© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS

(HINGLISH)

MAXIMA AND MINIMA

Solved Examples And Exercises

1. Find the coordinates of a point on the parabola $y=x^{2}+7 x+2$ which is closest to
the straight line $y=3 x-3$.

- Watch Video Solution

2. Find the points of local maxima or local minima, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum values, as the case
may be: $f(x)=\frac{x}{2}+\frac{2}{x}, x>0$

D Watch Video Solution

3. An open tank is to be constructed with square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead will be least, if depth is made half of width.

- Watch Video Solution

4. Find the points of local maxima or local minima, if any, of the following function, using
the first derivative test. Also, find the local
maximum or local minimum values, as the case may be: $f(x)=\sin 2 x-x,-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$

D Watch Video Solution

5. Find the maximum slope of the curve
$y=-x^{3}+3 x^{2}+2 x-27$.

D Watch Video Solution

6. The total cost of producing x radio sets per day is $R s \frac{x^{2}}{4} 35 x+25$ and the price per set at
which they may be sold is $R s 50-\frac{x}{2}$. Find the daily output to maximize the total profit.

D Watch Video Solution

7. A box of constant volume c is to be twice as
long as it is wide. The material on the top and
four sides cost three times as much per
square metre as that in the bottom. What are the most economic dimensions?
8. The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

D Watch Video Solution

9. Find the maximum and the minimum values,
if any, without using derivatives of the following functions: $f(x)=-(x-1)^{2}+2$ on R
10. Find the maximum and the minimum values, if any, without using derivatives of the following functions: $f(x)=4 x^{2}-4 x+4$ on R

D Watch Video Solution

11. Show that the maximum volume of the
cylinder which can be inscribed in a sphere of radius $5 \sqrt{3} \mathrm{~cm}$ is $500 \pi \mathrm{~cm}^{3}$.

- Watch Video Solution

12. Find the maximum and the minimum values, if any, without using derivatives of the following functions: $f(x)=2 x^{3}+5$ on R

- Watch Video Solution

13. Find the points of local maxima or local minima and corresponding local maximum and local minimum values of each of the
following functions. Also, find the points of inflection, if any : $f(x)=x e^{x}$

D Watch Video Solution

14. Find the points of local maxima or local minima and corresponding local maximum and local minimum values of each of the following functions. Also, find the points of inflection, if any
$f(x)=x^{4}-62 x^{2}+120 x+9$
15. The function $y=a \log x+b x^{2}+x$ has extreme values at $x=1,2$. Find a and b

D Watch Video Solution

16. The maximum value of $[x(x-1)+1]^{\frac{1}{3}}$ in $0 \leq x \leq 1$ is: ,
A. 0
B. $\frac{1}{2}$
C. 1
D. $\left(\frac{1}{3}\right)^{\frac{1}{3}}$

Answer: B

- Watch Video Solution

17. A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimensions of the rectangle so that its area is maximum. Find also the area.
18. A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 2 metres find the dimensions of the rectangle that will produce the largest area of the window.

D Watch Video Solution

19. Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm
long.

- Watch Video Solution

20. A closed cylinder has volume $2156 \mathrm{~cm}^{3}$.

What will be the radius of its base so that its
total surface area is minimum?

D Watch Video Solution

21. Find the points of local maxima or local minima, if any, of the following function, using
the first derivative test. Also, find the local maximum or local minimum values, as the case may be: $f(x)=x^{3}(2 x-1)^{3}$

- Watch Video Solution

22. Show that among all positive numbers x and y with $x^{2}+y^{2}=r^{2}$, the sum $x+y$ is
largest when $x=y=\frac{r}{\sqrt{2}}$.
23. Find the points of local maxima or local minima, if any, of the following function, using the first derivative test. Also, find the local maximum or local minimum values, as the case may be: $f(x)=(x-5)^{4}$

- Watch Video Solution

24. Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is $\cot ^{-1}(\sqrt{2})$.
25. Show that the cone of the greatest volume which can be inscribed in a given sphere has an altitude equal to $2 / 3$ of the diameter of the sphere.

