

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

INCREASING AND DECREASING FUNCTION

Solved Examples And Exercises

1. Show that $f(x)=(x-1)e^x+1$ is an

increasing function for all x > 0.

Watch Video Solution

2. Find the intervals in which f(x) is increasing or decreasing:

(1). $f(x)=x|x|,x\in R$

(2). $f(x) = \sin x + |\sin x|, 0 < x \le 2\pi$

3. Show that $f(x) = x^3 - 15x^2 + 75x - 50$ is

an increasing function for all $x \in R$

5. Show that
$$f(x) = x^2 - x \sin x$$
 is an increasing function on $\left(0, \frac{\pi}{2}\right)$.

6. Show that $f(x) = \cos x$ is decreasing function on $(0, \pi)$, increasing in $(-\pi, 0)$ and neither increasing nor decreasing in $(-\pi, \pi)$.

Watch Video Solution

7. Show that $f(x) = an^{-1}(\sin x + \cos x)$ is decreasing function on the interval $\left(rac{\pi}{4}, rac{\pi}{2}
ight)$.

8. Show that function $f(x) = \sin\left(2x + \frac{\pi}{4}\right)$ is decreasing on $\left(\frac{3\pi}{8}, \frac{5\pi}{8}\right)$.

Watch Video Solution

9. Show that $f(x) = x - \sin x$ is increasing for

all x in R

10. Find the value(s) for a for which $f(x) = x^3 - ax$ is an increasing function on R. Watch Video Solution

11. Find the intervals in which function $f(x) = \sin x - \cos x$, $0 < x < 2\pi$ is (i) increasing, (ii) decreasing.

12. Determine the values of x for which the function $f(x) = x^2 - 6x + 9$ is increasing, or decreasing. Also, find the coordinates of the point on the curve $y = x^2 - 6x + 9$ where the normal is parallel to the line y = x + 5.

Watch Video Solution

13. Find the intervals in which the following function are increasing or decreasing. $f(x) = 10 - 6x - 2x^2$ $f(x) = x^2 + 2x - 5$ $f(x) = 6 - 9x - x^2$

$$egin{aligned} f(x) &= 2x^3 - 12x^2 + 18x + 15 \ f(x) &= 5 + 36x + 3x^2 - 2x^3 \ f(x) &= 8 + 36x + 3x^2 - 2x^3 \ f(x) &= 5x^3 - 15x^2 - 120x + 3 \ f(x) &= 5x^3 - 15x^2 - 120x + 3 \ f(x) &= 2x^3 - 6x^2 - 36x + 2 \ f(x) &= 2x^3 - 15x^2 + 36x + 1 \ f(x) &= 2x^3 + 9x^2 + 20 \ f(x) &= 2x^3 - 9x^2 + 12x - 5 \ f(x) &= 6 + 12x + 3x^2 - 2x^3 \ f(x) &= 2x^3 - 24x + 107 \ f(x) &= -2x^3 - 9x^2 - 12x + 1 \ f(x) &= (x - 1)(x - 2)^2 \ f(x) &= x^3 - 12x^2 + 36x + 17 \end{aligned}$$

 $f(x) = 2x^3 - 24 + 7$ $f(x)=rac{3}{10}x^4-rac{4}{5}x^3-3x^2+rac{36}{5}x+11$ $f(x) = x^4 - 4x$ $f(x) = rac{x^4}{4} + rac{2}{3}x^3 - rac{5}{2}x^2 - 6x + 7$ $f(x) = x^4 - 4x^3 + 4x^2 + 15$ $f(x)=5x^{rac{3}{2}}-3x^{rac{5}{2}}, x>0$ $f(x) = = x^8 + 6x^2$ $f(x) = = x^3 - 6x^2 + 9x + 15$ $f(x) = \{x(x-2)\}^2$ $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ $f(x) = \frac{3}{2}x^4 - 4x^3 - 45x^2 + 51$ $f(x)=\log(2+x)-rac{2x}{2+x}, xR$

14. Show that $f(x) = e^{rac{1}{x}}, x
eq 0$ is decreasing

function for all $x \neq 0$.

