©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

DIRECTION COSINES AND DIRECTION RATIOS

Solved Examples And Exercises

1. Show that the line through the points $(1,-1,2)$ and
$(3,4-2)$ is perpendicular to the line through the points $(0,3,2)$ and $(3,5,6)$.

- Watch Video Solution

2. Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

- Watch Video Solution

3. Find the acute angle between the lines whose direction ratios are proportional to $2: 3: 6$ and 1:2:2.

- Watch Video Solution

4. Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points $(3,5,-1)$ and $(4,3,-1)$.
5. Find the angle between the lines whose direction ratios are proportional a, b, c and $b-c, c-a, a-b$.

- Watch Video Solution

6. Find the angle between the vectors whose direction cosines are proportional to $2,3,-6$ and $3,-4,5$.

D Watch Video Solution

7. Find the angle between the vectors with direction ratios proportional to $1,-2,1$ and $4,3,2$.
8. Show that the line through points $(4,7,8)$ and $2,3,4)$ is parallel to the line through the points $(-1,-2,1)$ and $(1,2,5)$.

- Watch Video Solution

9. If the coordinates of the points A, B, C, D are $(1,2,3),(4,5,7),(-4,3,-6)$ and $(2,9,2)$, then find the angle between $A B$ and $C D$.

- Watch Video Solution

10. Find the direction cosines of the lines, connected by the relations: $l+m+n=0$ and $2 l m+2 \ln -m n=0$.
11. Find the direction cosines of the two lines which are connected by th relations. $\quad l-5 m+3 n=0 \quad$ and $7 l^{2}+5 m^{2}-3 n^{2}=0$

D Watch Video Solution

12. A line makes angles α, β, γ and δ with the diagonals of a cube, prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$

- Watch Video Solution

13. Show that the straight lines whose direction cosines are

$$
\begin{array}{lcl}
\text { given by } & \text { the } \\
a l+b m+c n=0 a n d _2+z m^{2}=v n^{2}+w n^{2}=0 \quad \text { are }
\end{array}
$$

$\frac{a^{2}}{u}+\frac{b^{2}}{v}+\frac{c^{2}}{w}=0$ or $a^{2}(v+w)+b^{2}(w+u)+c^{2}(u+v)=0$.

D Watch Video Solution

14. If three mutually perpendicular lines have direction cosines
$\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right)$ and $\left(L_{3}, m_{3}, n_{3}\right)$, then the line having direction cosines
$l_{1}+l_{2}+l_{3}, m_{1}+m_{2}+m_{3}$, and $n_{1}+n_{2}+n_{3}$, make an angle of

D Watch Video Solution

15. Find the direction cosines of the sides of the triangle whose vertices are $(3,5,4) \quad, \quad(1,1,2)$ and $(5, \quad 5, \quad 2)$.
16. The x-coordinates of a point on t line joining the points $Q(2,2,1) \operatorname{and} R(5,1,-2) i s 4$. Find its z-coordinate.

- Watch Video Solution

17. Given that $P(3,2,-4), Q(5,4,-6)$ and $R(9,8,-10)$ are collinear. Find the ratio in which Q divide $P R$.

D Watch Video Solution

18. Find the coordinates of the foot of the perpendicular drawn from the point $A(1,2,1)$ to the line joining $B(1,4,6)$ and $C(5,4,4)$.
19. Find the angle between the vectors with direction ratios proportional to $4,-3,5$ and $3,4,5$.

- Watch Video Solution

20. Determine the point in XY-plane which is equidistant from thee points $A(2,0,3), B(0,3,2) \operatorname{and} C(0,0,1)$.

D Watch Video Solution

21. Find the angle between the lines whose direction cosines are given by the equations $3 l+m+5 n=0,6 m m-2 n l+5 l=0$
22. Find the distance between the points $A a n d B$ with position vectors $\hat{i}-\hat{j}$ and $2 \hat{i}+\hat{j}+2 \hat{k}$.

D Watch Video Solution

23. Find the locus of the point which is equidistant from the points $A(0,2,3)$ and $B(2,-2,1)$.

D Watch Video Solution

24. Find the distance between the points $P(-2,4,1)$ and $Q(1,2,5)$.
25. Prove by using distance formula that the points $P(1,2,3),!(-1,-1,-1) \operatorname{and} R(3,5,7)$ are collinear.

- Watch Video Solution

26.

Show
that
the
points
$A(0,1,2), B(2,-1,3) \operatorname{and} C(1,-3,1)$ are vertices of an isosceles right-angled triangle.

