

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

DIFFERENTIALS, ERRORS AND APPROXIMATIONS

Solved Examples And Exercises

1. Find the approximate value of $\left(\log
ight)_{10}1005$,

given that $(\log)_{10}e = 0.4343$

Watch Video Solution

2. The height of a cone increases by k % its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small?

3. The pressure p and the volume v of a gas are connected by the relation $pv^{1.4} = const$. Find the percentage error in p corresponding to a decrease of % in v.

Watch Video Solution

4. Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube.

A. 1%

B. 2%

C. 3%

D. None of these

Answer: B

Watch Video Solution

5. A circular metal plate expends under heating so that its radius increases by k~% . Find the approximate increase in the area of

the plate, if the radius of the plate before

heating is 10 cm.

6. The radius of a sphere shrinks from 10 to 9.8

cm. Find approximately the decrease in its volume.

7. If $y = \sin x$ and x change from $\frac{\pi}{2} \rightarrow \frac{22}{14}$, what is the approximate change in y?

Watch Video Solution

8. find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3cm and 3.0005cm, respectively.

A. $v=0.018\pi cm^3$

 $\mathsf{B.}\,v=0.18\pi cm^3$

C. $v = 0.0018\pi cm^3$

D. None of these

Answer: A

9. Use differentials to approximate the cube

root of 127.

10. Use differentials to find the approximate value of $(\log)_e (4.01)$, having given that $(\log)_e 4 = 1.3863$.

11. If the ratio of base radius and height of a cone is 1:2 and percentage error in radius is $\lambda \%$, then the error in its volume is $\lambda \%$ (2) 2 $\lambda \%$ (c) 3 $\lambda \%$ (d) none of these

12. The pressure P and volume V of a gas are connected by the relation $PV^{\frac{1}{4}=}$ constant. The percentage increase in the pressure corresponding to a deminition of % in the volume is $\frac{1}{2}$ % (b) $\frac{1}{4}$ % (c) $\frac{1}{8}$ % (d) none of these

Watch Video Solution

13. If $y = x^n$, then the ratio of relative errors in y and x is (a) 1:1 (b) 2:1 (c) 1:n (d) n:1

Watch Video Solution

15. A circular metal plate expands under heating so that its radius increases by 2%. Find the approximate increase in the area of the plate if the radius of the plate before

heating is 10cm.

16. The time t of a complete oscillation of a simple pendulum of length l is given by the equation $T=2\pi\sqrt{rac{1}{g}}$

where g is constant. What is the percentage error in T when l is increased by 1%?

17. If $y = x^4 - 10$ and if x changes from 2 to 1.99, what is the approximate change in y? Also, find the changed value of y.

18. If in a triangle ABC, the side c and the angle C remain constant, while the remaining elements are changed slightly, using differentials show that $\frac{da}{csA} + \frac{db}{\cos B} = 0$

19. Using differentials find the approximate value of $\tan 46^{\circ}$, if it is being given that $1^{\circ} = 0.01745$ radians.

20. If there is an error of 2% in measuring the length of simple pendulum, then percentage error in its period is: (a) 1% (b)2% (c) 3% (d) 4%

22. If an error of k % is made in measuring the radius of a sphere, then percentage error in its volume.

k%

(b) 3k%

(c) 3k%

(d)
$$rac{k}{3}$$
 $\%$

Watch Video Solution

23. If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is 2a% (b) $\frac{a}{2}$ % (c) 3a% (d) none of these

24. While measuring the side of an equilateral triangle an error of k% is made, the percentage error in its area

Watch Video Solution

25. The height of a cylinder is equal to the radius. If an error of $\alpha \%$ is made in the height, then percentage error in its volume is $\alpha \%$ (b) $2\alpha \%$ (c) $3\alpha \%$ (d) none of these

26. A sphere of radius 100mm shrinks to radius 98mm, then the approximate decrease in its volume is (a) $12000\pi mm^3$ (b) $80000\pi mm^3$ (C) $8000\pi mm^3$ (d) $120\pi mm^3$

Watch Video Solution

27. If $(\log)_e 4 - 1.3868$, $then(\log)_e 4.01 =$

1.3968 (b) 1.3898 (c) 1.3893 (d) none of these

28. Find the percentage error in calculating the volume of a cubical box if an error if 1% is made in measuring the length of edges of the cube.