15. Show that
$$f(x) = e^{2x}$$
 is increasing on R_{\cdot}

16. Show that $f(x) = x^9 + 4x^7 + 11$ is an increasing function for all $x \in R$.

Watch Video Solution

17. State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function $f(x) = x^2 - 6x + 3$ is increasing on the interval [4, 6].

22. Show that the function f given by $f(x) = 10^x$ is increasing for all x.

23. Without using the derivative, show that the function f(x) = |x| is strictly increasing in $(0,\infty)$ strictly decreasing in $(-\infty,0)$.

24. Without using the derivative show that the function f(x) = 7x - 3 is strictly increasing function on R.

Watch Video Solution

25. Prove that the function $f(x) = (\log)_a x$ is increasing on $(0,\infty)$ if a>1 and decreasing on $(0,\infty),$ if 0< a<1

Watch Video Solution

26. Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R.

27. Prove that the function $f(x) = (\log)_e x$ is

increasing on $(0,\infty)$.

Watch Video Solution

28. Show that
$$f(x)=rac{1}{1+x^2}$$
 decreases in the interval $[0,\infty)$ and increases in the interval $(-\infty,0].$

29. Show that $f(x) = \frac{1}{x}$ is decreasing function on $(0,\infty)$. Watch Video Solution 30. $Solve: rac{1-x^2}{5x-6-r^2} < 0$ Watch Video Solution 31.

$$solve: rac{1}{x+1} - rac{4}{\left(2+x
ight)^2} > 0, x
eq -1, \ -2$$

32. Solve: $4x^3 - 24x^2 + 44x - 24 > 0$

Watch Video Solution

33. Find the intervals in which the function $f(x) = 2x^3 + 9x^2 + 12x + 20$ is (i) increasing

(ii) decreasing

34. Find the intervals in which $f(x) = -x^2 - 2x + 15$ is increasing or decreasing.

Watch Video Solution

35.
$$Solve: rac{x^2-4x+7}{x^2-7x+12} \leq rac{2}{3}$$

36.
$$Solverac{8x^2+16x-51}{2x^2+5x-12}>3$$

39. Find the intervals in which the function
$$f(x) = x^4 - \frac{x^3}{3}$$
 is increasing or decreasing. Watch Video Solution

40. Find the intervals in which $f(x) = rac{x}{\log x}$ is

increasing or decreasing.

41. Show that $f(x) = \cos\left(2x + \frac{\pi}{4}\right)$ is an

increasing function on $(3\pi/8, 7\pi/8)$.

43. Find the values of a for which the function

$$f(x) = (a+2)x^3 - 3ax^2 + 9ax - a$$

decreasing for all real values of x.

Watch Video Solution

44. If a, b, c are real numbers, then find the

intervals in which $f(x) = egin{bmatrix} x+a^2 & ab & ac \ ab & x+b^2 & bc \ ac & bc & x+c^2 \ \end{bmatrix}$ is increasing

or decreasing.

45. Find the intervals in which $f(x) = (x-1)^3(x-2)^2$ is increasing or

decreasing.

Watch Video Solution

46. Find the intervals in which
$$f(x) = rac{4x^2+1}{x}$$

is increasing or decreasing.

47. Determine the intervals in which the function $f(x) = x^4 - 8x^3 + 22x^2 - 24x + 21$ is decreasing or increasing. Watch Video Solution **48.** Find the intervals for which $f(x) = x^4 - 2x^2$ increasing or decreasing. Watch Video Solution

49. Determine the values of
$$x$$
 for which $f(x) = rac{x-2}{x+1} x
eq -1$ is increasing or

decreasing

50. Find the intervals in which $f(x) = rac{x}{2} + rac{2}{x}, x
eq 0$ is increasing or

decreasing.

51. For which values of x, the function $f(x) = rac{x}{x^2+1}$ is increasing and for which value of x, it is decreasing. Watch Video Solution **52.** Find the intervals in which $f(x) = \frac{4x^2 + 1}{x}$ is increasing or decreasing. Watch Video Solution

53. Separate the interval $\left[0, \frac{\pi}{2}\right]$ into sub intervals in which function $f(x) = \sin^4(x) + \cos^4(x)$ is strictly increasing or decreasing.

