© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS

(HINGLISH)

DIFFERENTIALS, ERRORS AND APPROXIMATIONS

Solved Examples And Exercises

1. Find the approximate value of $(\log)_{10} 1005$, given that $(\log)_{10} e=0.4343$

D Watch Video Solution

2. The height of a cone increases by $k \%$ its semi-vertical angle remaining the same. What
is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small?
3. The pressure p and the volume v of a gas are connected by the relation $p v^{1.4}=$ const.

Find the percentage error in p corresponding to a decrease of $\%$ in v.

D Watch Video Solution

4. Find the percentage error in calculating the surface area of a cubical box if an error of 1%
is made in measuring the lengths of edges of the cube.
A. 1%
B. 2\%
C. 3\%
D. None of these

Answer: B

D Watch Video Solution

5. A circular metal plate expends under heating so that its radius increases by $k \%$.

Find the approximate increase in the area of
the plate, if the radius of the plate before heating is 10 cm .

D Watch Video Solution

6. The radius of a sphere shrinks from 10 to 9.8
cm . Find approximately the decrease in its
volume.

D Watch Video Solution
7. If $y=\sin x a n d x$ change from $\frac{\pi}{2} \rightarrow \frac{22}{14}$, what is the approximate change in y ?

- Watch Video Solution

8. find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm , respectively.

$$
\begin{aligned}
& \text { A. } v=0.018 \pi \mathrm{~cm}^{3} \\
& \text { B. } v=0.18 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

C. $v=0.0018 \pi c m^{3}$
D. None of these

Answer: A

- Watch Video Solution

9. Use differentials to approximate the cube root of 127 .

- Watch Video Solution

10. Use differentials to find the approximate value of $(\log)_{e}(4.01)$, having given that $(\log)_{e} 4=1.3863$.

D Watch Video Solution

11. If the ratio of base radius and height of a cone is 1:2 and percentage error in radius is
$\lambda \%$, then the error in its volume is $\lambda \%$ (2) 2
$\lambda \%$
(c) $3 \lambda \%$
(d) none of these
12. The pressure P and volume V of a gas are connected by the relation $P V^{\frac{1}{4}=}$ constant.

The percentage increase in the pressure corresponding to a deminition of $\%$ in the volume is $\frac{1}{2} \%$ (b) $\frac{1}{4} \%$ (c) $\frac{1}{8} \%$ (d) none of these

D Watch Video Solution

13. If $y=x^{n}$, then the ratio of relative errors in y and x is (a) $1: 1$ (b) 2:1 (c) $1: \mathrm{n}$ (d) $\mathrm{n}: 1$
14. Find the approximate change in the volume

V of a cube of side x meters caused by increasing by side by 2%.

- Watch Video Solution

15. A circular metal plate expands under
heating so that its radius increases by 2%.
Find the approximate increase in the area of
the plate if the radius of the plate before heating is 10 cm .

D Watch Video Solution

16. The time t of a complete oscillation of a simple pendulum of length l is given by the equation $T=2 \pi \sqrt{\frac{1}{g}}$
where g is constant. What is the percentage error in T when l is increased by 1% ?
17. If $y=x^{4}-10$ and if x changes from 2 to
1.99, what is the approximate change in y ?

Also, find the changed value of y.

D Watch Video Solution

18. If in a triangle $A B C$, the side c and the angle C remain constant, while the remaining elements are changed slightly, using differentials show that $\frac{d a}{c s A}+\frac{d b}{\cos B}=0$
19. Using differentials find the approximate value of $\tan 46^{\circ}$, if it is being given that $1^{0}=0.01745$ radians.

D Watch Video Solution

20. If there is an error of 2% in measuring the
length of simple pendulum, then percentage error in its period is: (a) 1% (b) 2% (c) 3%
(d) 4%
21. If a triangle $A B C i s$ not a right angled traingle abd inscribed in a fixed circle.If A, B, C
be slightly varied then, $\frac{d a}{c a s A}+\frac{d b}{\cos B}=0$.