- Watch Video Solution

27. Find the coordinates of the point which divides the joint of

$$
\begin{equation*}
P(2,-1,4) a n d q(4,3,2) \text { in the ratio } 2: 3 \text { (i) internally } \tag{ii}
\end{equation*}
$$

externally.
28. Find the ratio in which the line joining the points $(1,2,3)$ and $(-3,4,-5)$ is divided by the $x y$-plane. Also, find the coordinates of the point of division.

- Watch Video Solution

29. The mid-points of the sides of a triangle are $(1,5,-1),(0,4,-2) \operatorname{and}(2,3,4)$. Find its vertices.

- Watch Video Solution

30. Find the coordinates of the foot of the perpendicular drawn from the point $A(1,2,1)$ to the line joining $B(1,4,6)$ and $C(5,4,4)$.
31. Find the angle between the vectors with direction ratios proportional to $4,-3,5 a n d 3,4,5$.

- Watch Video Solution

32. $\mathrm{P}(6, \quad 3, \quad 2), \mathrm{Q}(5, \quad 1, \quad 3) \operatorname{andR}(3, \quad 3, \quad 5)$ are three vertices of a triangle P Q R . Find $\angle \mathrm{P} \mathrm{Q} \mathrm{R}$.

- Watch Video Solution

33. Find the direction cosines of the line which is perpendicular to the lines with direction cosines proportional to $1,-2,-2$ and 0 ,

$$
2,1
$$

34. If $\mathrm{l}_{1},(\backslash \mathrm{~m})_{1},(\backslash \mathrm{n})_{1}(\backslash \text { and } \backslash \mathrm{l})_{2},(\backslash \mathrm{~m})_{2}, \mathrm{n}_{2}$ be the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of them are

$$
\left(\mathrm{m}_{1}(\backslash \mathrm{n})_{2}-\mathrm{m}_{2} \mathrm{n}_{1}\right), \backslash\left(\mathrm{n}_{1} \mathrm{l}_{2}-\mathrm{n}_{2} \mathrm{l}_{1}\right), \backslash\left(\mathrm{l}_{1} \mathrm{~m}_{2}-\mathrm{l}_{2} \mathrm{~m}_{1}\right)
$$

- Watch Video Solution

35. Show that the angle between two diagonals of a cube is $\cos ^{-1} \sqrt{\frac{1}{3}}$.

- Watch Video Solution

36. If a line makes angle 900 , 60 oand 30 owith the positive direction of x, y and z-axis respectively, find its direction cosines.
37. If as line has direction ratios $2,-1,-2$, determine its direction cosines.

- Watch Video Solution

38. Find the direction cosines of the line passing through two points

D Watch Video Solution

39. Using direction ratios show that the points $A(2,3,-4), B(1,-2,3)$ and $C(3,8,-11)$ are collinear.
40. Find the direction cosines of the sides of the triangle whose vertices are $(3,5,-4),(-1,1,1)$ and $(-5,-5,-2)$.

D Watch Video Solution

41. Find the angel between the vectors with direction ratios proportional to $1,-2,1$ and 4, 3, 2 .

- Watch Video Solution

42. Find the acute angle between the lines whose direction ratios are proportional to $2: 3: 6$ and $1: 2: 2$.
43. Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

- Watch Video Solution

44. Show that the line through the points $(4,7,8),(2,3,4)$ is parallel to the line through the points $(1,2,1),(1,2,5)$.

- Watch Video Solution

45. Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points $(3,5,-1)$ and $(4,3,-1)$.

- Watch Video Solution

46. Find the angle between the lines whose direction ratios are proportional a, b, c and $b-c, c-a, a-b$.

- Watch Video Solution

47. If the coordinates of the points
A, B, C, D be $(1,2,3),(4,5,7),(-4,3,-6)$ and $(2,9,2)$
respectively then find the angle between the lines $A B$ and $C D$.

- Watch Video Solution

48. Find the direction cosines of the lines, connected by the relations: $l+m+n=0$ and $2 l m+2 \ln -m n=0$.

- Watch Video Solution

49. Find the angle between the lines whose direction cosine are given by the equation: $\mathrm{l}-\mathrm{m}+\mathrm{n}=0$ and $\mathrm{l}^{2}-\mathrm{m}^{2}-\mathrm{n}^{2}=0$

- Watch Video Solution

50. Find the direction cosines of x, y and z-axis.

- Watch Video Solution

51. Find the direction cosines of x, y and z-axis.

- Watch Video Solution

52. What are the direction cosines of Z-axis?
53. Write the ratio in which YZ plane divides the segment joining

$$
\mathrm{P}(-2, \quad 5, \quad 9) \text { and } \backslash \mathrm{Q}(3, \quad-2, \quad 4)
$$

D Watch Video Solution

54. A line makes an angle of 60° with each of X-axis and Y-axis.

Find the acute angle made by the line with Z-axis.