55. Prove that the function $f(x) = \tan x - 4x$

is strictly decreasing on $(\,-\pi/3,\,\pi/3)$.

Watch Video Solution

56. Solve: $4x^3 - 24x^2 + 44x - 24 > 0$.

57. Solve:

$$\frac{1}{x+1} - \frac{4}{(2+x)^2} > 0, \ x \neq -1, \ -2.$$
Watch Video Solution
58. Solve:
$$\frac{1+x^2}{x^2-5x-6} < 0$$
Watch Video Solution

59.
$$Solve rac{8x^2+16x-51}{2x^2+5x-12} > 3$$

60. Solve:
$$rac{x^2-2x+5}{3x^2-2x-5} > rac{1}{2}$$

Watch Video Solution

61. Solve:
$$rac{x^2-2x+24}{x^2-3x+4} \leq 4$$
 .

62. Solve:
$$rac{x^2-4x+7}{x^2-7x+12} \leq rac{2}{3}$$

63. Show that the function f(x) = 2x + 3 is strictly increasing function on R.

Watch Video Solution

64. Show that the function $f(x) = x^2$ is strictly

increasing function on $[0, \infty)$.

65. Show that the function $f(x) = a^x, \ a > 1$ is

strictly increasing on R_{\cdot}

Watch Video Solution

66. Show that the function f(x) = -3x + 12

is strictly decreasing function on ${\boldsymbol R}$.

Watch Video Solution

67. Show that the function $f(x)=a^x, 0$

69. Show that the function $f(x) = x^2$ is neither

strictly increasing nor strictly decreasing on ${\boldsymbol R}$.

70. Prove that the function $f(x) = (\log)_e x$ is increasing on $(0, \infty)$.

71. Prove that the function $f(x) = (\log)_a x$ is increasing on $(0, \infty)$ if a > 1 and decreasing on $(0, \infty)$.if `0

72. Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R.

73. Prove that f(x) = ax + b , where a, b are constants and a < 0 is a decreasing function on R .
74. Show that $f(x) = \frac{1}{x}$ is a decreasing function on $(0, \infty)$.

Watch Video Solution

75. Show that $f(x)=rac{1}{1+x^2}$ decreases in the interval $[0,\ \infty)$ and increases in the interval $(-\infty,\ 0]$.

76. Show that $f(x) = rac{1}{1+x^2}$ is neither

increasing nor decreasing on R .

Watch Video Solution

77. Without using the derivative, show that the function f(x)=|x| is (a) strictly increasing in $(0, \infty)$ (b) strictly decreasing in $(-\infty, 0)$

78. Without using the derivative show that the function f(x) = 7x - 3 is strictly increasing function on R.

decreasing.

80. Find the intervals in which the function $f(x) = 2x^3 - 9x^2 + 12x + 15$ is increasing

and decreasing.

Watch Video Solution

81. Find the intervals in which the function $f(x) = 2x^3 + 9x^2 + 12x + 20$ is increasing

and decreasing.

82. Find the intervals in which $f(x) = (x+1)^3(x-1)^3$ is increasing or decreasing.

Watch Video Solution

83. Find the intervals in which $f(x) = (x-1)^3 (x-2)^2$ is increasing or

decreasing.

84. Find the intervals in which the function $f(x) = x^4 - \frac{x^3}{3}$ is increasing or decreasing.

85. Find the intervals in which the function
$$f(x) = \log(1+x) - \frac{2x}{2+x}$$
 is increasing or decreasing.

86. Find the intervals in which $f(x) = rac{4x^2+1}{x}$

is increasing or decreasing.

87. Determine the intervals in which the function $f(x) = x^4 - 8x^3 + 22x^2 - 24x + 21$ is decreasing or increasing.

88. Find the intervals for which $f(x) = x^4 - 2x^2$ is increasing or decreasing. **Watch Video Solution**

89. Determine the values of
$$x$$
 for which $f(x)=rac{x-2}{x+2}, \ x
eq -1$ is increasing or decreasing.

90. Find the intervals in which $f(x) = rac{x}{2} + rac{2}{x}, \ x
eq 0$ is increasing or

decreasing.

