

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

FUNCTION

Solved Examples And Exercises

1. Find *gofandfog* wehn $f: \overrightarrow{RR}$ and $g: \overrightarrow{RR}$ are defined by f(x) = 2x + 3 and $g(x) = x^2 + 5$ $f(x) = 2x + x^2$ and $g(x) = x^3$ $f(x) = x^2 + 8$ and $g(x) = 3x^3 + 1$ $f(x) = 8x^3$ and $g(x) = x^{1/3}$

Watch Video Solution

2. Let $f = \{(1, -1), (4, -2), (9, -3), (16, 4)\}$ and $g = \{(-1, -2), (02, -4), (-3, -6), (4, 8)\}$. Show that *gof* is

defined while fog is not defined. Also, find gof.

3. Show that if f_1andf_1 are one-one maps from $R \to R$, then the product $f_1xf_2: R\overset{\longrightarrow}{R}$ defined by $(f_1xf_2)(x) = f_1(x)f_2(x)$ need not be one-one.

Watch Video Solution

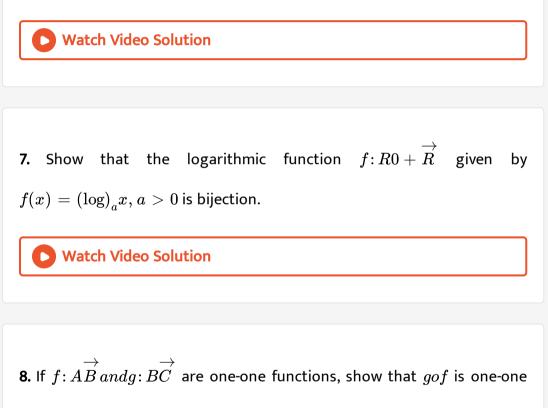
4. Give examples of two surjective function f_1andf_2 from Z o Z such that f_1+f_2 is not surjective.

Watch Video Solution

5. Given examples of two one-one functions f_1andf_2 from R to R such that $f_1+f_2\colon R\overrightarrow{R},$ defined by $(f_1+f_2)(x)=f_1(x)+f_2(x)$ is not one-

one.

6. If $f: A \to B$ and $g: B \to C$ are onto functions show that gof is an onto function.



function.

9. If $f : R \overset{\longrightarrow}{R}$ be the function defined by $f(x) = 4x^3 + 7,\,$ show that f is a

bijection.

10. Let $A=\{1,2,3\}$. Write all one-one from A to itself.

Watch Video Solution

11. Show that $f : R \overset{\longrightarrow}{R}$, given by f(x) = x - [x], is neither one-one nor

onto.

Watch Video Solution

12. Suppose f_1andf_2 are non=zero one-one functions from $R \to R$ is $\frac{f_1}{f_2}$ necessarily one-one? Justify your answer. Here, $\frac{f_1}{f_2}: R \stackrel{\longrightarrow}{R}$ is given by $\left(\frac{f_1}{f_2}\right)(x) = \frac{f_1(x)}{f_2(x)}$ for all xR. **13.** Let $f = \{(3, 1), (9, 3), (12, 4)\}$ and $= \{(1, 3), (3, 3), (4, 9), (4,$

 $(5, \ 9)\}$. Show that gof and fog are both defined. Also, find fog and $gof \cdot$

Watch Video Solution

14. Find fog(2) and gof(1) when: $f\!:\!R o R; f(x)=x^2+8$ and $g\!:\!R o R; g(x)=3x^3+1.$

Watch Video Solution

15. Let $f: R\overrightarrow{R}$ and $g: R\overrightarrow{R}$ be defined by $f(x) = x^2$ and g(x) = x + 1. Show that $fog \neq gof$.

16. Let R^+ be the set of all non-negative real numbers. if $f: R^+ \to R^+$ and $g: R^+ \to R^+$ are defined as $f(x) = x^2$ and $g(x) = +\sqrt{x}$. Find fog and gof. Are they equal functions.

Watch Video Solution

17. Verify assolativity for the following three mappings : $f: N\overrightarrow{Z}_0$ (the set of non zero integers), $g: Z_0\overrightarrow{Z}$ and $h: Q\overrightarrow{R}$ given by $f(x) = 2x, g(x) = \frac{1}{x}$ and $h(x) = e^x$.

Watch Video Solution

18. Let $f\!:\!R o R$ and $g\!:\!R o R$ be defined by f(x)=x+1 and

$$g(x)=x-1.$$
 Show that $fog=gof=I_{R^{ ext{-}}}$

19. Show that the exponential function $f: R\overrightarrow{R}$, given by $f(x) = e^x$, is one-one but not onto. What happens if the co-domain is replaced by R_0^+ (set of all positive real numbers).

20. Let
$$A=\{-1,0,1)andf=ig\{(x,x^2)\!:\!xAig\}$$
. Show that $f\!:\!A\overrightarrow{A'}$ is

neither one-one nor onto.

Watch Video Solution

21. If $f: A\overset{\longrightarrow}{B}$ is an injection such that range of $f = \{a\}$. Determine the

number of elements in A.

22. Which of the following functions from $A \rightarrow B$ are one-one and onto? $f_1 = \{(1, 3), (2, 5), (3, 7)\}; A = \{1, 2, 3\}, B = \{3, 5, 7\}$ $f_2 = \{(2, a), (3, b), (4, c)\}; A = \{2, 3, 4\}, B = \{a, b, c\}$ $f_3 = \{(a, x), (b, x), (c, z), (d, z)\}; A = \{a, b, c, d\}, B = \{x, y, z\}$

Watch Video Solution

23. Prove that the function $F\!:\!N\!\stackrel{\longrightarrow}{N},$ defined by $f(x)=x^2+x+1$ is

one-one but not onto.

Watch Video Solution

24. Let A be any non-empty set. Then, prove that the identity function on

set A is a bijection.

25. Let A=R-[2] and B=R-[1]. If $f:A\overrightarrow{B}$ is a mapping defined by $f(x)=rac{x-1}{x-2}$, show that f is bijective.

Watch Video Solution

26. Show that if f_1andf_1 are one-one maps from $R \to R$, then the product $f_1xf_2: R\overset{\longrightarrow}{R}$ defined by $(f_1xf_2)(x) = f_1(x)f_2(x)$ need not be one-one.

Watch Video Solution

27. Given examples of two one-one functions f_1andf_2 from R to R such that $f_1+f_2:R\overrightarrow{R}$, defined by $(f_1+f_2)(x)=f_1(x)+f_2(x)$ is not one-one.

28. If $f, g: R\overrightarrow{R}$ are defined respectively by $f(x) = x^2 + 3x + 1, g(x) = 2x - 3, \text{ find fog (ii) gof (iii) fof (iv) gog.}$ Watch Video Solution 29. If the function $f: R\overrightarrow{R}$ be given by $f(x) = x^2 + 2andg: R\overrightarrow{R}$ be given

by $g(x)=rac{x}{x-1}$. Find fogandgof .

Watch Video Solution

30.	lf	the	function	fandg	are	given	by
$f = \{$	(1, 2),	(3, 5), (4,	$,1)\}andg=($	(2,3), (5,1)	$,(1,3)\},$	find range	e of

fandg . Also, write down fogandgof as sets of ordered pairs.

31. Suppose $f_1 and f_2$ are non=zero one-one functions from $R \to R$ is $\frac{f_1}{f_2}$ necessarily one-one? Justify your answer. Here, $\frac{f_1}{f_2} : R\overrightarrow{R}$ is given by $\left(\frac{f_1}{f_2}\right)(x) = \frac{f_1(x)}{f_2(x)}$ for all xR. Watch Video Solution

32. Find whether the following functions are one-one or not:

$$f: R \overrightarrow{g} ivenby f(x) = x^3 + 2f$$
 or $all x \in R$.
 $f: Z \overrightarrow{Z} given by f(x) = x^2 + 1f$ or $all x \in Z$.
Vatch Video Solution

33. If the function f and g are given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(2, 3), (5, 1), (1, 3)\}$, find range of f and g. Also write down *fog* and *gof* as set of ordered pairs.

$$f(x)=x^3+2$$
for all $x\in R$:

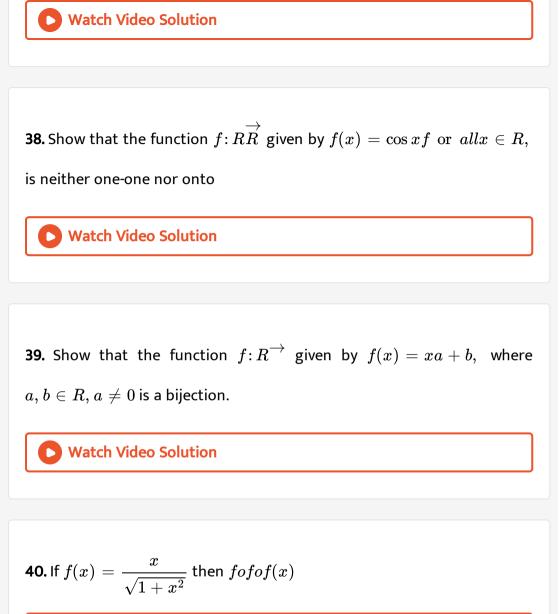
35. Show that the function $f: Z\overline{Z}$ defined by $f(x) = x^2 + x$ for all

 $x\in Z, ext{ is a many one function.}$

Watch Video Solution

36. Let A be the set of all 50 students of class XII in a central school. Let $f: A \overset{\longrightarrow}{N}$ be a function defined by $f(x) = Rol \ln umberof studentx$ Show that f is one-one but not onto

37. Show that the function $f: R \overrightarrow{R}$ defined by $f(x) = 3x^3 + 5$ for all $x \in R$ is a bijection.



41. If
$$f(x)=rac{3x-2}{2x-3}, ext{ prove that } f(f(x)))=x ext{ for all } x\in R-\left\{rac{3}{2}
ight\}.$$

42. Show that $f: R\overrightarrow{R}$, given by f(x) = x - [x], is neither one-one nor

onto.

Watch Video Solution

43. Let $f \colon R \overset{\longrightarrow}{R}$ be a function given by f(x) = ax + b for all $x \in R$. Find

the constants a and b such that $fof = I_{R^{\cdot}}$

Watch Video Solution

44. If $f(x)=e^x$ and $g(x)=(\log)_e x(x>0),$ find fogandgof. Is

fog = gof?

$$f\!:\!R o R\, ext{ and }g\!:\!R o Rdef\in edbyf(x)=x2 ext{ and }g(x)=(x+1).$$

Show that gof = fog.