D Watch Video Solution

26. Find the points of local maxima or local minima, if any, of the following function, using the first derivative test. Also, find the local
maximum or local minimum values, as the case
may be: $f(x)=(x-1)(x+2)^{2}$

D Watch Video Solution

27. Find the points of local maxima or local minima, if any, of the following function, using
the first derivative test. Also, find the local maximum or local minimum values, as the case may be: $f(x)=\cos x, 0<x<\pi$
28. Determine the points on the curve $x^{2}=4 y$ which are nearest to the point $(0,5)$.

D Watch Video Solution

29. The total area of a page is $150 \mathrm{~cm}^{2}$. The combined width of the margin at the top and
bottom is 3 cm and the side 2 cm . What must
be the dimensions of the page in order that the area of the printed matter may be maximum?
30. A straight line is drawn through a given point $P(1,4)$. Determine the least value of the sum of the intercepts on the coordinate axes.

D Watch Video Solution

31. The strength of a beam varies as the product of its breadth and square of its depth.

Find the dimensions of the strongest beam
which can be cut from a circular log of radius a.

- Watch Video Solution

32. The given quantity of metal is to be cost into a half cylinder with a rectangular base and semicircular ends. Show that in order that
the total surface area may be minimum, the ratio of the length of the cylinder to the diameter of its semi-circular ends is $\pi:(\pi+2)$.

Watch Video Solution

33. A particle is moving in a straight line such that its distance s at any time t is given by $s=\frac{t^{4}}{4}-2 t^{3}+4 t^{2}-7 . \quad$ Find \quad when \quad its velocity is maximum and acceleration minimum.

- Watch Video Solution

34. A wire of length 20 m is to be cut into two
pieces. One of the places will be bent into
shape of a square and the other shape of an
equilateral triangle. Where the wire should be cut so that the sum of the areas of the square and triangle is minimum?

- Watch Video Solution

35. A beam is supported at the two ends and is
uniformly loaded. The bending moment M at
a distance x from one end is given by
$M=\frac{W L}{2} \times-\frac{W}{2} x^{2}$ Find the point at which M is maximum in each case.

Watch Video Solution

36. Determine two positive numbers whose sum is 15 and the sum of whose squares is minimum.

D Watch Video Solution

37. Show that the right circular cylinder, open at the top, and of given surface area and maximum volume is such that its height is equal to the radius of the base.
38. Find the volume of the larges cylinder that
can be inscribed in a sphere of radius rcm .

D Watch Video Solution

39. A rectangular sheet of fixed perimeter with sides having their lengths in the ratio $8: 15$ is converted into anopen rectangular box by folding after removing squares of equal area
from all four corners. If the total area of removed squares is 100 , the resulting box has maximum volume. Then the length of the sides of the rectangular sheet are 24 (b) 32 (c) 45 (d) 60

D Watch Video Solution

40. A square piece of tin of side 18 cm is to be made into a box without top, by cutting a square from each corner and folding up the
flaps to form the box. What should be the side
of the square to be cut off so that the volume of the box is the maximum possible?

D Watch Video Solution

41. Find both the maximum and the minimum
value of $3 x^{4}-8 x^{3}+12 x^{2}-48 x+1$ on the
interval $[1,4]$.

D Watch Video Solution
42. Show that $f(x)=\sin x(1+\cos x)$ is maximum at $x=\frac{\pi}{3}$ in the interval $[0, \pi]$.

D Watch Video Solution

43. Show that the triangle of maximum area
that can be inscribed in a given circle is an equilateral triangle.

D Watch Video Solution
44. The sum of the surface areas of a cuboid with sides $x, 2 x$ and $\frac{x}{3}$ and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.