91. Find the intervals in which the function f given by $f(x) = x^3 + rac{1}{x^3}, \ x
eq 0$ is (i)

increasing (ii) decreasing.

92. For which values of x, the function $f(x) = rac{x}{x^2+1}$ is increasing and for which values of x , it is decreasing. Watch Video Solution **93.** At x = 4 the function

$$f(x) = 2\log(x-2) - x^2 + 4x + 1$$
 is

A. Increasing

B. Decreasing

C. Neither increasing nor decreasing

D. None

Answer: B

Watch Video Solution

94. Separate $[0, \ \pi/2]$ into subintervals in which

 $f(x) = \sin 3x$ is increasing or decreasing.

95. Find the intervals in which the function f

given by
$$f(x)=rac{4\sin x-2x-x\cos x}{2+\cos x},\ 0\leq x\leq 2\pi$$
 is

increasing and decreasing

Watch Video Solution

96. Separate the interval $[0, \pi/2]$ into subintervals in which $f(x) = \sin^4 x + \cos^4 x$ is increasing or decreasing.

97. Find the intervals in which the function f given by

 $f(x) = \sin x + \cos x, \qquad \quad 0 \leq x \ \leq 2\pi \quad ext{is}$

strictly increasing or strictly decreasing.

99. Function $f(x) = x^3 - 3x^2 + 3x - 100$ is

increasing at x = ?

A. - 2

B.1

C. 0

D. None

Answer: A

102. Show that the function x + 1/x is increasing for x > 1. **Vatch Video Solution**

103. Show that $f(x) = an^{-1}(\sin x + \cos x)$ is

an increasing function on the interval $(0, \ \pi/4)$

104. Prove that $f(\theta) = \frac{4\sin\theta}{2+\cos\theta} - \theta$ is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$.

Watch Video Solution

105. Prove that the function $f(x) = \tan x - 4x$

is strictly decreasing on $(\,-\pi/3,\,\pi/3)$.

106. Show that
$$f(x) = 2x + \cot^{-1}x + \log(\sqrt{1+x^2}-x)$$
 is increasing on R .
• Watch Video Solution
107. Test whether the function $f(x) = x^3 - 8$ is increasing on $[1, 2]$.
• Watch Video Solution

108. Which of the following functions are decreasing on $(0, \pi/2)$? (i) $\cos x$ (ii) $\cos 2x$ (iii) $\tan x$ (iv) $\cos 3x$

110. On which of the following intervals, the function $x^{100} + \sin x - 1$ is strictly increasing. (-1, 1) (b) (0,1) $\left(\frac{\pi}{2}, \pi\right)$ (d) $\left(0, \frac{\pi}{2}\right)$

Watch Video Solution

111. Determine the values of x for which

 $f(x) = x^x, \; x > 0$ is increasing or decreasing.

112. Find the intervals in which $f(x) = rac{x}{\log x}$ is

increasing or decreasing

Watch Video Solution

113. If a, b, c are real numbers, then find the intervals in which $f(x) = \left| x + a^2 a b a c a b x + b^2 b c a c b c x + c^2 \right|$ is

increasing or decreasing.

increasing function on $(3\pi/8,\ 7\pi/8)$.

116. Find the least value of 'a' such that the function $f(x) = x^2 + ax + 1$ is increasing on [1, 2]. Also, find the greatest value of 'a' for which f(x) is decreasing on [1, 2].

Watch Video Solution

117. Find the values a' for which the function

$$f(x) = (a+2)x^3 - 3ax^2 + 9ax - 1$$

decreases for all real values of x .

118. Find the values of k for which $f(x) = kx^3 - 9kx^2 + 9x + 3$ is increasing on R .

119. Find the intervals in which $f(x) = 10 - 6x - 2x^2$ is increasing or

decreasing.

122. Find the intervals in which $f(x) = 2x^3 - 12x^2 + 18x + 15$ is increasing or decreasing.

Watch Video Solution

123. Find the intervals in which $f(x) = 5 + 36x + 3x^2 - 2x^3$ is increasing or

decreasing.

decreasing.