Watch Video Solution

46. Let
$$f$$
 and g be real functions defined by
 $f(x) = \frac{x}{x+1} andg(x) = \frac{x}{1-3}$.
Then $(fog)^{-1}(x) = (1)x(2)2x(3)3x(4)4x$

Watch Video Solution

47. If $f(x) = \sqrt{x}(x > 0)$ and $g(x) = x^2 - 1$ are two real functions, find fog and gof is fog = gof?

48. Let $f \colon N - [1] \overset{
ightarrow}{N}$ be defined by, $f(x) = ext{ the highest prime factor of } n$.

Show that f is neither one-one nor onto. Find the range of f_{\cdot}

49. If $f: R^{\longrightarrow}$ is defined by f(x) = 3x - 5 Prove that f is a bijection. Also, find the inverse of f.

Watch Video Solution

50. If
$$f:\left(-\frac{\pi}{2},\frac{\pi}{2}
ight) o R$$
 and $g:[-1,1] o R$ be defined as $f(x)= an x$ and $g(x)=\sqrt{1-x^2}$ respectively. Describe fog and gof

Watch Video Solution

51.

$$f(x)=\sin^2 x+\sin^2\Bigl(x+rac{\pi}{3}\Bigr)+\cos x \cos\Bigl(x+rac{\pi}{3}\Bigr) andgiggl(rac{5}{4}iggr)=1,$$

If

52. Let
$$f,g:R\overrightarrow{R}$$
 be a two function defined as $f(x)=|x|+x$ and $g(x)=|x|-x$ for all $x\in R$. Then, find fog and gof

53. Let
$$A=\{a,b,c,d\}$$
 and $f\!:\!A o A$ be given by $f=\{(a,b),(b,d),(c,a),(d,c)\}$, write f^{-1}

54. Let $f = \{(3, 1), (9, 3), (12, 4)\}$ and $g = \{(1, 3), (3, 3), (4, 9), (5, 9)\}$.

Show that gofand fog are both defined. Also, find fogand gof.

55. If
$$F:[1,\infty)\overrightarrow{2,\infty}$$
 is given by $f(x)=x+\frac{1}{x}, then f^{-1}(x)$ equals. $\frac{x+\sqrt{x^2-4}}{2}$ (b) $\frac{x}{1+x^2}$ (c) $\frac{x-\sqrt{x^2-4}}{2}$ (d) $1+\sqrt{x^2-4}$

56. Let $f\colon R o R$ and $g\colon R o R$ be two functions such that $fog(x)=\sin x^2 andgof(x)=\sin^2 x$ Then, find f(x)andg(x).

Watch Video Solution

57. Let R be the set of real numbes. If $f:R\overrightarrow{R}; f(x) = x^2$ and $g:R\overrightarrow{R}; g(x) = 2x + 1$. Then, find fogandgof . Also, show that $fog \neq gof$.

58. If
$$f(x) = -4 - \left(x - 7
ight)^3$$
 , write $f^{-1}(x)$.

59. If $f: \{5, 6\} \overrightarrow{2, 3} and g: \{2, 3\} \overrightarrow{5, 6}$ are given by $f = \{(5, 2), (6, 3)\}$ and $g = \{(2, 5), (3, 6)\}$, find fog.

Watch Video Solution

60. If a function $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is described by g(x)=lpha x+eta, find the values of lpha andeta.

Watch Video Solution

61. Show that $f: R - [0] \overrightarrow{R} 0[0]$ given by $f(x) = \frac{3}{x}$ is invertible and it is inverse of itself.

62. Let $A = \{1, 2, ..., n\}$ and $B = \{a, b\}$. Then number of surjections from A into B is nP2 (b) $2^n - 2$ (c) $2^n - 1$ (d) nC2

Watch Video Solution

63. If
$$f: R \rightarrow 1, 1$$
 is defined by $f(x) = -\frac{x|x|}{1+x^2}$, $then f^{-1}(x)$ equals $\sqrt{\frac{|x|}{1-|x|}}$ (b) $-sgn(x)\sqrt{\frac{|x|}{1-|x|}} - \sqrt{\frac{x}{1-x}}$ (d) none of these

Watch Video Solution

64. Let $f: Z\overline{Z}$ be defined by f(n) = 3n for all $n \in Z$ and $g: Z^{\rightarrow}$ be defined by

$$f(n)=igg\{rac{n}{3}, ext{ if } nisa \mu ltiple of 30, ext{ if } nis
eg \mu ltiple of 3f ext{ or } al \ln \in Z_{2} igg\}$$

Show that $gof = I_Z$ and $fog
eq I_Z$

65. Let $A=\{x\in R: 0\leq x\leq 1\}$. If $f:A\overrightarrow{A}$ is defined by $f(x)=\{x, ext{ if } xQ1-x, ext{ if } xQ$ then prove that fof(x)=x for all $x\in A$.

66. Let A = [-1, 1]. Then, discuss whether the following functions from A to itself are one-one onto or bijective: $f(x) = \frac{x}{2}$ (ii) g(x) = |x| (iii) $h(x) = x^2$

Watch Video Solution

67. Let R be a relation on the set A of ordered pairs of positive integers defined by (x, y) R (u, v) if and only if xv = yu. Show that R is an equivalence relation.

68. Let A be a finite set. If $f: A \stackrel{\longrightarrow}{A}$ is an onto function, show that f is one-

one also.

69. Show that the function $f: R-\{3\} o R-\{1\}$ given by $f(x)=rac{x-2}{x-3}$ is bijection.

Watch Video Solution

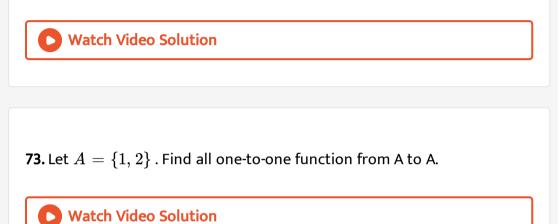
70. Show that the function $f \colon R^{\longrightarrow}$ given by $f(x) = x^3 + x$ is a bijection.

Watch Video Solution

71. Let $f: N \cup \{0\} \stackrel{\longrightarrow}{N} \cup \{0\}$ be defined by $f\{n+1, \text{ if } n \text{ is even n-1,if n}$ is odd Show that f is a bijection.

72. Let $f \colon N - [1] \overset{\longrightarrow}{N}$ be defined by, $f(n) = ext{ the highest prime factor of } n$.

Show that f is neither one-one nor onto. Find the range of f.



74. Let
$$f\colon R^{
ightarrow}$$
 and g : RvecR $bedef\in ed+1andg(x)=x-1.$ Show that $fog=gof=I_{R^{
ightarrow}}$

Watch Video Solution

75. Verify assolativity for the following three mappings : $f: NZ_0^{\rightarrow}$ (the set of non zero integers), $g: Z_0 \overrightarrow{Z}$ and $h: Q\overrightarrow{R}$ given by

$$f(x)=2x, g(x)=rac{1}{x}$$
 and $h(x)=e^x.$

76. If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is (a)720 (b)

120 (c) 0 (d) none of these

77. If the set A contains 7 elements and the set B contains 10 elements,

then the number of one-one functions from A to B is

Watch Video Solution

78. $f: R \to R$ is defined by $f(x) = \frac{e^x \hat{2} - e^{-x} \hat{2}}{e^x \hat{2} + e^{-x} \hat{2}}$ is (a) one-one but not onto (b) many-one but onto (c) one-one and onto (d) neither one-one

nor onto

79. The inverse of the function
$$f: Rx \in R: x < 1$$
 given by $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$, is $\frac{1}{2} \frac{\log(1+x)}{1-x}$ (b) $\frac{1}{2} \frac{\log(2+x)}{2-x} \frac{1}{2} \frac{\log(1-x)}{1+x}$ (d) None of these

80. Let $A = \{1, 2, 3\}$. Write all one-one from A to itself.

81. If $f : R \overset{\longrightarrow}{R}$ be the function defined by $f(x) = 4x^3 + 7$, show that f is a

bijection.

82. If the function
$$f: [1, \infty) \to [1, \infty)$$
 is defined by $f(x) = 2^{x(x-1)}$,
then $f^{-1}(x)$ is (A) $\left(\frac{1}{2}\right)^{x(x-1)}$ (B) $\frac{1}{2}\sqrt{1+4\log_2 x}$ (C) $\frac{1}{2}\left(1-\sqrt{1+4\log_2 x}\right)$ (D) not defined
Watch Video Solution

83. The value of parameter
$$lpha$$
, for which the function $f(x)=1+lpha x, lpha
eq 0$ is the inverse of itself

84. Let R^+ be the set of all non-negative real numbers. if $f: R^+ \to R^+$ and $g: R^+ \to R^+$ are defined as $f(x) = x^2$ and $g(x) = +\sqrt{x}$. Find fog and gof. Are they equal functions.

85. Show that the function $f\!:\!R o R$ is given by $f(x)=1+x^2$ is not

invertible.

86. If $f: R \rightarrow 1, 1$ defined by $f(x) = \frac{10^x - 10^{-x}}{10^x + 10^{-x}}$ is invertible, find f^{-1}

Watch Video Solution

87. Let
$$f: [-1, \infty] \xrightarrow{-1}$$
, is given by $f(x) = (x+1)^2 - 1, x \ge -1$.
Show that f is invertible. Also, find the set $S = \{x: f(x) = f^{-1}(x)\}$.

Watch Video Solution

88. Let $f: N\overrightarrow{S}$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: N\overrightarrow{S}$, where S is the range of f, is invertible. Also find the inverse of f

89. Let $A = R - \{3\}$ and B = R - [1]. Consider the function $f: A\overrightarrow{B}$ defined by $f(x) = \left(\frac{x-2}{x-3}\right)$. Show that f is one-one and onto and hence find f^{-1}

Watch Video Solution

90. Let $f, g : \stackrel{\longrightarrow}{R}$ be defined by f(x) = 2x + 1 and $g(x) = x^2 - 2$ for all

 $x \in R, \; {
m respectively}.$ Then, find gof

Watch Video Solution

91. Let A and B be any two sets such that n(B)=P, n(A)=q then the total number of functions f: $A \rightarrow B$ is equal to

92. If $f\!:\!A o A,g\!:\!A o A$ are two bijections, then prove that fog is an

injection (ii) fog is a surjection.