- Watch Video Solution

45. Find the maximum and minimum value of
$f(x)=\sin x+\frac{1}{2} \cos 2 x \in\left[0, \frac{\pi}{2}\right]$.
46. Prove that $f(x)=\sin x+\sqrt{3} \cos x$ has
maximum value at $x=\frac{\pi}{6}$.

D Watch Video Solution

47. Find the difference between the greatest
and least values of the function
$f(x)=\sin 2 x-x o n\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
48. Find the maximum and minimum values of
$f(x)=x^{50}-x^{20}$ in the interval $[0,1]$.

D Watch Video Solution
49. If $f(x)=a \log |x|+b x^{2}+x$ has extreme
values at $x=-1$ and at $x=2$, then find a and b.

D Watch Video Solution
50. At what points, the slope of the curve $y=-x^{2}+3 x^{2}+9 x-27$ is maximum?

Also, find the maximum slope.

D Watch Video Solution

51. Show that the maximum value of $\left(\frac{1}{x}\right)^{x}$ is $e^{\frac{1}{e}}$.

D Watch Video Solution

52. If $y=\frac{a x-b}{(x-1)(x-4)}$ has a turning point
$P(2,-1)$, find the value of $a a n d b$ and show that y is maximum at P.

D Watch Video Solution

53. A metal box with a square base and vertical
sides is to contain 1024 cm 3 of water, the material for the top and bottom costs Rs 5 per cm2 and the material for the sides costs Rs
2.50 per cm 2 . Find the least cost of the box.
54. OR An open box with a square base is to be made out of a given quantity of cardboard of area c^{2} square units. Show that the maximum volume of the box is $\frac{c^{3}}{6 \sqrt{3}}$ cubic units.

D Watch Video Solution

55. Find the point on the curve $y^{2}=4 x$ which is nearest to the point $(2,1)$.
56. The maximum value of
$f(x)=\frac{x}{4+x+x^{2}}$ on $[-1,1]$ is (a) $\frac{1}{4}$ (b)
$-\frac{1}{3}$ (c) $\frac{1}{6}$ (d) $\frac{1}{5}$

D Watch Video Solution

57. The function $f(x)=\sum_{r=1}^{5}(x-r)^{2}$ assuming minimum value at $x=$ (a)5 (b) $\frac{5}{2}$ (c) 3 (d) 2
58. The least value of the function
$f(x)=x^{3}-18 x^{2}+96 x$ in the interval $[0,9]$ is 126 (b) 135 (c) 160 (d) 0

D Watch Video Solution

59. The maximum value of $x^{\frac{1}{x}}, x>0$ is (a) $e^{\frac{1}{e}}$
(b) $\left(\frac{1}{e}\right)^{e}$ (c) 1 (d) none of these
60.

$f(x)=(x-a)^{2}+(x-b)^{2}+(x-c)^{2}$.
Then, $f(x)$ has a minimum at $x=\frac{a+b+c}{3}$
(b) $\frac{1}{2}$ (c) $\frac{1}{8}$ (d) none of these

- Watch Video Solution

61. Show that of all the rectangles inscribed in
a given fixed circle, the square has the maximum area.
62. $A B$ is a diameter of a circle and C is any point on the circumference of the circle. Then the area of $A B C$ is maximum when it is isosceles the area of $A B C$ is minimum when it is isosceles the perimeter of $A B C$ is minimum when it is isosceles

- Watch Video Solution

63. Find the local maxima and local minima, if any, of the following functions. Find also the
local maximum and the local minimum values,

$$
\begin{aligned}
& \text { as } \\
& \text { the case } \\
& f(x)=x^{3}-6 x^{2}+9 x+15
\end{aligned}
$$

D Watch Video Solution

64. Find the local maximum and local

minimum

value
$f(x)=\sec x+\log \cos ^{2} x, 0<x<2 \pi$
65. Amongst all pairs of positive numbers with product 256 , find those whose sum is the least.