- Watch Video Solution

22. If an error of $k \%$ is made in measuring
the radius of a sphere, then percentage error in its volume.
k\%
(b) $3 \mathrm{k} \%$
(c) $3 \mathrm{k} \%$
(d) $\frac{k}{3} \%$

- Watch Video Solution

23. If there is an error of $a \%$ in measuring the edge of a cube, then percentage error in its
surface is $2 \mathrm{a} \%$ (b) $\frac{a}{2} \%$ (c) $3 a \%$ (d) none of these
24. While measuring the side of an equilateral triangle an error of $k \%$ is made, the percentage error in its area

- Watch Video Solution

25. The height of a cylinder is equal to the
radius. If an error of $\alpha \%$ is made in the height, then percentage error in its volume is $\alpha \%$ (b) $2 \alpha \%$ (c) $3 \alpha \%$ (d) none of these
26. A sphere of radius 100 mm shrinks to radius 98 mm , then the approximate decrease in its volume is (a) $12000 \pi m m^{3}$
$80000 \pi \mathrm{~mm}^{3}$ (C) $8000 \pi \mathrm{~mm}^{3}$ (d) $120 \pi m \mathrm{~m}^{3}$

D Watch Video Solution

27. If $(\log)_{e} 4-1.3868$, then $(\log)_{e} 4.01=$
1.3968 (b) 1.3898 (c) 1.3893 (d) none of these

D Watch Video Solution

28. Find the percentage error in calculating the volume of a cubical box if an error if 1% is made in measuring the length of edges of the cube.

- Watch Video Solution

29. The approximate value of $(33)^{\frac{1}{5}}$ is

D Watch Video Solution

30. Use differentials to approximate $\sqrt{25.2}$

- Watch Video Solution

31. The circumference of a circle is measured as 28 cm with an error of 0.01 cm . The percentage error in the area is

D Watch Video Solution

32. If $y=x^{4}-10$ and if x changes from 2 to
1.99, what is the approximate change in y ?

Also, find the changed value of y.

D Watch Video Solution

33. A circular metal plate expands under heating so that its radius increases by 2%.

Find the approximate increase in the area of the plate if the radius of the plate before heating is 10 cm .
34. Find the percentage error in calculating the volume of a cubical box if an error of 1% is made in measuring the length of edges of the cube.
(Watch Video Solution
35. The time t of a complete oscillation of a simple pendulum of length l is given by the equation $T=2 \pi \sqrt{\frac{1}{g}}$ where g is constant.

What is the percentage error in T when l is increased by 1% ?

D Watch Video Solution

36. Find the approximate change in the volume V of a cube of side x meters caused by increasing the side by 2%.

D Watch Video Solution
37. If the radius of a sphere is measured as 9
cm with an error of 0.03 cm , then find the approximating error in calculating its volume.

D Watch Video Solution

38. Find the approximate value of $f(3.02)$,
where $f(x)=3 x^{2}+5 x+3$.

D Watch Video Solution
39. Find the approximate volume of metal in a
hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm , respectively.

D Watch Video Solution

40. Use differentials to approximate $\sqrt{25.2}$.

D Watch Video Solution
41. Use differentials to approximate the cube root of 127 .

- Watch Video Solution

42. Use differentials to find the approximate
value of $\sqrt{0.037}$.

- Watch Video Solution

43. Use differentials to find the approximate value of $(\log)_{e}(4.01)$, having given that $(\log)_{e} 4=1.3863$.

D Watch Video Solution

44. Using differentials find the approximate
value of $\tan 46^{\circ}$, if it is being given that $1^{0}=0.01745$ radians.
45. If in a triangle $A B C$, the side c and the angle C remain constant, while the remaining elements are changed slightly, using differentials show that $\frac{d a}{\cos A}+\frac{d b}{\cos B}=0$

- Watch Video Solution

46. If a triangle $A B C$, inscribed in a fixed circle, be slightly varied in such away as to have its vertices always on the circle, then show that
$\frac{d a}{\operatorname{cas} A}+\frac{d b}{\cos B}+\frac{d c}{\cos C}=0$.
47. If $y=\sin x$ and x changes from $\pi / 2$ to
$22 / 14$, what is the approximate change in y ?