93. Let $f\colon Z o Z$ be defined by f(x)=x+2. Find $g\colon Z o Z$ such that

 $gof = I_Z$.

Watch Video Solution

94. Which one the following relations on $A = \{1, 2, 3\}$ is function? $f = \{(1, 3), (2, 3), (3, 2), g = \{(1, 2), (1, 23), (3, 1)\}$

Watch Video Solution

95. Write the domain of the real function f defined by $f(x) = \sqrt{25 - x^2}$

96. Let A $\}x: -1 \le x \le 1$ $\}andf: A^{\rightarrow}$ such that f(x) = x|x|, then f is a bijection (b) injective but not surjective Surjective but not injective (d) neither injective nor surjective

97. If the function
$$f: (1, \infty) \to (1, \infty)$$
 is defined by
 $f(x) = 2^{x(x-1)}, then f^{-1}(x)$ is
 $(a) \left(\frac{1}{2}\right)^{x(x-1)}$
(b) $\frac{1}{2} \left(1 + \sqrt{1 + 4(\log)_2 x}\right)$
 $(c) \frac{1}{2} \left(1 - \sqrt{1 + (\log)_2 x}\right)$

(d) not defined

98. If $f(x) = \frac{x-1}{x+1}, x \neq -1$, then show that $f(f(x)) = -\frac{1}{x}$ provided that $x \neq 0, 1$.

Watch Video Solution

99. Let f be a real function defined by $f(x) = \sqrt{x-1.}$ Find (fof of)(x).

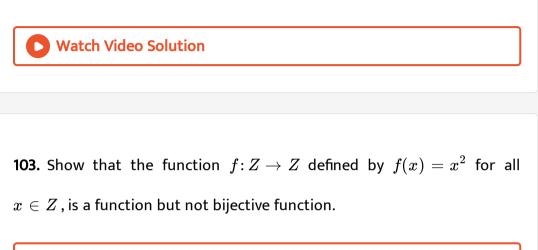
Also, show that $fof
eq f^2$.

Watch Video Solution

100. Let $f\colon R o R$ be the function defined by f(x)=4x-3 for all $x\in R.$ Then write $f^{-1}.$

Watch Video Solution

101. Find whether $f\!:\!R o R$ given by $f(x)=x^3+2$ for all $x\in R$.



104. Discuss the surjectivity of $f\!:\!R o R$ given by $f(x)=x^3+2$ for all

 $x \in R$

Watch Video Solution

105. Discuss the surjectivity of $f\!:\!R o R$ given by $f(x)=x^2+2$ for all

 $x \in R$

106. Discuss the surjectivity of $f\colon Z o Z$ given by f(x)=3x+2 for all $x\in Z$.

Watch Video Solution

107. Show that the function $f\!:\!N o N$ given by f(1)=f(2)=1 and

f(x) = x - 1 for every $x \ge 2$, is onto but not one-one.

Watch Video Solution

108. Show that the Signum function
$$f: R \to R$$
, given by $f(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$ is neither one-one nor onto

109. Prove that the function $f\!:\!Q o Q$ given by f(x)=2x-3 for all

 $x \in Q$ is a bijection.

110. Show that the function $f\!:\!R o R$ defined by $f(x)=3x^3+5$ for all

 $x \in R$ is a bijection.

Watch Video Solution

111. Let $A = \{x \in R: -1 \le x \le 1\} = B$. Then, the mapping $f: A \to B$ given by f(x) = x|x| is (a) injective but not surjective (b) surjective but not injective (c) bijective (d) none of these

112. Let A be the set of all 50 students of class XII in a central school. Let $f: A \to N$ be a function defined by f(x) = Roll number of student xShow that f is one-one but not onto.

113. Show that the function $f\colon N o N$, given by f(x)=2x , is one-one

but not onto.

Watch Video Solution

114. Prove that $f\colon R o R$, given by f(x)=2x , is one-one and onto.

> Watch Video Solution

115. Show that the function $f\colon R o R$, defined as $f(x)=x^2$, is neither

one-one nor onto.

116. Show that $f\colon R o R$, defined as $f(x)=x^3$, is a bijection.

Watch Video Solution

117. Show that the function $f\colon R_0 o R_0$, defined as $f(x)=rac{1}{x}$, is oneone onto, where R_0 is the set of all non-zero real numbers. Is the result true, if the domain R_0 is replaced by N with co-domain being same as R_0

Watch Video Solution

?

118. Prove that the greatest integer function $f: R \to R$, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.

119. Show that the modulus function $f\!:\!R o R$, given by f(x)=|x| is

neither one-one nor onto.

120. Let C be the set of complex numbers. Prove that the mapping $F:C \to R$ given by $f(z) = |z|, \ \forall z \in C,$ is neither one-one nor onto.

Watch Video Solution

121. Show that the function $f: R^{\longrightarrow}$ given by f(x) = xa + b, where $a, b \in R, a \neq 0$ is a bijection.

D Watch Video Solution

122. Show that the function $f\colon R o R$ given by $f(x) = \cos x$ for all

 $x \in R$, is neither one-one nor onto.

123. Let $A=R-\{2\}$ and $B=R-\{1\}$. If $f\colon A o B$ is a mapping defined by $f(x)=rac{x-1}{x-2}$, show that f is bijective.

Watch Video Solution

124. Let A and B be two sets. Show that $f \colon A imes B o B imes A$ defined by

f(a, b) = (b, a) is a bijection.

Watch Video Solution

125. Let A be any non-empty set. Then, prove that the identity function on

set A is a bijection.

126. Let $f\colon N-\{1\} o N$ be defined by, $f(n)= ext{ the highest prime factor }$

of n . Show that f is neither one-one nor onto. Find the range of f .

127. Let $A = \{1,2\}$. Find all one-to-one function from A to A.

128. Consider the identity function $I_N\colon N o N$ defined as, $I_N(x)=x$ for

all $x \in N$. Show that although I_N is onto but $I_N + I_N \colon N o N$ defined

as $(I_N+I_N)(x)=I_N(x)+I_N(x)=x+x=2x$ is not onto.

Watch Video Solution

129. Consider a function $f: \left[0, \frac{\pi}{2}\right] \to R$ given by $f(x) = \sin x$ and $g: \left[0, \frac{\pi}{2}\right] \to R$ given by $g(x) = \cos x$. Show that f

and g are one-one, but f + g is not one-one.

130. Let $f: X \to Y$ be a function. Define a relation R in X given by $R = \{(a, b): f(a) = f(b)\}$. Examine whether R is an equivalence relation or not.

Watch Video Solution

131. Show that the function $f\!:\!R o R$ given by $f(x)=x^3+x$ is a

bijection.

132. Show that
$$f:n \to N$$
 defined by $f(n) = \left\{ \left(\left(\frac{n+1}{2}, (\text{ if } nisodd) \right), \left(\frac{n}{2}, (\text{ if } niseven) \right) \text{ is many } - \text{ one onto function} \right\}$

133. Show that the function $f\!:\!N o N$ given by, $f(n)=n-(\,-1)^n$ for

all $n \in N$ is a bijection.

Watch Video Solution

134. Let $f: N \cup \{0\} o N \cup \{0\}$ be defined by $f(n) = \{n+1, ext{ if } n ext{ is even } \cap -1, ext{ if } n ext{ is odd } ext{Show that } f ext{ is a himstice}$

bijection.

Watch Video Solution

135. Let A be a finite set. If $f\colon A o A$ is a one-one function, show that f is onto also.

136. Let A be a finite set. If $f \colon A o A$ is an onto function, show that f is

one-one also.

Watch Video Solution

137. Give an example of a function which is one-one but not onto. which is not one-one but onto. (iii) which is neither one-one nor onto.

Watch Video Solution

138. Which of the following functions from A to B are one-one and onto? $f_1 = \{(1, 3), (2, 5), (3, 7)\}; A = \{1, 2, 3\}, B = \{3, 5, 7\}$ (ii) $f_2 = \{(2, a), (3, b), (4, c)\}; A = \{2, 3, 4\}, B = \{a, b, c\}$ (iii) $f_3 = \{(a, x), (b, x), (c, z), (d, z)\}; A = \{a, b, c, d\}, B = \{x, y, z\}$

139. Prove that the function $f\colon N o N$, defined by $f(x)=x^2+x+1$ is

one-one but not onto.

140. Let $A=\{-1,\ 0,\ 1\}$ and $f=ig\{(x,\ x^2)\!:\!x\in Aig\}$. Show that $f\!:\!A o A$ is neither one-one nor onto.

Watch Video Solution

141. Classify $f\colon N o N$ given by $f(x)=x^2$ as injection, surjection or

bijection.

Watch Video Solution

142. Classify $f\colon Z o Z$ given by $f(x)=x^2$ as injection, surjection or

bijection.

143. Classify f:N o N given by $f(x)=x^3$ as injection, surjection or bijection.

Watch Video Solution

144. Classify $f\!:\!Z o Z$ given by $f(x)=x^3$ as injection, surjection or

bijection.

Watch Video Solution

145. Classify $f\colon R o R$, defined by f(x)=|x| as injection, surjection or

bijection.

146. Classify $f\colon\! Z o Z$, defined by $f(x)=x^2+x$ as injection, surjection

or bijection.

147. Classify $f\colon Z o Z$, defined by f(x)=x-5 as injection, surjection or bijection.

Watch Video Solution

148. Classify $f\colon R o R$, defined by $f(x)=\sin x$ as injection, surjection

or bijection.

Watch Video Solution

149. Classify $f\colon R o R$, defined by $f(x)=x^3+1$ as injection, surjection

or bijection.

150. Classify $f\colon R o R$, defined by $f(x)=x^3-x$ as injection, surjection or bijection.

Watch Video Solution

151. Classify $f\!:\!R o R$, defined by $f(x)=\sin^2x+\cos^2x$ as injection,

surjection or bijection.

Watch Video Solution

152. Classify $f \colon Q - \{3\} o Q$, defined by $f(x) = \frac{2x+3}{x-3}$ as injection, surjection or bijection.

153. Classify $f \colon Q o Q$, defined by $f(x) = x^3 + 1$ as injection, surjection

or bijection.

154. Classify $f\!:\!R o R$, defined by $f(x)=5x^3+4$ as injection, surjection or bijection.

Watch Video Solution

155. Classify $f\!:\!R o R$, defined by f(x)=3-4x as injection, surjection

or bijection.