D Watch Video Solution

66. Find two positive numbers whose sum is 14
and the sum of whose squares in minimum.

D Watch Video Solution

67. A beam is supported at the two ends and is
uniformly loaded. The bending moment M at
a distance x from one end is given by
$M=\frac{W L}{2} x-\frac{W}{2} x^{2} \quad M=\frac{W x}{3}-\frac{W}{3} \frac{x^{3}}{L^{2}}$
Find the point at which M is maximum in each case.

- Watch Video Solution

68. Show that all the rectangles with a given perimeter, the square has the largest area.
69. Find all the points of local maxima and

$$
\begin{aligned}
& \text { local minima of the function } \\
& f(x)=x^{3}-6 x^{2}+12 x-8
\end{aligned}
$$

D Watch Video Solution

$$
\begin{aligned}
& \text { 70. Show that the function } \\
& f(x)=4 x^{3}-18 x^{2}+27 x-7 \text { has neither }
\end{aligned}
$$ maxima nor minima.

71. Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function
$f(x)=-\frac{3}{4} x^{4}-8 x^{3}-\frac{45}{2} x^{2}+105$.

D Watch Video Solution

72. Find all the points of local maxima and minima and the corresponding maximum and
minimum values of the function
$f(x)=2 x^{3}-21 x^{2}+36 x-20$.

D Watch Video Solution

73. Find the points of local maxima, local minima and the points of inflection of the
function $f(x)=x^{5}-5 x^{4}+5 x^{3}-1$. Also,
find the corresponding local maximum and local minimum values.
74. Find the point of local maxima or local minima of the function
$f(x)=\left(\sin ^{4} x+\cos ^{4} x\right)$ in $0<x<\frac{\pi}{2}$

- Watch Video Solution

75. Prove that the area of right-angled triangle of given hypotenuse is maximum when the triangle is isosceles.

- Watch Video Solution

76. Show that the total surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.

- Watch Video Solution

77. Find the maximum and the minimum
values, if any, of the following functions
$f(x)=3 x^{2}+6 x+8, x \in R$

- Watch Video Solution

78. Find the maximum and the minimum values, if any, of the following functions $f(x)=-|x-1|+5 f$ or allx $\in R$

D Watch Video Solution

79. Find the maximum and the minimum values, if any, of the following functions
$f(x)=\sin 3 x+4, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
80. Find the maximum and the minimum values, if any, of the following functions $\mathrm{f}(\mathrm{x})=|\mathrm{x}+3|$ for all $x \in R$.

- Watch Video Solution

81. A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimensions of the rectangle so that its area is maximum. Find also the area.
82. A wire of length 36 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces, so that the combined area of the square and the circle is minimum?

- Watch Video Solution

83. Find the maximum and the minimum
values of $f(x)=3 x^{2}+6 x+8, \quad x \in R$, if any.

D Watch Video Solution

84. Find the maximum and the minimum
values of $f(x)=x+1$ for all $x \in(-1,1)$,
if any.
85. Find the maximum and the minimum
values of $f(x)=|\sin 4 x+3|, x \in(R)$, if any.
(Watch Video Solution
86. Find the maximum and the minimum
values of $f(x)=x^{3}+1$ for all $x \in R$, if any.

- Watch Video Solution

87. Find the maximum and the minimum
values of $f(x)=\sin (\sin x)$ for all $x \in R$, if
any.

D Watch Video Solution

88. Find the maximum and the minimum
values of $f(x)=|x+3|$ for all $x \in R$, if any.

D Watch Video Solution

89. Find the maximum and minimum values of
$f(x)=4 x^{2}-4 x+4$ on R, if any, without using derivatives.

- Watch Video Solution

90. Find the maximum and minimum values of
$f(x)=-(x-1)^{2}+2$ on R, if any, without
using derivatives.

D Watch Video Solution
91. Find the maximum and minimum values of $f(x)=|x+2|$ on R, if any, without using derivatives.