- Watch Video Solution

48. The radius of a sphere shrinks from 10 to
9.8 cm . Find approximately the decrease in its
volume.
49. A circular metal plate expands under heating so that its radius increases by $k \%$.

Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm .

- Watch Video Solution

50. Find the percentage error in calculating
the surface area of a cubical box if an error of
1% is made in measuring the lengths of edges of the cube.

- Watch Video Solution

51. If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere.

- Watch Video Solution

52. The pressure p and the volume v of a gas are connected by the relation $p v^{1.4}=$ const.

Find the percentage error in p corresponding to a decrease of $1 / 2 \%$ in v.

D Watch Video Solution

53. The height of a cone increases by $k \%$ its semi-vertical angle remaining the same. What
is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small?

D Watch Video Solution

54. Using differentials, find the approximate value of $\sqrt{25.02}$

- Watch Video Solution

55. Using differentials, find the approximate value of $(0.009)^{1 / 3}$

- Watch Video Solution

56. Using differentials, find the approximate value of $(0.007)^{1 / 3}$

D Watch Video Solution
57. Using differentials, find the approximate
value of $\sqrt{401}$

- Watch Video Solution

58. Using differentials, find the approximate value of $(15)^{1 / 4}$

- Watch Video Solution

59. Using differentials, find the approximate
value of $(255)^{1 / 4}$
(Watch Video Solution
60. Using differentials, find the approximate value of $\frac{1}{(2.002)^{2}}$

- Watch Video Solution

61. Using differentials, find the approximate
value of $(\log)_{e} 4.04$, it being given that

$$
(\log)_{10} 4=0.6021 \text { and }(\log)_{10} e=0.4343
$$

D Watch Video Solution

62. Using differentials, find the approximate value of $(\log)_{e} 10.02$, it being given that $(\log)_{e} 10=2.3026$.

D Watch Video Solution

63. Using differentials, find the approximate
value of $(\log)_{10} 10.1$, it being given that
$(\log)_{10} e=0.4343$.

D Watch Video Solution

64. Find approximate value of $\frac{1}{\sqrt{25.1}}$ using differentials.

- Watch Video Solution

65. Using differentials, find approximate value of $\sin \left(\frac{22}{14}\right)$

- Watch Video Solution

66. Approximate (80) ${ }^{1 / 4}$ using differentials

Watch Video Solution

67. Use differentials and find approximate value of $(29)^{1 / 3}$

- Watch Video Solution

68. Using differentials, find the approximate value of $(66)^{1 / 3}$
69. Using differentials, find the approximate value of $\sqrt{26}$

D Watch Video Solution

70. Using differentials, find the approximate value of $\sqrt{37}$

- Watch Video Solution

71. Using differentials, find the approximate
value of $\sqrt{0.48}$
72. Using differentials, find the approximate value of $(82)^{\frac{1}{4}}$ upto 3 places of decimal.

- Watch Video Solution

73. Use differentials to find the approximate value of $(17)^{\frac{1}{4}}$
74. Using differentials, find the approximate value of $(33)^{1 / 5}$

D Watch Video Solution

75. Using differentials, find the approximate
value of $\sqrt{36.6}$

- Watch Video Solution

76. Using differentials, find the approximate value of $25^{1 / 3}$

D Watch Video Solution
77. Using differentials, find the approximate
value of $\sqrt{49.5}$

D Watch Video Solution
78. Using differentials, find the approximate value of $(3.968)^{3 / 2}$

- Watch Video Solution

79. Using differentials, find the approximate
value of $(1.999)^{5}$

- Watch Video Solution

80. Using differentials, find the approximate value of $\sqrt{0.082}$

- Watch Video Solution

81. Find the approximate value of $f(2.01)$, where $f(x)=4 x^{2}+5 x+2$.

- Watch Video Solution

82. Find the approximate value of $f(5.001)$, where $f(x)=x^{3}-7 x^{2}+15$.

D Watch Video Solution

83. Find the approximate value of $(\log)_{10} 1005$, given that $(\log)_{10} e=0.4343$

D Watch Video Solution

84. If the radius of a sphere is measured as 9 cm with an error or 0.03 m , find the approximate error in calculating its surface area.