Watch Video Solution

156. Classify $f\!:\!R o R$, defined by $f(x)=1+x^2$ as injection, surjection

or bijection.

157. Classify $f\!:\!R o R$, defined by $f(x)=rac{x}{x^2+1}$ as injection, surjection or bijection.

Watch Video Solution

158. If $f\colon A o B$ is an injection such that range of $f=\{a\}$. Determine

the number of elements in \boldsymbol{A} .

Watch Video Solution

159. Show that the function $f\colon R-\{3\} o R-\{1\}$ given by $f(x)=rac{x-2}{x-3}$ is a bijection.

160. Let A = [-1, 1] . Then, discuss whether the following functions from A to itself are one-one, onto or bijective: $f(x) = \frac{x}{2}$ (ii) g(x) = |x| (iii) $h(x) = x^2$

Watch Video Solution

161. Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective: $\{(x, y) : x \text{ is a person}, y \text{ is the mother of } x\}$ (ii) $\{(a, b) : a \text{ is a person}, b \text{ is an ancestor of } a\}$

162. Let $A = \{1, 2, 3\}$. Write all one-one from A to itself.

163. If $f\!:\!R o R$ be the function defined by $f(x)=4x^3+7$, show that

f is a bijection.

164. Show that the exponential function $f\colon R o R$, given by $f(x)=e^x$, is one-one but not onto. What happens if the co-domain is replaced by R^+ (set of all positive real numbers).

Watch Video Solution

165. Show that the logarithmic function $f: R0 \pm > R$ given by $f(x) = (\log)_a x, \ a > 0$ is a bijection.

Watch Video Solution

166. Show that a one-one function $f \colon \{1,2,3\} o \{1,2,3\}$ must be onto.

167. If $A=\{1,\ 2,\ 3\}$, show that an onto function $f\colon A o A$ must be

one-one

Watch Video Solution

168. Find the number of all onto functions from the set $A = \{1, 2, 3, , n\}$ to itself.

Watch Video Solution

169. Give examples of two one-one functions f_1 and f_2 from R to R such that $f_1+f_2\colon R o R$, defined by $(f_1+f_2)(x)=f_1(x)+f_2(x)$ is not one-one.

170. Give examples of two surjective function f_1 and f_2 from Z to Z such that $f_1 + f_2$ is not surjective.

171. Show that if f_1 and f_2 are one-one maps from R to R , then the product $f_1 imes f_2\colon R o R$ defined by $(f_1 imes f_2)(x)=f_1(x)f_2(x)$ need not be one-one.

Watch Video Solution

172. Suppose f_1 and f_2 are non-zero one-one functions from R to R . Is

 $rac{f_1}{f_2}$ necessarily one-one? Justify your answer. Here, $rac{f_1}{f_2}: R o R$ is given by $igg(rac{f_1}{f_2}igg)(x) = rac{f_1(x)}{f_2(x)}$ for all $x \in R$.

173. Given $A=\{2,\ 3,\ 4\}$, $B=\{2,\ 5,\ 6,\ 7\}$. Construct an example of an injective map from A to B .

174. Given $A=\{2,\;3,\;4\}$, $B=\{2,\;5,\;6,\;7\}$. Construct an example of a

mapping from A to B which is not injective

Watch Video Solution

175. Given $A=\{2,\;3,\;4\}$, $B=\{2,\;5,\;6,\;7\}$. Construct an example of a

mapping from A to B.

Watch Video Solution

176. Show that $f\!:\!R o R$, given by f(x)=x-[x] , is neither one-one

nor onto.

177. Let f:N o N be defined by: $f(n) = \{n+1, ext{ if } n ext{ is odd} n-1, ext{ if } n ext{ is even Show that } f ext{ is a}$

bijection.

Watch Video Solution

178. Let R be the set of real numbers. If $f\colon R o R\colon f(x)=x^2$ and $g\colon R o R;\,g(x)=2x+1.$ Then, find fog and gof . Also, show that fog
eq gof.

Watch Video Solution

179. Let :R o R ; $f(x) = \sin x$ and g : R o R ; $g(x) = x^2$ find fog and

gof .

180. Let $f: \{2, 3, 4, 5\} \xrightarrow{3, 4, 5, 9} andg: \{3, 4, 5, 9\} \xrightarrow{7, 11, 15}$ be functions

$$f(2)=3, f(3)=4, f(4)=f(5)=5, g(3)=g(4)=7, and g(5)=g(9)=$$

at

Watch Video Solution

181. Let $f: \{1, 3, 4\} \to \{1, 2, 5\}$ and $g: \{1, 2, 5\} \to \{1, 3\}$ be given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(1, 3), (2, 3), (5, 1)\}$. Write down gof.

Watch Video Solution

182. Find gof and fog , if $f\!:\!R o R$ and $g\!:\!R o R$ are given by f(x)=|x| and g(x)=|5x-2| .

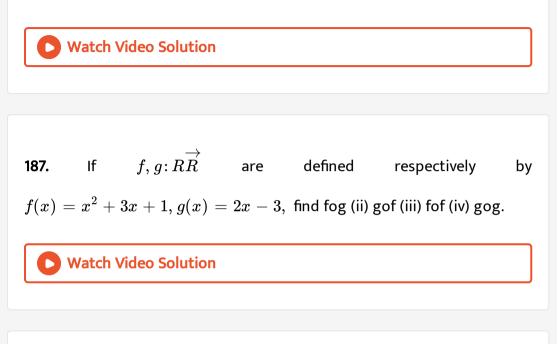
183. If the functions f and g are given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(2, 3), (5, 1), (1, 3)\}$, find range of f and g. Also, write down *fog* and *gof* as sets of ordered pairs.

184. If the function $f\colon R o R$ be given by $f(x)=x^2+2$ and $g\colon R o R$ be given by $g(x)=rac{x}{x-1}$. Find fog and gof .

Watch Video Solution

185. If
$$f: R - \left\{\frac{7}{5}\right\} \to R - \left\{\frac{3}{5}\right\}$$
 be defined as $f(x) = \frac{3x+4}{5x-7}$ and $g: R - \left\{\frac{3}{5}\right\} \to R - \left\{\frac{7}{5}\right\}$ be defined as $g(x) = \frac{7x+4}{5x-3}$. Show that $gof = I_A$ and $fog = I_B$, where $B = R - \left\{\frac{3}{5}\right\}$ and $A = R - \left\{\frac{7}{5}\right\}$.

186. If $f \colon R o R$ is defined by $f(x) = x^2 - 3x + 2$, find f(f(x)).



188. Let $f\colon Z o Z$ be defined by f(x)=x+2. Find $g\colon Z o Z$ such that

$$gof = I_Z$$
.

Watch Video Solution

189. If $f\colon Z o Z$ be defined by f(x)=2x for all $x\in Z$. Find $g\colon Z o Z$ such that $qof=I_Z$.

190. Let f, g and h be functions from R to R . Show that (f+g)oh=foh+goh

191. Let f, g and h be functions from R to R . Show that (fg)oh = (foh)(goh)

Watch Video Solution

192. Let $f: R \to R$ be the signum function defined as $f(x) = \{1, x > 0, 0, x = 0, -1, x < 0 \text{ and } g: R \to R$ be the greatest integer function given by g(x) = [x]. Then, prove that fog and gof coincide in (0, 1].

193. Let $A=\{x\in R\colon 0\leq x\leq 1\}$. If $f\colon A\overrightarrow{A}$ is defined by $f(x)=\{x, ext{ if } xQ1-x, ext{ if } xQ$ then prove that fof(x)=x for all $x\in A$.

Watch Video Solution

194. Let $f: R\overrightarrow{R}$ and $g: \overrightarrow{R}$ be two functions such that $fog(x) = \sin x^2 andgof(x) = \sin^2 x$. Then, find f(x)andg(x).

Watch Video Solution

195. If f:R o R be given by $f(x)=\sin^2x+\sin^2(x+\pi/3)+\cos x\,\cos(x+\pi/3)$ for all $x\in R$, and g:R o R be such that g(5/4)=1, then prove that gof:R o R is a constant function.

196. Let $f: Z\overline{Z}$ be defined by f(n) = 3n for all $n \in Z$ and $g: Z^{\rightarrow}$ be defined by

 $f(n)=igg\{rac{n}{3}, ext{ if } nisa \mu ltiple of 30, ext{ if } nis
eg \mu ltiple of 3f ext{ or } al \ln \in Z ext{.}$ Show that $gof=I_Z$ and $fog
eq I_Z$

Watch Video Solution

197. Let $f \colon \stackrel{\longrightarrow}{RR}$ be a function given by f(x) = ax + b for all $x \in R$. Find

the constants aandb such that $fof = I_{R^{\cdot}}$

Watch Video Solution

198. Let $f \colon A o A$ be a function such that fof = f . Show that f is onto

if and only if f is one-one. Describe f in this case.

199. Let $f,g:R\overset{
ightarrow}{R}$ be two functions defined as f(x)=|x|+x and g(x)=|x|-x , for all xR. Then find fog and gof.

Watch Video Solution

200. Find gof and gof when $f\!:\!R o R$ and $g\!:\!R o R$ is defined by f(x)=2x+3 and $g(x)=x^2+5$

Watch Video Solution

201. Find gof and gof when $f\!:\!R o R$ and $g\!:\!R o R$ is defined by $f(x)=2x+x^2$ and $g(x)=x^3$

Watch Video Solution

202. Find fog(2) and gof(1) when: $f\colon R o R;\, f(x)=x^2+8$ and $g\colon R o R;\, g(x)=3x^3+1.$

203. Find gof and fog when $f\!:\!R o R$ and $g\!:\!R o R$ is defined by

f(x)=x and g(x)=|x|

Watch Video Solution

204. Find gof and fog when $f\!:\!R o R$ and $g\!:\!R o R$ is defined by $f(x)=x^2+2x-3$ and g(x)=3x-4

Watch Video Solution

205. Find gof and gof when $f\!:\!R o R$ and $g\!:\!R o R$ is defined by $f(x)=8x^3$ and $g(x)=x^{1/3}$

206. Let $f = \{(3, 1), (9, 3), (12, 4)\}$ and $= \{(1, 3), (3, 3), (4, 9), (5, 9)\}$. Show that *gof* and *fog* are both defined. Also, find *fog* and *gof*.