- Watch Video Solution

92. Find the maximum and minimum values of
$f(x)=\sin 2 x+5$ on R, if any, without using derivatives.
93. Find the maximum and minimum values of
$f(x)=|\sin 4 x+3|$ on R, if any, without using derivatives.

D Watch Video Solution

94. Find the maximum and minimum values of
$f(x)=2 x^{3}+5$ on R, if any, without using derivatives.

D Watch Video Solution
95. Find the maximum and minimum values of
$f(x)=-|x+1|+3$ on R, if any, without using derivatives.

D Watch Video Solution

96. Find the maximum and minimum values of
$f(x)=16 x^{2}-16 x+28$ on R, if any,
without using derivatives.

D Watch Video Solution
97. Find the maximum and minimum values of
$f(x)=x^{3}-1$ on R, if any, without using derivatives.

- Watch Video Solution

98. Find all the points of local maxima and

> minima of \quad the $f(x)=x^{3}-6 x^{2}+9 x+15$
99. Find all the points of local maxima and local minima as well as the corresponding local maximum and local minimum values for the function $f(x)=(x-1)^{3}(x+1)^{2}$.

D Watch Video Solution

100. Find all the points of local maxima and
local minima of the function
$f(x)=x^{3}-6 x^{2}+12 x+15$.

D Watch Video Solution

101. Show that the function
$f(x)=4 x^{3}-18 x^{2}+27 x-7$ has neither maxima nor minima.

D Watch Video Solution

102. Find the points of local maxima, local minima and the points of inflection of the
function $f(x)=x^{5}-5 x^{4}+5 x^{3}-1$. Also,
find the corresponding local maximum and local minimum values
103. Find the local maxima or local minima, if any, of the function
$f(x)=\sin x+\cos x, \quad 0<x<\frac{\pi}{2}$ using the first derivative test.

D Watch Video Solution

104. Find the local maximum or local minimum,
$f(x)=\sin ^{4} x+\cos ^{4} x, \quad 0<x<\frac{\pi}{2} \quad$ using
the first derivative test.

D Watch Video Solution

105. Find the points at which the function f given by $f(x)=(x-2)^{4}(x+1)^{3}$ has local maxima and local minima and points of inflexion.
106. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=(x-5)^{4}$

D Watch Video Solution

107. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=x^{3}-3 x$
108. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=x^{3}(2 x-1)^{3}$

- Watch Video Solution

109. Find the points of local maxima or local minima, if any, using first derivative test, and
local maximum or local minimum of
$f(x)=(x-1)(x+2)^{2}$

- Watch Video Solution

110. Find the points of local maxima or local minima, if any, using first derivative test, and
local maximum or local minimum of
$f(x)=\frac{1}{x^{2}+2}$
111. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=x^{3}-6 x^{2}+9 x+15$

D Watch Video Solution

112. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=\sin 2 x, 0<x<\pi$
113. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=\sin x-\cos x, \quad 0<x<2 \pi$

- Watch Video Solution

114. Find the points of local maxima or local minima, if any, using first derivative test, and
local maximum or local minimum of
$f(x)=\cos x, \quad 0<x<\pi$

D Watch Video Solution

115. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=\sin 2 x-x, \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
116. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=2 \sin x-x, \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$

- Watch Video Solution

117. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=x \sqrt{1-x}, \quad x>0$
118. Find the points of local maxima or local minima, if any, using first derivative test, and local maximum or local minimum of $f(x)=x^{3}(2 x-1)^{3}$

D Watch Video Solution

119. Find the points of local maxima or local minima, if any, using first derivative test, and
local maximum or local minimum of
$f(x)=\frac{x}{2}+\frac{2}{x}, x>0$

- Watch Video Solution

120. Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function $f(x)=-\frac{3}{4} x^{4}-8 x^{3}-\frac{45}{2} x^{2}+105$.