29. The approximate value of
$$(33)^{\frac{1}{5}}$$
 is

30. Use differentials to approximate $\sqrt{25.2}$

31. The circumference of a circle is measured

as 28cm with an error of 0.01cm. The

percentage error in the area is

32. If $y = x^4 - 10$ and if x changes from 2 to 1.99, what is the approximate change in y ? Also, find the changed value of y.

33. A circular metal plate expands under heating so that its radius increases by 2%. Find the approximate increase in the area of the plate if the radius of the plate before heating is 10 cm.

34. Find the percentage error in calculating the volume of a cubical box if an error of 1% is made in measuring the length of edges of the cube.

Watch Video Solution

35. The time t of a complete oscillation of a simple pendulum of length l is given by the equation $T=2\pi\sqrt{rac{1}{g}}$ where g is constant.

What is the percentage error in T when l is

increased by 1%?

36. Find the approximate change in the volume V of a cube of side x meters caused by increasing the side by 2%.

37. If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.

38. Find the approximate value of $f(3.\ 02)$, where $f(x)=3x^2+5x+3$.

39. Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm, respectively.

Watch Video Solution

40. Use differentials to approximate $\sqrt{25.2}$.

41. Use differentials to approximate the cube

root of 127.

Watch Video Solution

42. Use differentials to find the approximate value of $\sqrt{0.037}$.

43. Use differentials to find the approximate value of $(\log)_e (4.01)$, having given that $(\log)_e 4 = 1.3863$.

44. Using differentials find the approximate value of $tan 46^{0}$, if it is being given that $1^{0} = 0.01745$ radians.

45. If in a triangle ABC, the side c and the angle C remain constant, while the remaining elements are changed slightly, using differentials show that $\frac{da}{\cos A} + \frac{db}{\cos B} = 0$ Watch Video Solution

46. If a triangle ABC, inscribed in a fixed circle,

be slightly varied in such away as to have its

vertices always on the circle, then show that

$$\frac{da}{casA} + \frac{db}{\cos B} + \frac{dc}{\cos C} = 0.$$

47. If $y = \sin x$ and x changes from $\pi/2$ to

 $22\,/\,14$, what is the approximate change in y ?

48. The radius of a sphere shrinks from 10 to

9.8 cm. Find approximately the decrease in its

volume.

49. A circular metal plate expands under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.

Watch Video Solution

50. Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube.

51. If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere.

Watch Video Solution

52. The pressure p and the volume v of a gas are connected by the relation $pv^{1.4} = const$.

Find the percentage error in p corresponding

to a decrease of 1/2% in v_{\cdot}

53. The height of a cone increases by k % its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small?

54. Using differentials, find the approximate value of $\sqrt{25.02}$ **Vatch Video Solution**

55. Using differentials, find the approximate value of $(0.009)^{1/3}$

56. Using differentials, find the approximate

value of $(0.\ 007)^{1/3}$

Watch Video Solution

57. Using differentials, find the approximate value of $\sqrt{401}$

58. Using differentials, find the approximate value of $\left(15\right)^{1/4}$

Watch Video Solution

59. Using differentials, find the approximate value of $(255)^{1/4}$

60. Using differentials, find the approximate value of
$$\frac{1}{(2.002)^2}$$

Watch Video Solution

61. Using differentials, find the approximate value of $(\log)_e 4.04$, it being given that $(\log)_{10}4 = 0.6021$ and $(\log)_{10}e = 0.4343$.

62. Using differentials, find the approximate value of $(\log)_e 10.02$, it being given that $(\log)_e 10 = 2.3026$.

63. Using differentials, find the approximate value of $(\log)_{10}10.1$, it being given that $(\log)_{10}e = 0.4343$.

differentials.