Watch Video Solution

207. Let $f = \{(1, -1), (4, -2), (9, -3), (16, 4)\}$ and $g = \{(-1, -2), (02, -4), (-3, -6), (4, 8)\}$. Show that *gof* is defined while *fog* is not defined. Also, find *gof*.

Watch Video Solution

208. Let $A = \{a, b, c\}$, $B = \{u v, w\}$ and let f and g be two functions from A to B and from B to A respectively defined as: $f = \{(a, v), (b, u), (c, w)\}$, $g = \{(u, b), (v, a), (w, c)\}$. Show that f and g both are bijections and find fog and gof.

209. Find fog~(2) and gof~(1) when: $f\!:\!R o R$; $f(x)=x^2+8$ and $g\!:\!R o R$; $g(x)=3x^3+1$.

Watch Video Solution

210. Let R^+ be the set of all non-negative real numbers. If $f: R^+ \to R^+$ and $g: R^+ \to R^+$ are defined as $f(x) = x^2$ and $g(x) = +\sqrt{x}$. Find fog and gof. Are they equal functions.

Watch Video Solution

211. Let $f\colon R o R$ and $g\colon R o R$ be defined by $f(x)=x^2$ and g(x)=x+1 . Show that fog
eq gof

212. Let
$$f: R\overrightarrow{R}$$
 and $g: R\overrightarrow{R}$ be defined by $f(x) = x+1$ and $g(x) = x-1.$ Show that $fog = gof = I_{R}.$

213. Verify assolativity for the following three mappings : $f: N\overrightarrow{Z}_0$ (the set of non zero integers), $g: Z_0\overrightarrow{Z}$ and $h: Q\overrightarrow{R}$ given by $f(x) = 2x, g(x) = \frac{1}{x}$ and $h(x) = e^x$.

Watch Video Solution

214. Consider $f: N \to N, g: N \to N$ and $h: N \to R$ defined as f(x) = 2x, g(y) = 3y + 4 and $h(z) = s \in z$, $\forall x, y$ and z in N. Show that ho(gof) = (hog) of.

Watch Video Solution

215. Given examples of two functions $f: N \to N$ and $g: N \to N$ such that of is onto but f is not onto. (Hint: Considerf(x) = x and g(x) = |x|). 216. Give examples of two functions $f\colon N o Z$ and $g\colon Z o Z$ such that o f is injective but is not injective. (Hint: Considerf(x) = x and g(x) = |x|)

Watch Video Solution

217. If $f: A\overrightarrow{B} andg: B\overrightarrow{C}$ are one-one functions, show that gof is one-one function.

Watch Video Solution

218. If $f\!:\!R o R$ and $g\!:\!R o R$ be functions defined by $f(x)=x^2+1$

and $g(x) = \sin x$, then find fog and gof.

219. If $f:[0,\infty)\overrightarrow{R}$ and $g:R\overrightarrow{R}$ be defined as $f(x)=\sqrt{x}$ and $g(x)=-x^2-1,$ then find gofandfog.

220. If $f(x)=e^x$ and $g(x)=(\log)_e x(x>0),$ find fogandgof. Is fog=gof?

Watch Video Solution

221. If $f(x) = \sqrt{x}(x > 0)$ and $g(x) = x^2 - 1$ are two real functions,

find fog and gof is fog = gof?

Watch Video Solution

222. If $f(x) = \frac{1}{x}$ and g(x) = 0 are two real functions, show that fog is not defined.

223. Let
$$f(x) = [x]$$
 and $g(x) = |x|$. Find $(gof)iggl(rac{5}{3}iggr) fogiggl(rac{5}{3}iggr)$

Watch Video Solution

224. Let
$$f(x) = [x]$$
 and $g(x) = |x|$. Find $(gof)iggl(rac{5}{3}iggr) - fogiggl(rac{5}{3}iggr)$

225. Let
$$f(x) = [x]$$
 and $g(x) = |x|$. Find $(f+2g)(-1)$

226. Let
$$fandg$$
 be real functions defined by $f(x)=rac{x}{x+1}andg(x)=rac{1}{x+3}.$ Describe the functions $gofandfog$ (if they exist).

227. If
$$f(x)=rac{3x-2}{2x-3}, ext{ prove that } f(f(x)))=x ext{ for all } x\in R-\left\{rac{3}{2}
ight\}.$$

Watch Video Solution

228. If
$$f(x)=rac{1}{2x+1},\ x
eq-rac{1}{2},\ ext{then show that}\ f(f(x))=rac{2x+1}{2x+3}$$
 , provided that $x
eq-rac{3}{2}.$

Watch Video Solution

229. If
$$f(x)=rac{x}{\sqrt{1+x^2}}$$
 then $fofof(x)$

Watch Video Solution

230. Let f be a real function defined by $f(x)=\sqrt{x-1}$. Find (fof of)(x). Also, show that $fof
eq f^2$.

231. If
$$f(x)=rac{x-1}{x+1}, x
eq -1,$$
 then show that $f(f(x))=-rac{1}{x}$

provided that $x \neq 0, 1$.

Watch Video Solution

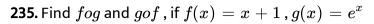
232. Find $fog \ {\rm and} \ gof$, if $f(x) = e^x$, $g(x) = (\log)_e x$

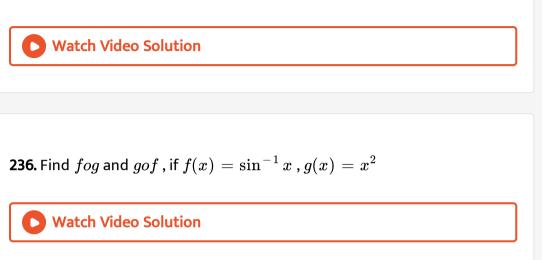
Watch Video Solution

233. Find fog and gof , if $f(x) = x^2$, $g(x) = \cos x$

Watch Video Solution

234. Find fog and gof , if f(x) = |x| , $g(x) = \sin x$





237. Find fog and gof , if f(x)=x+1 , $g(x)=\sin x$

Watch Video Solution

238. Find fog and gof , if f(x) = x+1 , g(x) = 2x+3

239. Find fog and gof , if $f(x)=c, \; c\in R$, $g(x)=\sin x^2$

240. Find
$$fog$$
 and gof , if $f(x)=x^2+2$, $g(x)=1-\displaystylerac{1}{1-x}$

Watch Video Solution

241. Let $f(x) = x^2 + x + 1$ and $g(x) = \sin x$. Show that fog
eq gof .

Watch Video Solution

242. $Letf\colon R o R\colon f(x)=|x|$, Prove that fof=f

243. If f(x)=2x+5 and $g(x)=x^2+1$ be two real functions, then describe f^2 . Also, show that $fof
eq f^2$.

Watch Video Solution

244. If f(x) = 2x + 5 and $g(x) = x^2 + 1$ be two real functions, then describe f^2 . Also, show that $fof
eq f^2$.

Watch Video Solution

245. If f(x) = 2x + 5 and $g(x) = x^2 + 1$ be two real functions, then describe f^2 . Also, show that $fof
eq f^2$.

Watch Video Solution

246. If f(x)=2x+5 and $g(x)=x^2+1$ be two real functions, then describe f^2 . Also, show that $fof
eq f^2$.

247. If $f(x) = \sin x$ and g(x) = 2x be two real functions, then describe

gof and fog. Are these equal functions?

Watch Video Solution

248. Let $f, \ g, \ h$ be real functions given by $f(x) = \sin x$, g(x) = 2x and

 $h(x)=\cos x$. Prove that $fog=go(fh)\cdot$

Watch Video Solution

249. Let f be any real function and let g be a function given by g(x) = 2x

. Prove that gof = f + f .

250. If $f(x) = \sqrt{1-x}$ and $g(x) = (\log)_e x$ are two real functions, then

describe functions $fog \ {\rm and} \ gof$.

Watch Video Solution

251. If $f \colon (-\pi/2, \pi/2) o R$ and $g \colon [-1, 1] o R$ be defined as

f(x)= an x and $g(x)=\sqrt{1-x^2}$ respectively. Describe fog and gof .

Watch Video Solution

252. If $f(x) = \sqrt{x+3}$ and $g(x) = x^2 + 1$ be two real functions, then find *fog* and *gof*.

Watch Video Solution

253. Let f be a real function given by $f(x)=\sqrt{x-2}$. Find fof Also, show that $fof
eq f^2$

254. If $f_{\cdot}:R\overrightarrow{R}$ be two functions defined as f(x) = |x| + x and $g(x) = |x| - x, \forall xR$, Then find fog and gof. Hence find fog(-3), fog(5) and gof(-2).

Watch Video Solution

255. If $f\!:\!Q o Q$ is given by $f(x)=x^2$, then find $f^{\,-1}(9)$

Watch Video Solution

256. If $f\!:\!Q o Q$ is given by $f(x)=x^2$, then find $f^{-1}(-25)$

Watch Video Solution

257. If $f\!:\!Q o Q$ is given by $f(x)=x^2$, then find $f^{\,-1}(9)$

258. If the function $f\!:\!R o R$ be defined by $f(x)=x^2+5x+9$, find $f^{-1}(8)$ and $f^{-1}(9)$.

Watch Video Solution

259. If the function $f\colon C o C$ be defined by $f(x)=x^2-1$, find $f^{-1}(9)$

and $f^{-1}(8)$.

Watch Video Solution

260. Let $f\!:\!R o R$ be defined as $f(x)=x^2+1$. Find: $f^{\,-1}(10)$

Watch Video Solution

261. If $A=\{0,\,1,\,\,2,\,\,3,\,\}$, $B=\{1,\,\,3,\,\,5,\,\,7,\,9\}$ and $f\colon\!A o B$ is given by

f(x) = 2x + 1 , then write f and f^{-1} as a set of ordered pairs.

262. Let $S = \{1, 2, 3\}$. Determine whether the functions $f: S \to S$ defined as below have inverses. Find f^{-1} , if it exists.(a) $f = \{(1, 1), (2, 2), (3, 3)\}$ (b) $f = \{(1, 2), (2, 1), (3, 1)\}$

Watch Video Solution

263. Consider $f: \{1, 2, 3\} \rightarrow \{a, b, c\}$ given by f(1) = a, f(2) = band

f(3) = c. Find f^{-1} and show that $(f^{-1})^{-1} = f$.