126. Find the intervals in which $f(x) = x^3 - 6x^2 - 36x + 2$ is increasing or decreasing.

127. Find the intervals in which $f(x) = 2x^3 - 15x^2 + 36x + 1$ is increasing or

decreasing.

decreasing.

130. Find the intervals in which $f(x) = 6 + 12x + 3x^2 - 2x^3$ is increasing or decreasing.

131. Find the intervals in which $f(x) = 2x^3 - 24x + 107$ is increasing or

decreasing.

Watch Video Solution

decreasing.

134. Find the intervals in which $f(x) = x^3 - 12x^2 + 36x + 17$ is increasing or decreasing.

decreasing.

136. Find the intervals in which
$$f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11$$
 is

increasing or decreasing.

Watch Video Solution

137. Find the intervals in which $f(x) = x^4 - 4x$

is increasing or decreasing.

increasing or decreasing.

139. Find the intervals in which $f(x) = x^4 - 4x^3 + 4x^2 + 15$ is increasing or

decreasing.

142. Find the intervals in which $f(x) = x^3 - 6x^2 + 9x + 15$ is increasing or decreasing.

decreasing.

146. Find the intervals in which $f(x) = \log(2+x) - \frac{2x}{2+x}, x \in R$

147. Determine the values of x for which the function $f(x) = x^2 - 6x + 9$ is increasing or decreasing. Also, find the coordinates of the point on the curve $y = x^2 - 6x + 9$ where the normal is parallel to the line y = x + 5.

148. Find the intervals in which $f(x) = \sin x - \cos x$, where $0 < x < 2\pi$ is increasing or decreasing.

Watch Video Solution

152. Show that $f(x) = \sin x$ is increasing on $(0, \pi/2)$ and decreasing on $(\pi/2, \pi)$ and

neither increasing nor decreasing in $(0, \pi)$.

154. Show that $f(x) = x - \sin x$ is increasing

for all $x \in R$.

155. Show that $f(x) = x^3 - 15x^2 + 75x - 50$ is

an increasing function for all $x \in R$.

Watch Video Solution

156. Show that $f(x) = \cos^2 x$ is a decreasing function on $(0, \ \pi/2)$.

157. Show that $f(x) = \sin x$ is an increasing function on $(-\pi/2, \pi/2)$.

Watch Video Solution

158. Show that $f(x) = \cos x$ is a decreasing function on $(0, \pi)$, increasing in $(\pi, 0)$ and neither increasing nor decreasing in (π, π) .

159. Show that $f(x) = \tan x$ is an increasing function on $(-\pi/2, \pi/2)$.

Watch Video Solution

160. Show that $f(x) = \tan^{-1}(\sin x + \cos x)$ is

a decreasing function on the interval on $(\pi/4, \pi/2)$.

increasing function for all $x \in R$.

167. State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function $f(x) = x^2 - 6x + 3$ is increasing on the interval [4, 6].

168. Show that $f(x) = \sin x - \cos x$ is an increasing function on $(-\pi/4, \pi/4)$.

Watch Video Solution

decreasing function on R.

172. Find the intervals in which $f(x) = (x+2)e^{-x}$ is increasing or decreasing. **Watch Video Solution**

173. Show that the function f given by

 $f(x) = 10^x$ is increasing for all x .

174. Prove that the function f given by f(x) = x - [x] is increasing in (0, 1).

176. Prove that the function f given by $f(x) = \log \cos x$ is strictly increasing on $(-\pi/2, 0)$ and strictly decreasing on $(0, \pi/2)$.

Watch Video Solution

177. Show that the function f given by $f(x) = x^3 - 3x^2 + 4x, x \in R$ is strictly

increasing on R.

178. Prove that the function $f(x) = \cos x$ is strictly decreasing in $(0, \pi)$ Watch Video Solution

179. Prove that the function $f(x) = \cos x$ is

strictly increasing in $(\pi, 2\pi)$

180. Prove that the function $f(x) = \cos x$ is neither increasing nor decreasing in $(0, 2\pi)$ **Vatch Video Solution**

181. Show that $f(x) = x^2 - x \sin x$ is an

increasing function on $(0, \ \pi/2)$.