65. Using differentials, find approximate value of $\sin\left(\frac{22}{14}\right)$

Watch Video Solution

66. Approximate $(80)^{1/4}$ using differentials

67. Use differentials and find approximate value of $\left(29\right)^{1/3}$

Watch Video Solution

68. Using differentials, find the approximate value of $\left(66\right)^{1/3}$

69. Using differentials, find the approximate value of $\sqrt{26}$ Watch Video Solution

70. Using differentials, find the approximate value of $\sqrt{37}$

Watch Video Solution

71. Using differentials, find the approximate value of $\sqrt{0.48}$

73. Use differentials to find the approximate value of $(17)^{\frac{1}{4}}$

74. Using differentials, find the approximate value of $(33)^{1/5}$ Watch Video Solution

75. Using differentials, find the approximate value of $\sqrt{36.6}$

76. Using differentials, find the approximate value of $25^{1/3}$

77. Using differentials, find the approximate value of $\sqrt{49.5}$

78. Using differentials, find the approximate

value of $(3.968)^{3/2}$

Watch Video Solution

79. Using differentials, find the approximate value of $(1.999)^5$

80. Using differentials, find the approximate value of $\sqrt{0.082}$ **Watch Video Solution**

81. Find the approximate value of $f(2.\ 01)$, where $f(x)=4x^2+5x+2$.

82. Find the approximate value of $f(5.\ 001)$,

where
$$f(x) = x^3 - 7x^2 + 15$$
 .

Watch Video Solution

83. Find the approximate value of $(\log)_{10} 1005$,

given that $(\log)_{10}e = 0.4343$

84. If the radius of a sphere is measured as 9 cm with an error or 0.03 m, find the approximate error in calculating its surface area.

Watch Video Solution

85. Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%.

86. If the radius of a sphere is measured as 7 m with an error or 0.02 m, find the approximate error in calculating its volume.

87. Find the approximate change in the volume

of a cube of side x metres caused by increasing the side by 1%.

88. If the relative error in measuring the radius

of a circular plane is $\boldsymbol{\alpha}$, find the relative error

in measuring its area.

89. If the percentage error in the radius of a sphere is α , find the percentage error in its volume.

90. A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume.

91. If there is an error of 2% in measuring the

length of simple pendulum, then percentage

error in its period is: 1% (b) 2% (c) 3% (d) 4%

92. If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is (a) 2a% (b) $\frac{a}{2}$ % (c) 3a% (d) none of

these

Watch Video Solution

93. If an error of k% is made in measuring the

radius of a sphere, then percentage error in its

volume is (a) k% (b) 3k% (c) 2k% (d) $k/3\,\%$

94. The height of a cylinder is equal to the radius. If an error of $\alpha \%$ is made in the height, then percentage error in its volume is $\alpha \%$ (b) $2\alpha \%$ (c) $3\alpha \%$ (d) none of these

Watch Video Solution

95. While measuring the side of an equilateral triangle an error of k% is made, the percentage error in its area is k% (b) 2k% (c) $\frac{k}{2}\%$ (d) 3k%

97. A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is $12000 \pi mm^3$ (b) $800 \pi mm^3$ (c) $80000 \pi mm^3$ (d) $120 \pi mm^3$

98. If the ratio of base radius and height of a cone is 1:2 and percentage error in radius is $\lambda \%$, then the error in its volume is $\lambda \%$ (b) $2\lambda \%$ (c) $3\lambda \%$ (d) none of these

Watch Video Solution

99. The pressure P and volume V of a gas are connected by the relation $PV^{\frac{1}{4}=}$ constant. The percentage increase in the pressure corresponding to a deminition of % in the volume is $\frac{1}{2}$ % (b) $\frac{1}{4}$ % (c) $\frac{1}{8}$ % (d) none of

these

Watch Video Solution

100. If $y = x^n$, then the ratio of relative errors

in *yandx* is 1:1 (b) 2:1 (c) 1:n (d) n:1

101. The approximate value of $\left(33
ight) ^{1/5}$ is (a)

2.0125 (b) 2.1 (c) 2.01 (d) none of these

102. The circumference of a circle is measured as 28cm with an error of 0.01cm. The percentage error in the area is $\frac{1}{14}$ (b) 0. 01 (c) $\frac{1}{7}$ (d) none of these

1. Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius.

2. Find the approximate value of $\cos 61o$ using differentials, it being given that $\sin 60o = 0.\ 86603$ and $1o = 0.\ 01745$ radian

5. If $y = (\log)_e x$, then find y when x = 3 and

x = 0.03 .

View Text Solution