Watch Video Solution

264. If $f: R^{\rightarrow}$ is defined by f(x) = 2x + 7. Prove that f is a bijection. Also, find the inverse of f.

265. If $f\!:\!R o R$ is a bijection given by $f(x)=x^3+3$, find $f^{\,-1}\left(x
ight)$.

266. Let $f\colon R o R$ be defined by f(x)=3x-7 . Show that f is invertible and hence find f^{-1} .

Watch Video Solution

267. Show that f: R - cR0[0] given by f(x) = is invertible and it is inverse of itself.

Watch Video Solution

268. Let $f: N \cup \{0\} \to N \cup \{0\}$ be defined by $f(n) = \{n+1, \text{ if } n \text{ is even}, n-1, \text{ if } n \text{ is odd } \text{Show that } f \text{ is invertible and } f = f^{-1}$.

269. Prove that the function $f\!:\!R o R$ defined as f(x)=2x+3 is

invertible. Also, find f^{-1} .

Watch Video Solution

270. Show that the function $f\!:\!R o R$ is given by $f(x)=1+x^2$ is not

invertible.

Watch Video Solution

271. Show that $f \colon R - \{-1\} o R - \{1\}$ given by $f(x) = rac{x}{x+1}$ is

invertible. Also, find f^{-1} .

272. Show that $f\colon [-1,1] o R$, given by $f(x) = rac{x}{(x+2)}$ is one- one .

Find the inverse of the function f : [-1, 1]

273. Let $f: R \xrightarrow{\longrightarrow}$ be defined as f(x) = 10x + 7. Find the function $g: R \xrightarrow{\xrightarrow{}}$

such that $gof = fog = I_R \cdot$

Watch Video Solution

274. If the function $f\!:\![1,\infty) o [1,\infty)$ is defined by $f(x)=2^{x\,(x-1)}\,,$

then
$$f^{-1}(x)$$
 is (A) $\left(\frac{1}{2}\right)^{x(x-1)}$ (B) $\frac{1}{2}\sqrt{1+4\log_2 x}$ (C) $\frac{1}{2}\left(1-\sqrt{1+4\log_2 x}\right)$ (D) not defined

275. The value of parameter lpha, for which the function f(x)=1+lpha x, lpha
eq 0 is the inverse of itself

Watch Video Solution

276. Let f: NY be a function defined as f(x) = 4x + 3, where $Y = \{y \in N : y = 4x + 3 \text{ for some } x \in N\}$. Show that f is invertible and its inverse is (1) $g(y) = \frac{3y+4}{3}$ (2) $g(y) = 4 + \frac{y+3}{4}$ (3) $g(y) = \frac{y+3}{4}$ (4) $g(y) = \frac{y-3}{4}$

Watch Video Solution

277. Let $Y = \left\{n^2 \colon n \in N
ight\} \in N$. Consider $f \colon N o Y$ as $f(n) = n^2$. Show

that f is invertible. Find the inverse of f.

278. Let $f: N \to R$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: N \to S$, where, S is the range of f, is invertible. Find the inverse of f.

Watch Video Solution

279. State with reason whether following functions have inverse (i) $f: \{1, 2, 3, 4thf = \{(1, 10), (2, 10), (3, 10), (4, 10)\}$ (ii)

g: $\{5, 6, 7, 8\}$ $with g = \{(5, 4), (6, 3), (7, 4), (8, 2)\}$ (iii) `h : {2,3,4,5} ->{7,9}

280. State with reason whether following functions have inverse (i) $f: \{1, 2, 3, 4\} \rightarrow \{10\} with f = \{(1, 10), (2, 10), (3, 10), (4, 10)\}$ (ii) $g: \{5, 6, 7, 8\} \rightarrow \{1, 2, 3, 4\} with g = \{(5, 4), (6, 3), (7, 4), (8, 2)\}$ (iii) 'h : $\{2,3,4,5\} \rightarrow \{7,9\}$

281. Find f^{-1} if it exists: f:A o B where $A = \{0, -1, -3, 2\};$ $B = \{-9, -3, 0, 6\}$ and f(x) = 3x.

282. Find f^{-1} if it exists: $f: A \to B$ where $A = \{1, 3, 5, 7, 9\}$; B =

 $\{0,\ 1,\ 9,\ 25,\ 49,\ 81\}$ and $f(x)=x^2$.

Watch Video Solution

283. Show that the function $f \colon Q \to Q$ defined by f(x) = 3x + 5 is invertible. Also, find f^{-1} .

Watch Video Solution

284. Consider f: R o R given by f(x) = 4x + 3. Show that f is

invertible. Find the inverse of f.

285. Consider $f: R_+ \overline{4, \infty}$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f^{-1} of f given by $f^{-1}(y) = \sqrt{y-4}$, where R_+ is the set of all non-negative real numbers.

Watch Video Solution

286. If
$$f(x)=rac{4x+3}{6x-4},\ x
eq rac{2}{3},$$
 show that $fof(x)=x$ for all $x
eq rac{2}{3}.$

What is the inverse of f?

Watch Video Solution

287. Consider
$$f:R_\pm>[-5,\infty)$$
 given by $f(x)=9x^2+6x-5$. Show that f is invertible with $f^{-1}(y)=\left(rac{\left(\sqrt{y+6}
ight)-1}{3}
ight)$

288. If $f\colon R o R$ be defined by $f(x)=x^3-3$, then prove that f^{-1} exists and find a formula for f^{-1} . Hence, find $f^{-1}(24)$ and $f^{-1}(5)$.

Watch Video Solution

289. A function $f\colon R o R$ is defined as $f(x)=x^3+4$. Is it a bijection or not? In case it is a bijection, find $f^{-1}(3)$.

Watch Video Solution

290. If $f:Q \to Q$, $g:Q \to Q$ are two functions defined by f(x) = 2xand g(x) = x + 2, show that f and g are bijective maps. Verify that $(gof)^{-1} = f^{-1} og^{-1}$.

291. Let $A = R - \{3\}$ and $B = R - \{1\}$. Consider the function $f: A^{\rightarrow}$ defined by $f(x) = \frac{x-2}{x-3}$. Show that is one-one and onto and hence find f^{-1}

Watch Video Solution

292. Consider
$$f:R_\pm>[-9,\infty[$$
 given by $f(x)=5x^2+6x-9.$ Prove that f is invertible with $f^{-1}(y)=rac{\sqrt{54+5y}-3}{5}$

Watch Video Solution

293. Let $f: N^{\rightarrow}$ be a function defined as $f(x) = 9x^2 + 6x - 5$. Show that $f: N\overrightarrow{S}$, where S is the range of f, is invertible. Find the inverse of f and hence $f^{-1}(43)$ and $f^{-1}(163)$.

294. If $f: R \xrightarrow{-1, 1}$ defined by $f(x) = rac{10^x - 10^{-x}}{10^x + 10^{-x}}$ is invertible, find f^{-1}

Watch Video Solution

295. If f: R o (0, 2) defined by $f(x) = rac{e^x - e^{-x}}{e^x + e^{-x}} + 1$ is invertible, find f^{-1} .

Watch Video Solution

296. Let $f: [-1,\infty] \xrightarrow{-1}$, is given by $f(x) = (x+1)^2 - 1, x \ge -1$. Show that f is invertible. Also, find the set $S = \{x: f(x) = f^{-1}(x)\}$.

Watch Video Solution

297. Let $A = \{x \in R \mid -1 \le x \le 1\}$ and let $f: A \to A, g: A \to A$ be two functions defined by $f(x) = x^2$ and $g(x) = \frac{\sin(\pi x)}{2}$. Show that g^{-1} exists but f^{-1} does not exist. Also, find g^{-1} . **298.** Let f be a function from R to R such that $f(x) = \cos(x+2)$. Is f

invertible? Justify your answer.

Watch Video Solution

299. If $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c, d\}$. Define any four bijectives

from A to B . Also, give their inverse functions.

Watch Video Solution

300. Let A and B be two sets each with a finite number of elements. Assume that there is an injective mapping from A to Band that there is an injective mapping from B to A Prove that there is a bijective mapping from A to B.

301. If $f: A\overrightarrow{A}, g: A \rightarrow$ are two bijections, then prove that $f \circ g$ is an injection (ii) $f \circ g$ is a surjection.

302. If $f: A \to A, \ g: A \to A$ are two bijections, then prove that fog is an injection.

Watch Video Solution

303. Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b\}$ be two sets. Write total number of onto functions from A to B.

Watch Video Solution

304. Write total number of one-one functions from set $A=\{1,\ 2,\ 3,\ 4\}$

to set
$$B = \{a, b, c\}$$
 .

305. If $f\!:\!R o R$ is defined by $f(x)=x^2$, write $f^{\,-1}(25)$.

306. If $f\!:\!C o C$ is defined by $f(x)=x^2$, write $f^{-1}(-4)$. Here, C

denotes the set of all complex numbers.

Watch Video Solution

307. If $f\!:\!R o R$ is given by $f(x)=x^3$, write $f^{\,-1}(1)$.

Watch Video Solution

308. Let C denote the set of all complex numbers. A function $f\colon C o C$ is defined by $f(x)=x^3$. Write $f^{-1}(1)$.

309. Let f be a function from C (set of all complex numbers) to itself given by $f(x) = x^3$. Write $f^{-1}(1)$.

Watch Video Solution

310. Let $f\!:\!R o R$ be defined by $f(x)=x^4$, write $f^{\,-1}(1)$.

Watch Video Solution

311. If $f \colon C o C$ is defined by $f(x) = x^4$, write $f^{-1}(1)$.

Watch Video Solution

312. If $f\!:\!R o R$ is defined by $f(x)=x^2$, write $f^{\,-1}(25)$.

313. If $f\colon C o C$ is defined by $f(x)=(x-2)^3$, write $f^{\,-1}(\,-1)$.

314. If $f\!:\!R o R$ is defined by f(x)=10x-7 , then write $f^{\,-1}(x)$.

Watch Video Solution

315. Let $f:\left\{-rac{\pi}{2},\ rac{\pi}{2}
ight\} o R$ be a function defined by $f(x)=\cos[x]$. Write range (f) .

Watch Video Solution

316. If $f\colon R o R$ defined by f(x)=3x-4 is invertible then write $f^{-1}(x)$.

317. If $f\colon R o R$, $g\colon R o R$ are given by $f(x)=(x+1)^2$ and $g(x)=x^2+1$, then write the value of $fog\ (-3)$.

