiable.

- Watch Video Solution

105. Write the points of non-differentiability of $f(x)=|\log | x| |$.

- Watch Video Solution

106. Write the derivative of $f(x)=|x|^{3}$ at $x=0$.

- Watch Video Solution

107. Write the number of points where $f(x)=|x|+|x-1|$ is continuous but not differentiable.

- Watch Video Solution

108. If $(\lim)_{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists finitely, write the value of $(\lim)_{x \rightarrow c} f(x)$.

- Watch Video Solution

109. Write the value of the derivative of $f(x)=|x-1|+|x-3|$ at $x=2$.

- Watch Video Solution

110. If $f(x)=\sqrt{x^{2}+9}$, write the value of $(\lim)_{x \rightarrow 4} \frac{f(x)-f(4)}{x-4}$.

- Watch Video Solution

111. Let $f(x)=|x|$ and $g(x)=\left|x^{3}\right|$, then $f(x)$ and $g(x)$ both are continuous at $x=0$ (b) $f(x)$ and $g(x)$ both are differentiable at $x=0$
(c) $f(x)$ is differentiable but $g(x)$ is not differentiable at $x=0$ (d) $f(x)$ and $g(x)$ both are not differentiable at $x=0$

- Watch Video Solution

112. The function $f(x)=\sin ^{-1}(\cos x)$ is discontinuous at $x=0$ (b) continuous at $x=0$ (c) differentiable at $x=0$ (d) none of these

- Watch Video Solution

113. The set of points where the function $f(x)=x|x|$ is differentiable is
(a) $(-\infty, \infty)$
(b) $(-\infty, 0) \cup(0, \infty)$
(c) $(0, \infty)$
(d) $[0, \infty]$

- Watch Video Solution

114. If $f(x)= \begin{cases}\frac{|x+2|}{\tan ^{-1}(x+2)}, & x \neq-22, \quad x=-2 \text {, then }\end{cases}$ $f(x)$ is continuous at $x=-2$ (b) not continuous at $x=-2$ (c) differentiable at $x=-2(\mathrm{~d})$ continuous but not derivative at $x=-2$

(D) Watch Video Solution

115. Let $f(x)=|x|$. Then, for all $x f$ is continuous (b) f is differentiable for some x (c) f^{\prime} is continuous (d) f is continuous

- Watch Video Solution

116. The function $f(x)=e^{|x|}$ is (a) Continuous everywhere but not differentiable at $x=0$ (b) Continuous and differentiable everywhere (c) Not continuous at $x=0$ (d) None of the above

- Watch Video Solution

117. The function $f(x)=|\cos x|$ is (a) everywhere continuous and differentiable (b) everywhere continuous but not differentiable at $(2 n+1) \pi / 2, n \in Z$ (c) neither continuous nor differentiable at $(2 n+1) \pi / 2, n \in Z(\mathrm{~d})$ none of these
118. If $f(x)=\sqrt{1-\sqrt{1-x^{2}}}$, then $f(x)$ is (a) continuous on $[-1,1]$ and differentiable on (-1, 1) (b) continuous on $[-1,1]$ and differentiable on $(-1,0) \cup \varphi(0,1)$ (c) continuous and differentiable on $[-1,1]$ (d) none of these

- Watch Video Solution

119. If $f(x)=a|\sin x|+b e^{|x|}+c|x|^{3}$ and if $f(x)$ is differentiable at $x=0 \quad$, then $\quad a=b=c=0$
(b) $\quad a=0, b=0 ; \quad c \in R$
$b=c=0, a \in R(\mathrm{~d}) c=0, a=0, \quad b \in R$

- Watch Video Solution

120. If $f(x)=x^{2}+\frac{x^{2}}{1+x^{2}}+\frac{x^{2}}{\left(1+x^{2}\right)^{2}}++\frac{x^{2}}{\left(1+x^{2}\right)^{n}}+$, then at $x=0, f(x)$ has no limit (b) is discontinuous is continuous but not differentiable (d) is differentiable

- Watch Video Solution

121. If $f(x)=\left|(\log)_{e} x\right|$, then (a) $f^{\prime}\left(1^{+}\right)=1$ (b) $f^{\prime}\left(1^{-}\right)=-1$ (c) $f^{\prime}(1)=1(\mathrm{~d}) f^{\prime}(1)=-1$

Watch Video Solution

122. If $f(x)=\left|(\log)_{e}\right| x \mid$, then $f(x)$ is continuous and differentiable for all x in its domain] (b) $f(x)$ is continuous for all x in its domain but not differentiable at $x= \pm 1$ (c) $f(x)$ is neither continuous nor differentiable at $x= \pm 1$ (d) none of these