- Watch Video Solution

85. Find the approximate change in the
surface area of a cube of side x metres caused by decreasing the side by 1%.
86. If the radius of a sphere is measured as 7 m with an error or 0.02 m , find the approximate error in calculating its volume.

D Watch Video Solution

87. Find the approximate change in the volume of a cube of side x metres caused by increasing the side by 1%.
88. If the relative error in measuring the radius
of a circular plane is α, find the relative error
in measuring its area.

D Watch Video Solution

89. If the percentage error in the radius of a sphere is α, find the percentage error in its
volume.

90. A piece of ice is in the form of a cube melts

so that the percentage error in the edge of cube is a, then find the percentage error in its volume.

D Watch Video Solution

91. If there is an error of 2% in measuring the
length of simple pendulum, then percentage error in its period is: 1% (b) 2% (c) 3% (d) 4%
92. If there is an error of $a \%$ in measuring the edge of a cube, then percentage error in its
surface is (a) $2 \mathrm{a} \%$ (b) $\frac{a}{2} \%$ (c) $3 \mathrm{a} \%$ (d) none of these

D Watch Video Solution

93. If an error of $k \%$ is made in measuring the
radius of a sphere, then percentage error in its volume is (a) $\mathrm{k} \%$ (b) $3 \mathrm{k} \%$ (c) $2 \mathrm{k} \%$ (d) $k / 3 \%$
94. The height of a cylinder is equal to the radius. If an error of $\alpha \%$ is made in the height, then percentage error in its volume is $\alpha \%$ (b) $2 \alpha \%$ (c) $3 \alpha \%$ (d) none of these

D Watch Video Solution

95. While measuring the side of an equilateral triangle an error of $k \%$ is made, the percentage error in its area is $k \%$ (b) $2 k \%$ (c) $\frac{k}{2} \%$ (d) $3 k \%$

- Watch Video Solution

96. If $(\log)_{e} 4=1.3868$, then $(\log)_{e} 4.01=$
(a) 1.3968 (b) 1.3898 (c) 1.3893 (d) none of these

- Watch Video Solution

97. A sphere of radius 100 mm shrinks to radius 98 mm , then the approximate decrease in its volume is $12000 \pi \mathrm{~mm}^{3}$ (b) $800 \pi \mathrm{~mm}^{3}$
(c) $80000 \pi \mathrm{~mm}^{3}$ (d) $120 \pi \mathrm{~mm}^{3}$

Watch Video Solution

98. If the ratio of base radius and height of a cone is 1:2 and percentage error in radius is
$\lambda \%$, then the error in its volume is $\lambda \%$
$2 \lambda \%$ (c) $3 \lambda \%$ (d) none of these

- Watch Video Solution

99. The pressure P and volume V of a gas are connected by the relation $P V^{\frac{1}{4}}=$ constant.

The percentage increase in the pressure
corresponding to a deminition of $\%$ in the volume is $\frac{1}{2} \%$ (b) $\frac{1}{4} \%$ (c) $\frac{1}{8} \%$ (d) none of these

D Watch Video Solution

100. If $y=x^{n}$, then the ratio of relative errors
in yandx is $1: 1$ (b) 2:1 (c) 1:n (d) $\mathrm{n}: 1$

D Watch Video Solution
101. The approximate value of $(33)^{1 / 5}$ is (a)

2.0125 (b) 2.1 (c) 2.01 (d) none of these

D Watch Video Solution

102. The circumference of a circle is measured as 28 cm with an error of 0.01 cm . The percentage error in the area is $\frac{1}{14}$ (b) 0.01 (c) $\frac{1}{7}$ (d) none of these
103. Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius.

D View Text Solution

2. Find the approximate value of $\cos 61 o$ using differentials, it being given that $\sin 60 o=0.86603$ and $1 o=0.01745$ radian
3. Approximate $\cos \left(\frac{11 \pi}{36}\right)$ using differentials.

D View Text Solution

4. For the function $y=x^{2}$, if $x=10$ and $x=0.1$. Find $\triangle y$.
5. If $y=(\log)_{e} x$, then find y when $x=3$ and $x=0.03$.

- View Text Solution