Watch Video Solution

318. Let $A=\{x\in R\colon -4\leq x\leq 4 \ \text{and} \ x
eq 0\}$ and $f\!:\!A o R$ be defined by $f(x)=rac{|x|}{x}$. Write the range of f.

Watch Video Solution

319. Let
$$f:\left[-rac{\pi}{2}, rac{\pi}{2}
ight] o A$$
 be defined by $f(x)=\sin x$. If f is a bijection, write set A .

Watch Video Solution

320. Let $f\colon R o R^+$ be defined by $f(x)=a^x,\ a>0$ and a
eq 1 . Write $f^{-1}(x)$.

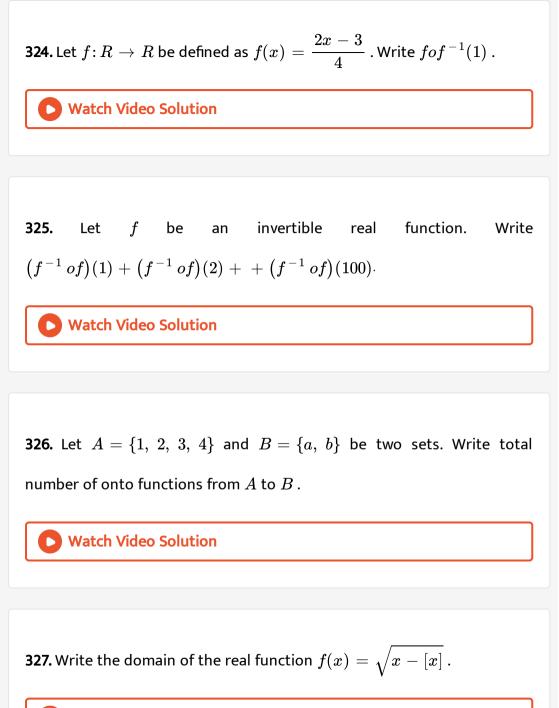
321. Let $f\!:\!R-\{-1\}
ightarrow R-\{1\}$ be given by $f(x)=rac{x}{x+1}$. Write $f^{-1}(x)$.

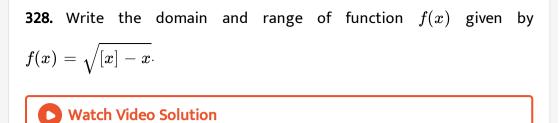
Watch Video Solution

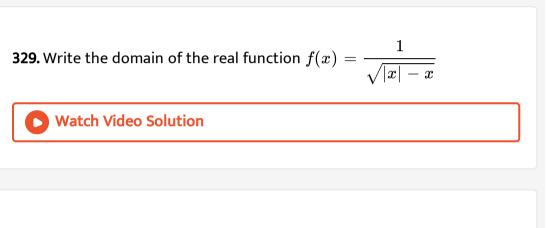
322. Let
$$f: R - \left\{-\frac{3}{5}\right\} \to R$$
 be a function defined as $f(x) = \frac{2x}{5x+3}$.
Write f^{-1} : Range of $f \to R - \left\{-\frac{3}{5}\right\}$.

Watch Video Solution

323. Let $f\!:\!R o R$, $g\!:\!R o R$ be two functions defined by $f(x)=x^2+x+1$ and $g(x)=1-x^2$. Write $fog\ (-2)$.







330. Write whether $f\!:\!R o R$ given by $f(x)=x+\sqrt{x^2}$ is one-one,

many-one, onto or into.

Watch Video Solution

331. If f(x) = x + 7 and g(x) = x - 7, x R, find (fog)(7)

B. 0

C. 14

D. none of these

Answer: A

Watch Video Solution

332. What is the range of the function
$$f(x) = rac{|x-1|}{x-1}$$

Watch Video Solution

333. If $f:R \div R$ be defined by $f(x) = \left(3-x^3
ight)^{1/3}, ext{ then find } fof(x)$

Watch Video Solution

334. If $f\colon R o R$ is defined by f(x)=3x+2 , find f(f(x)) .

335. Let $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. State whether f is one-one or not.

Watch Video Solution

336. If $f: \{5, 6\} \rightarrow \{2, 3\}$ and $g: \{2, 3\} \rightarrow \{5, 6\}$ are given by $f = \{(5, 2), (6, 3)\}$ and $g = \{(2, 5), (3, 6)\}$, find fog.

Watch Video Solution

337. Let $f\!:\!R o R$ be the function defined by f(x)=4x-3 for all $x\in R$. Then write f^{-1} .

338. Which one the following relations on $A = \{1, 2, 3\}$ is a function? $f = \{(1, 3), (2, 3), (3, 2)\}, g = \{(1, 2), (1, 3), (3, 1)\}$

339. Write the domain of the real function f defined by $f(x) = \sqrt{25 - x^2}$.

Watch Video Solution

340. Let
$$A = \{a, b, c, d\}$$
 and $f: A \overrightarrow{A}$ be given by $f = \{(a, b), (b, d), (c, a), (d, c)\}$, write f^{-1} .

Watch Video Solution

341. Let $f,g\colon R^{
ightarrow}$ be defined by $f(x)=2x+1 and g(x)=x^2-2$ for all $x\in R,\,$ respectively. Then, find gof

342. If the mapping $f: \{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and $g: \{1, 2, 5\} \rightarrow \{1, 3\}$, given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(2, 3), (5, 1), (1, 3)\}$, write fog.

Watch Video Solution

343. If a function $g = \{(1,1),(2,3),(3,5),(4,7)\}$ is described by g(x) = lpha x + eta, find the values of lpha and eta.

Watch Video Solution

344. If
$$f(x) = -4 - \left(x - 7
ight)^3$$
 , write $f^{-1}(x)$.

345. $f\!:\!R o R$ given by $f(x)=x+\sqrt{x^2}$ is (a) injective (b) surjective (c)

bijective (d) none of these

346. If f: A o B given by $3^{f(x)} + 2^{-x} = 4$ is a bijection, then `A={x in R

:-1

Watch Video Solution

347. The function $f: R \to R$ defined by $f(x) = 2^x + 2^{|x|}$ is (a) one-one and onto (b) many-one and onto (c) one-one and into (d) many-one and into

348. Let the function $f: R - \{-b\} \to R - \{1\}$ be defined by $f(x) = \frac{x+a}{x+b}$, $a \neq b$, then (a) f is one-one but not onto (b) f is onto but not one-one (c) f is both one-one and onto (d) none of these

Watch Video Solution

349. The function $f: A \to B$ defined by $f(x) = -x^2 + 6x - 8$ is a bijection, if $A = (-\infty, 3]$ and $B = (-\infty, 1]$ (b) $A = [-3, \infty)$ and $B = (-\infty, 1]$ (c) $A = (-\infty, 3]$ and $B = [1, \infty)$ (d) $A = [3, \infty)$ and $B = [1, \infty)$

Watch Video Solution

350. Let $A = \{x \in R: -1 \le x \le 1\} = B$. Then, the mapping $f: A \to B$ given by f(x) = x|x| is (a) injective but not surjective (b) surjective but not injective (c) bijective (d) none of these

351. Let $f: R \to R$ be given by $f(x) = [x]^2 + [x+1] - 3$, where [x] denotes the greatest integer less than or equal to x. Then, f(x) is (a) many-one and onto (b) many-one and into (c) one-one and into (d) one-one and onto

Watch Video Solution

352. Let M be the set of all 2×2 matrices with entries from the set R of real numbers. Then the function $f: M \to R$ defined by f(A) = |A| for every $A \in M$, is (a) one-one and onto (b) neither one-one nor onto (c) one-one but not onto (d) onto but not one-one

Watch Video Solution

353. The function $f:[0, \infty) \to R$ given by $f(x) = \frac{x}{x+1}$ is (a) one-one and onto (b) one-one but not onto (c) onto but not one-one (d) neither one-one nor onto

354. The range of the function $f(x) = {}^{7-x}P_{x-3}$ is (a) {1, 2, 3, 4, 5} (b) {1,

2, 3, 4, 5, 6} (c) {1, 2, 3, 4} (d) {1, 2, 3}

Watch Video Solution

355. A function f from the set of natural numbers to integers is defined by n when n is odd f(n) 3, when n is even Then f is (b) one-one but not onto a) neither one-one nor onto (c) onto but not one-one (d) one-one and onto both

Watch Video Solution

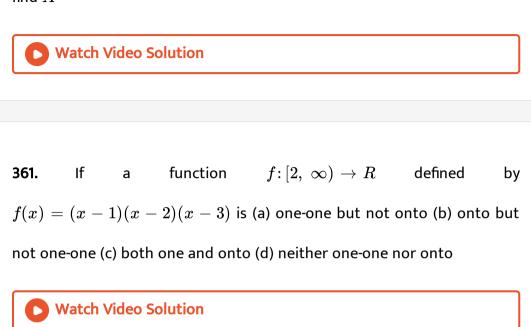
356. Let f be an injective map. with domain (x, y, z and range (1, 2, 3), such that exactly one following statements is correct and the remaining are false : f(x) = 1, $f(y) \neq 1$, $f(z) \neq 2$ The value of $f^{-1}(1)$ is

357. Which of the following function from Z to itself are bijections? $f(x) = x^3$ (b) f(x) = x + 2 f(x) = 2x + 1 (d) $f(x) = x^2 + x$

358. Let A = [-1,1]. Then, discuss whether the following functions from A to itself are one-one onto or bijective: $f(x) = \frac{x}{2}$ (ii) g(x) = |x| (iii) $h(x) = x^2$

359. Let
$$A$$
 $\Big\{x: -1 \le x \le 1\Big\}$ and $f: A^{\rightarrow}$ such that $f(x) = x|x|$, then f is a bijection (b) injective but not surjective Surjective but not injective (d) neither injective nor surjective

360. If the function $f: R\overrightarrow{A}$ given by $f(x) = \frac{x^2}{x^2 + 1}$ is surjection, then find A.



362. The function $f: [-1/2, 1/2] \rightarrow [-\pi/2, \pi/2]$ defined by $f(x) = \sin^{-1}(3x - 4x^3)$ is (a) bijection (b) injection but not a surjection (c) surjection but not an injection (d) neither an injection nor a surjection

363. Let $f: R \to R$ be a function defined by $f(x) = \frac{e^{|x|} - e^{-x}}{e^x + e^{-x}}$ then --(1) f is bijection (2) f is an injection only (3) f is a surjection (4) f is neither injection nor a surjection