- Watch Video Solution

123. Let $f(x)=\left\{\begin{array}{cc}\frac{1}{|x|} & f \text { or }|x| \geq 1 \\ a x^{2}+b & f \text { or }|x|<1\end{array}\right)$. If $f(x)$ is continuous and differentiable at any point, then (A) $a=\frac{1}{2}, b=-\frac{3}{2}$
$a=-\frac{1}{2}, b=\frac{3}{2}$ (C) $a=1, b=-1$ (D) none of these
124. The function $f(x)=x-[x]$, where [] denotes the greatest integer function is (a) continuous everywhere (b) continuous at integer points only (c) continuous at non-integer points only (d) differentiable everywhere

- Watch Video Solution

125. Let $f(x)=\left\{a x^{2}+1, \quad x>1, \quad x+1 / 2, \quad x \leq 1\right.$ Then, $f(x)$ is derivable at $x=1$, if $a=2$ (b) $b=1$ (c) $a=0$ (d) $a=1 / 2$

- Watch Video Solution

126. Let $f(x)=|\sin x|$. Then, (a) $f(x)$ is everywhere differentiable. (b) $f(x)$ is everywhere continuous but not differentiable at $x=n \pi, n \in Z$ (c) $f(x)$ is everywhere continuous but not differentiable at $x=(2 n+1) \frac{\pi}{2}, n \in Z .(\mathrm{d})$ none of these

(D) Watch Video Solution

127. Let $f(x)=|\cos x|$. Then, $f(x)$ is everywhere differentiable (b) $f(x)$ is everywhere continuous but not differentiable at $x=n \pi, n \in Z$ (c) $f(x)$ is everywhere continuous but not differentiable at $x=(2 n+1) \frac{\pi}{2}, \quad n \in Z$ (d) none of these

- Watch Video Solution

128. The function $f(x)=1+|\cos x|$ is (a) continuous no where continuous everywhere (c) not differentiable at $x=0$ (d) not differentiable at $x=n \pi, \quad n \in Z$

- Watch Video Solution

129. The function $f(x)=|\cos x|$ is differentiable at $x=(2 n+1) \pi / 2, n \in Z$ (b) continuous but not differentiable at
$x=(2 n+1) \pi / 2, n \in Z$ (c) neither differentiable nor continuous at $x=n \pi, \quad n \in Z(\mathrm{~d})$ none of these

- Watch Video Solution

130. The function $f(x)=(\sin (\pi[x-\pi]))$, where [] denotes the greatest integer function, is continuous as well as differentiable for all $x \in R$ (b) continuous for all x but not differentiable at some x (c) differentiable for all x but not continuous at some x.(d) none of these

- Watch Video Solution

131. Let $f(x)=a+b|x|+c|x|^{4}$, where a, b, and c are real constants. Then, $f(x)$ is differentiable at $x=0$, if $a=0$ (b) $b=0$ (c) $c=0$ (d) none of these
132. If $f(x)=|3-x|+(3+x)$, where (x) denotes the least integer greater than or equal to x, then $f(x)$ is continuous and differentiable at $x=3$ (b) continuous but not differentiable at $x=3$ (c) differentiable but not continuous at $x=3$ (d) neither differentiable nor continuous at $x=3$

- Watch Video Solution

133. If $f(x)=\left\{\frac{1}{1+e^{1 / x}}, x \neq 00, \quad x=0\right.$, then $f(x)$ is continuous as well as differentiable at $x=0$ (b) continuous but not differentiable at $x=0$ (c) differentiable but not continuous at $x=0$ (d) none of these

- Watch Video Solution

134. If $f(x)=\left\{\frac{1-\cos x}{x \sin x}, x \neq 0\right.$ and $\frac{1}{2}, x=0$ then at $x=0, f(x)$ is (a)continuous and differentiable (b)differentiable but not continuous
(c)continuous but not differentiable (d)neither continuous nor differentiable

- Watch Video Solution

135. The set of points where the function $f(x)$ given by $f(x)=|x-3| \cos x$ is differentiable, is R (b) $R-\{3\}$ (c) $(0, \infty)$ (d) none of these

- Watch Video Solution

136. Let ${ }^{\prime} f(x)=\{1, \backslash \backslash \backslash \backslash \backslash x|t=-1| x \mid, \backslash \backslash \backslash-1$

- Watch Video Solution