182. Find the value(s) of a for which $f(x) = x^3 - ax$ is an increasing function on R

183. Find the values of b for which the function $f(x) = \sin x - bx + c$ is a decreasing function on R .

184. Show that $f(x) = x + \cos x - a$ is an

increasing function on R for all values of a .

Watch Video Solution

185. Let f defined on [0,1] be twice differentiable such that $|f(x)| \le 1$ for $x \in [0,1].$ if f(0) = f(1) then show that |f'(x) < 1 for all $x \in [0,1].$

186. Find the intervals in which $f(x) = x |x|, \ x \in R$ is increasing or decreasing:

187. Find the intervals in which $f(x)=sinx+|sinx|, \setminus$

0

188. Find the intervals in which `f(x)=s in\x(1+cosx),\\0
Watch Video Solution

189. What are the values of a' for which

 $f(x) = a^x$ is increasing on R

190. What are the values of 'a' for which $f(x) = a^x$ is decreasing on RWatch Video Solution

191. Write the set of values of a' for which

 $f(x) = (\log)_a x$ is increasing in its domain.

192. Write the set of values of 'a' for which

 $f(x) = (\log)_a x$ is decreasing in its domain.

194. Find the values of 'a' for which the function $f(x) = \sin x - ax + 4$ is increasing function on R.

Watch Video Solution

195. Find the set of values of 'b' for which $f(x) = b(x + \cos x) + 4$ is decreasing on R .

196. Find the set of values of 'a' for which $f(x) = x + \cos x + ax + b$ is increasing on R.

Watch Video Solution

197. Write the set of values of k for which

 $f(x) = kx - \sin x$ is increasing on R .

198. If g(x) is a decreasing function on R and $f(x) = \tan^{-1}\{g(x)\}$. State whether f(x) is increasing or decreasing on R.

199. Write the set of values of a for which the function f(x) = ax + b is decreasing for all $x \in R$.

Watch Video Solution

201. State whether $f(x) = \tan x - x$ is

increasing or decreasing its domain.

202. Write the set of values of a for which $f(x) = \cos x + a^2 x + b$ is strictly increasing on R .

203. The interval of increase of the function $f(x)=x-e^x+ an(2\pi/7)$ is (a) $(0,\infty)$ (b) $(-\infty, 0)$ (c) $(1,\infty)$ (d) $(-\infty, 1)$

Watch Video Solution

204. The function $f(x) = \cot^{-1} x + x$ increases in the interval (a) $(1, \infty)$ (b) $(-1, \infty)$ (c) $(-\infty, \infty)$ (d) $(0, \infty)$

Watch Video Solution

205. The function $f(x)=x^x$ decreases on the interval (a) $(0,\ e)$ (b) $(0,\ 1)$ (c) $(0,\ 1/e)$ (d) $(1/e,\ e)$

206. The function $f(x) = 2\log(x-2) - x^2 + 4x + 1$ increases on the interval (a) (1, 2) (b) (2, 3) (c) (1, 3) (d) (2, 4)

207. If the function $f(x) = 2x^2 - kx + 5$ is increasing on [1, 2], then k lies in the interval (a) $(-\infty, 4)$ (b) $(4, \infty)$ (c) $(-\infty, 8)$ (d) $(8, \infty)$

Watch Video Solution

208. IF $f(x) = x^3 + ax^2 + bx + 5\sin^2 x$ is a strictly increasing function on the set of real numbers then a and b must satisfy the relation $a^2 - 3b + 15 \le 0$ (b) $a^2 - 3b + 20 \le 0$ $a^2 - 3b + 25 \le 0$ (d) $a^2 - 3b + 30 \le 0$

209. The function
$$f(x) = (\log)_e \left(x^3 + \sqrt{x^6 + 1}
ight)$$
 is of the following types: (a) even and increasing (b) odd

and increasing (c) even and decreasing (d) odd

and decreasing

 $f(x) = 2 \tan x + (2a+1) (\log)_e |\sec x| + (a-2)x$

is increasing on R , then (a) $a\in (1/2,\ \infty)$ (b)