364. Let $f: R - \{n\} \to R$ be a function defined by $f(x) = \frac{x - m}{x - n}$ such that $m \neq n$ 1) f is one one into function2) f is one one onto function3) f is many one into function4) f is many one onto function then

Watch Video Solution

365. Let $f\!:\!R o R$ be a function defined by $f(x)=rac{x^2-8}{x^2+2}$. Then, f is

(a) one-one but not onto (b) one-one and onto (c) onto but not one-one

(d) neither one-one nor onto

366. $f: R \to R$ is defined by $f(x) = \frac{e^x \hat{2} - e^{-x} \hat{2}}{e^x \hat{2} + e^{-x} \hat{2}}$ is (a) one-one but not onto (b) many-one but onto (c) one-one and onto (d) neither one-

one nor onto

Watch Video Solution

367. The function $f\colon R o R$, $f(x)=x^2$ is (a) injective but not surjective (b) surjective but not injective (c) injective as well as surjective (d) neither injective nor surjective

Watch Video Solution

368. A function f from the set of natural numbers to integers defined by $f(n) = \left\{\frac{n-1}{2}, when n \text{ is odd} - \frac{n}{2}, when n \text{ is even } \text{ is (a) neither one-one nor onto (b) one-one but not onto (c) onto but not one-one (d) one-one and onto both$

369. Which of the following functions from $A = \{x \in R: -1 \le x \le 1\}$ to itself are bijections? f(x) = |x| (b) $f(x) = \frac{\sin(\pi x)}{2}$ (c) $f(x) = \frac{\sin(\pi x)}{4}$ (d) none of these

Watch Video Solution

370. Let $f: Z \to Z$ be given by $f(x) = \left\{\frac{x}{2}, \text{ if } x \text{ is even}, 0, \text{ if } x \text{ is odd} \text{ . Then, f is (a) onto but not one-one (b) one-one but not onto (c) one-one and onto (d) neither one-one nor onto$

371. The function f:R o R defined by $f(x) = 6^x + 6^{|x|}$ is (a) one-one and onto (b) many one and onto (c) one-one and into (d) many one and into

372. Let $f(x)=x^2$ and $g(x)=2^x$. Then the solution set of the equation fog(x)=gof(x) is R (b) {0} (c) {0, 2} (d) none of these

373. If
$$f(x) = 3x - 5$$
, then $f^{-1}(x)$ is given by $\frac{1}{(3x - 5)}$ is given by $\frac{(x + 5)}{3}$ does not exist because f is not one-one does not exist because

f is not onto

Watch Video Solution

374. If
$$g(f(x)) = |\sin x| and f(g(x)) = \left(\sin \sqrt{x} \right)^2$$
 , then

$$f(x)=\sin^2 x, g(x)=\sqrt{x}$$
 $f(x)=\sin x, g(x)=|x|$

 $fig(x=x^2,g(x)=\sin\sqrt{x}\ fandg$ cannot be determined

375. The inverse of the function $f: Rx \in R: x < 1$ given by $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$, is $\frac{1}{2} \frac{\log(1+x)}{1-x}$ (b) $\frac{1}{2} \frac{\log(2+x)}{2-x} \frac{1}{2} \frac{\log(1-x)}{1+x}$ (d)

None of these

Watch Video Solution

376. If the function
$$f:(1,)\overrightarrow{1,\infty}$$
 is defined by $f(x) = 2^{x(x-1)}$, then $f^{-1}(x)$ is $\left(\frac{1}{2}\right)^{x(x-1)}$ (b) $\frac{1}{2}\left(1 + \sqrt{1 + 4(\log)_2 x}\right) \frac{1}{2}\left(1 - \sqrt{1 + (\log)_2 x}\right)$ (d) not defined

Watch Video Solution

377. Let $f(x)=rac{1}{1-x}$. Then, $\{f \ o \ (f \ o \ f)\}(x)=x ext{ for all } x\in R$ (b) x for all $x\in R-\{1\}$ (c) x for all $x\in R-\{0,\ 1\}$ (d) none of these

378. If the function $f\!:\!R o R$ be such that $f(x)=x-[x],\,$ where [x]

denotes the greatest integer less than or equal to x, then $f^{-1}(x)$ is

Watch Video Solution

379. If
$$F:[1,\infty)\overrightarrow{2,\infty}$$
 is given by $f(x)=x+\frac{1}{x}, then f^{-1}(x)$ equals. $\frac{x+\sqrt{x^2-4}}{2}$ (b) $\frac{x}{1+x^2}$ (c) $\frac{x-\sqrt{x^2-4}}{2}$ $1+\sqrt{x^2-4}$

Watch Video Solution

380. Let $g(x) = 1 + x - [x] and f(x) = \{ -1, x < 00, x = 0 f, x > 0 \}$.

Then for all x, f(g(x)) is equal to (where [.] represents the greatest integer function). x (b) 1 (c) f(x) (d) g(x)

381. Let $f(x)=rac{lpha x}{(x+1)}, x
eq -1.$ The for what value of lpha is f(f(x))=x? $\sqrt{2}$ (b) $-\sqrt{2}$ (c) 1 (d) -1

Watch Video Solution

382. If $f\colon [2,\infty) o (\,-\infty,4],$ where f(x)=x(4-x) then find $f^{\,-1}(x)$

Watch Video Solution

383. If
$$f: \overrightarrow{R-1, 1}$$
 is defined by $f(x) = -\frac{x|x|}{1+x^2}$, $then f^{-1}(x)$ equals $\sqrt{\frac{|x|}{1-|x|}}$ (b) $-sgn(x)\sqrt{\frac{|x|}{1-|x|}} - \sqrt{\frac{x}{1-x}}$ (d) none of these

Watch Video Solution

384. If $g(x) = x^2 + x - 2and \frac{1}{2}gof(x) = 2x^2 - 5x + 2$, then which is not a possible f(x)? 2x - 3 (b) -2x + 2x - 3 (d) None of these

385. If $f(x)=\sin^2 x$ and the composite function $g(f(x))=|\sin x|$, then

g(x) is equal to $\sqrt{x-1}$ (b) \sqrt{x} (c) $\sqrt{x+1}$ (d) $-\sqrt{x}$

386. Let $f\colon R o R$ be given by $f(x)=x^2-3$. Then, f^{-1} is given by $\sqrt{x+3}$ (b) $\sqrt{x}+3$ (c) $x+\sqrt{3}$ (d) none of these

Watch Video Solution

387. Let $f(x)=x^3$ be a function with domain {0, 1, 2, 3}. Then domain of

 f^{-1} is (a) {3, 2, 1, 0} (b) {0, -1, -2, -3} (c) {0, 1, 8, 27} (d) {0, -1, -8, -27}

388. Let $f\colon R o R$ be given by $f(x)=x^2-3$. Then, f^{-1} is given by $\sqrt{x+3}$ (b) $\sqrt{x}+3$ (c) $x+\sqrt{3}$ (d) none of these

Watch Video Solution

389. Let $f\colon R o R$ be given by f(x)= an x . Then, $f^{-1}(1)$ is $rac{\pi}{4}$ (b) $\left\{n\pi+rac{\pi}{4}\colon n\in Z
ight\}$ (c) does not exist (d) none of these

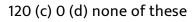
Watch Video Solution

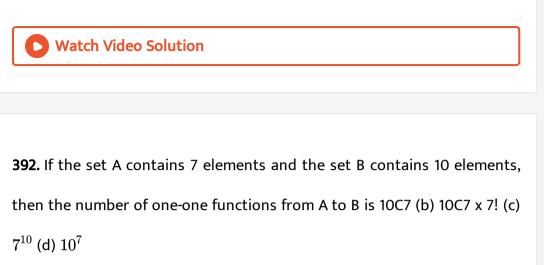
390. Let $A = \{1, 2, ..., n\}$ and $B = \{a, b\}$. Then number of subjections

from A into B is nP2 (b) 2^n-2 (c) 2^n-1 (d) nC2

Watch Video Solution

391. If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is 720 (b)





393. Let
$$f\!:\!R-\left\{rac{3}{5}
ight\}
ightarrow R$$
 be defined by $f(x)=rac{3x+2}{5x-3}$. Then

Watch Video Solution

Others

1. State with reasons whether $h: \{2, 3, 4, 5\} \rightarrow \{7, 9, 11, 13\}$ with $h = \{(2, 7), (3, 9), (4, 11), (5, 13)\}$

2. Consider $f: \{1, 2, 3\} \rightarrow \{a, b, c\}$ and $g: \{a, b, c\} \rightarrow \{\text{apple, ball, cat}\}$ defined as f(1) = a, f(2) = b, f(3) = c, $g(a) = \text{ apple, } g(b) = \text{ ball and } g(c) = \text{ cat. Show that } f, g and gof are invertible. Find <math>f^{-1}, g^{-1}$ and $(gof)^{-1}$ and show that $(gof)^{-1} = f^{-1}o g^{-1}$.

View Text Solution

3. Let $A = \{1, 2, 3, 4\}$; $B = \{3, 5, 7, 9\}$; $C = \{7, 23, 47, 79\}$ and $f: A \to B, g: B \to C$ be defined as f(x) = 2x + 1 and $g(x) = x^2 - 2$. Express $(gof)^{-1}$ and $f^{-1}og^{-1}$ as the sets of ordered pairs and verify that $(gof)^{-1} = f^{-1} og^{-1}$.

View Text Solution

let

4. Let $A=\{x\in R\colon -1\leq x\leq 1\}=B$ and $C=\{x\in R\colon x\geq 0\}$ and

$$S=ig\{(x,\;y)\in A imes B\!:\!x^2+y^2=1ig\}$$
 and

 $S_0=ig\{(x,\ y)\in A imes C\colon x^2+y^2=1ig\}$. Then S defines a function from A to B (b) S_0 defines a function from A to C (c) S_0 defines a function from A to B (d) S defines a function from A to C

5. The distinct linear functions which map [-1, 1] onto [0, 2] are $f(x)=x+1,\ g(x)=-x+1$ (b) $f(x)=x-1,\ g(x)=x+1$ (c) $f(x)=-x-1,\ g(x)=x-1$ (d) none of these

View Text Solution

6. Let $f \colon R o R$ be defined as $f(x) = egin{cases} 2x & ext{if} \quad x > 3 \\ x^2 & ext{if} \quad x < 1 \end{cases}$

find value of f(-1) + f(4)

View Text Solution