- Watch Video Solution

55. If a line makes angle alpha, beta \backslash and \backslash gamma with the coordinate axes, find the value of $\cos 2$ alpha $+\cos 2$ beta $+\cos 2$ gamma.
56. Write the angle between the lines whose direction ratios are proportional to $1,-2,1$ and $4,3,2$.

- Watch Video Solution

57. Write the distance of the point from plane.

D Watch Video Solution

58. Find the distance of the point $(2,3,4)$ from the axis.

- Watch Video Solution

59. If a line has direction ratios proportional to $2,-1,-2$, then what are its direction cosines?
60. Write the direction cosines of a line parallel to z-axis.

D Watch Video Solution

61. If a unit vector a makes an angle $\frac{\mathrm{pi}}{3}$ with $\hat{\mathrm{i}}, \quad \frac{\mathrm{pi}}{4}$ with \hat{j} and an acute angle theta with $\widehat{\mathrm{k}}$, then find the value of theta.

D Watch Video Solution

62. For every point $P(x, y, z)$ on the $x y$-plane, a. $x=0$ b. $y=0$
c. $z=0 \mathrm{~d} . x=y=z=0$

- Watch Video Solution

63. If the x-coordinate of a point P on the join of $Q(22,1) \operatorname{and} R(5,1,-2) i s 4$, then find its $z-$ coordinate.

- Watch Video Solution

64. The distance of the point $P(a, b, c)$ from the x -axis is a.
$\sqrt{b^{2}+c^{2}}$ b. $\sqrt{a^{2}+c^{2}}$ c. $\sqrt{a^{2}+b^{2}}$ d. none of these

- Watch Video Solution

65. If O is the origin, $O P=3$ with direction ratios
$-1,2$, and -2 , then find the coordinates of P.

- Watch Video Solution

66. Show that the angle between two diagonals of a cube is $\cos ^{-1} \sqrt{\frac{1}{3}}$.

- Watch Video Solution

67. A line makes angles α, β, γ and δ with the diagonals of a cube, prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$

D Watch Video Solution

Others

1. If a variable line in two adjacent positions has direction cosins
$l, m, n a n d I+\delta l, m+\delta m m, n+\delta n$, show that he small angel
$(\delta \theta)^{2}=(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}$

D View Text Solution

2. Prove that the straight lines whose direction cosines are given
by the relations $a l+b m+c n=0 a n d f m n+g n l+h l m=0$ are perpendicular, if $\frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0$ and parallel, if $a^{2} f^{2}+b^{2} g^{2}+c^{2} h^{2}-2 a b f g-2 b c g h-2 a c h f=0$.

D View Text Solution

3. For every point (x, y, z) on the x - axis (except the origin) a.

$$
\begin{aligned}
& x=0, y=0, z \neq 0 \quad \text { b. } \quad x=0, z=0, y \neq 0 \\
& y=0, z=0, x \neq 0 \text { d. } x=y=z=0
\end{aligned}
$$

c.
4. A rectangular parallelepiped is formed by planes drawn through the points $(5,7,9)$ and $(2,3,7)$ parallel to the coordinate planes the length of an edge of this rectangular parallelepiped is a. 2 b. 3 c. 4 d. all of these

- View Text Solution

5. A parallelepiped is formed by planes drawn through the points $(2,3,5)$ and (5, 9, 7), parallel to the coordinate lanes. The length of a diagonal of the parallelepiped is a. 7 b. $\sqrt{38}$ c. $\sqrt{155} \mathrm{~d}$. none of these
6. The xy-plane divided the line joining thepoints ($-1,3,4$) and (2 ,
$-5,6)$ a. Internally in the ratio 2:3 b. Internally in the ratio 3:2
c. externally in the ratio $2: 3 \mathrm{~d}$. externally in the ratio $3: 2$

D View Text Solution

7. Ratio in which the xy-plane divides the join of $(1,2,3)$ and $(4,2$,
1) is a. 3:1 internally
b. 3:1 externally
c. 1:2 internally
d.

2:1 externally

- View Text Solution

8. $A(3,2,0), B(5,3,2)$ and $C(-9,6,-3)$ are the vertices of t triangle if the bisector of $\angle A B C$ meets then coordinates of are
a. $\left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right) b .\left(-\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right) c .\left(\frac{19}{8},-\frac{57}{16}, \frac{17}{16}\right)$
d. none of these

- View Text Solution