 $a\in (\,-1/2,\ 1/2)$ (c) a=1/2 (d) $a\in R$

211. Let $f(x) = an^{-1}(g(x))$, where g(x) is

monotonically increasing for `0

212. Let $f(x)=x^3-6x^2+15x+3$. Then, (a) f(x)>0 for all $x\in R$ (b) f(x)>f(x+1) for all $x\in R$ (c) f(x) is invertible (d) f(x)<0 for all $x\in R$

213. The function $f(x) = x^2 e^{-x}$ is monotonic increasing when (a) $x \in R - [0, \ 2]$ (b) `0 Watch Video Solution **214.** Function $f(x) = \cos x - 2 \lambda x$ is monotonic decreasing when (a) $\lambda > 1/2$ (b) $\lambda < 1/2$ (c) $\lambda < 2$ (d) $\lambda > 2$

215. In the interval (1, 2), function f(x) = 2|x - 1| + 3|x - 2| is (a) monotonically increasing (b) monotonically decreasing (c) not monotonic (d) constant Watch Video Solution

216. Function
$$f(x) = x^3 - 27x + 5$$
 is

monotonically increasing when (a) x < -3 (b)

$$|x|>3$$
 (c) $x\leq\,-3$ (d) $|x|\geq3$
217. Function $f(x) = 2x^3 - 9x^2 + 12x + 29$ is monotonically decreasing when (a) x < 2 (b) x > 2 (c) x > 3 (d) `1

Watch Video Solution

219.

$$f(x)=2x- an^{-1}x-\log\Bigl\{x+\sqrt{x^2+1}\Bigr\}$$
 is

monotonically increasing when (a) x>0 (b) x<0 (c) $x\in R$ (d) $x\in R-\{0\}$

Watch Video Solution

220. Function f(x) = |x| - |x - 1| is monotonically increasing when (a) x < 0 (b)

x>1 (c) x<1 (d) `0

221. Every invertible function is (a) monotonicfunction(b) constant function (c) identityfunction(d) not necessarily monotonic

function

Watch Video Solution

222. In the interval $(1,\ 2)$, function

f(x)=2ert x-1ert+3ert x-2ert is (a) increasing (b)

decreasing (c) constant (d) none of these

223. If the function $f(x) = \cos |x| - 2ax + b$

increases along the entire number scale, then

(a)
$$a=b$$
 (b) $a=rac{1}{2}b$ (c) $a\leq -rac{1}{2}$ (d) $a \succ rac{3}{2}$

Watch Video Solution

224. The function $f(x) = \frac{x}{1+|x|}$ is (a) strictly increasing (b) strictly decreasing (c) neither increasing nor decreasing (d) none of these

225. The function $f(x)=rac{\lambda\sin x+2\cos x}{\sin x+\cos x}$ is increasing, if (a) $\lambda<1$ (b) $\lambda>1$ (c) $\lambda<2$ (d) $\lambda>2$

Watch Video Solution

226. Function $f(x) = a^x$ is increasing on R , if (a) a > 0 (b) a < 0 (c) 0 < a < 1 (d) a > 1

227. Function $f(x) = (\log)_a x$ is increasing on R

, if (a) `01(c)a<1(d)a >0`

> Watch Video Solution

228. Let
$$\varphi(x) = f(x) + f(2a - x)$$
 and
 $f(x) > 0$ for all $x \in [0, a]$. Then, $\varphi(x)$ (a)
increases on $[0, a]$ (b) decreases on $[0, a]$ (c)
increases on $[-a, 0]$ (d) decreases on $[a, 2a]$

229. If the function $f(x)=x^2-kx+5$ is increasing on $[2,\ 4]$, then (a) $k\in(2,\ \infty)$ (b) $k\in(-\infty,\ 2)$ (c) $k\in(4,\ \infty)$ (d) $k\in(-\infty,\ 4)$

Watch Video Solution

230. The function $f(x) = -x/2 + \sin x$ defined on $[-\pi/3, \pi/3]$ is (a) increasing (b) decreasing (c) constant (d) none of these

232. The function $f(x)=x^9+3x^7+64$ is increasing on (a) R (b) $(-\infty,\ 0)$ (c) $(0,\ \infty)$ (d)

 R_0