D Watch Video Solution

121. Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function
$f(x)=2 x^{3}-21 x^{2}+36 x-20$.

- Watch Video Solution

122. Find the points of local maxima and local minima, if any, and local maximum and local minimum values of $f(x)=\sin 2 x-x$, where `-pi/2
123. Find the points of local maxima and local minima, if any, and local maximum and local minimum values of $f(x)=\sin x+\frac{1}{2} \cos 2 x$, where ${ }^{\circ} 0$

- Watch Video Solution

124. Find the points of local maxima and local minima, if any, and local maximum and local minimum values of $f(x)=\sin ^{4} x+\cos ^{4} x$, ○
125. Find the points of local maxima or local minima, if any, and local maximum or local minimum values of $f(x)=\sin x+\cos x$, where ${ }^{\circ}$

- Watch Video Solution

126. Find the points of local maxima and local minima, if any, and local maximum and local
minimum values of $f(x)=\sin x-\cos x$, where ` 0

D Watch Video Solution

127. Find the points of local maxima and local minima, if any, and local maximum and local minimum values of $f(x)=\sin 2 x$, where $0<x<\pi$
128. Find the points of local maxima and local minima, if any, and local maximum and local minimum values of $f(x)=2 \cos x+x$, where
$0<x<\pi$

- Watch Video Solution

129. Find the points of local maxima and local minima, if any, and local maximum and local minimum values of $f(x)=2 \sin x-x$,
$-\frac{\pi}{2}<x<\frac{\pi}{2}$
130. Find the local maximum and local

minimum

values
$f(x)=\sec x+\log \cos ^{2} x, \quad 0<x<2 \pi$

- Watch Video Solution

131. Show that none of the following functions
has a local maximum or a local minimum:
$x^{3}+x^{2}+x+1$ (ii) e^{x}
132. Show that none of the following functions
has a local maximum or a local minimum: $\log x$
(ii) $\cos x, \quad 0<x<\pi$

D Watch Video Solution

133. Find the maximum profit that a company
can make, if the profit function is given
$P(x)=41+24 x-18 x^{2}$.
134. At what points, the slope of the curve $y=-x^{3}+3 x^{2}+9 x-27$ at point (x, y) is given by maximum slope.

D Watch Video Solution

135. If $f(x)=a \log |x|+b x^{2}+x$ has extreme
values at $x=-1$ and at $x=2$, then find a and b.
136. It is given that at $x=1$, the function
$x^{4}-62 x^{2}+a x+9$ attains its maximum
value on the interval $[0,2]$. Find the value of a.

- Watch Video Solution

137. If $y=\frac{a x-b}{(x-1)(x-4)}$ has a turning
point $P(2,-1)$, find the values of a and b and show that y is maximum at P.
138. Show that the maximum value of $\left(\frac{1}{x}\right)^{x}$
is $e^{1 / e}$.

D Watch Video Solution

139. Show that $\sin ^{p} \theta \cos ^{q} \theta$ attains a
maximum, when $\theta=\tan ^{-1} \sqrt{\frac{p}{q}}$.

- Watch Video Solution

140. Find the points of local maxima or minima and corresponding local maximum and minimum values of
$f(x)=x^{4}-62 x^{2}+120 x+9$. Also, find the points of inflection, if any:

D Watch Video Solution

141. Find the points of local maxima or minima and corresponding local maximum and
$f(x)=x^{3}-6 x^{2}+9 x+15$. Also, find the points of inflection, if any:

D Watch Video Solution

142. Find the points of local maxima or minima and corresponding local maximum and minimum values of $f(x)=(x-1)(x+2)^{2}$.

Also, find the points of inflection, if any:

- Watch Video Solution

143. Find the points of local maxima or minima and corresponding local maximum and minimum values of
$f(x)=2 / x-2 / x^{2}, x>0$. Also, find the points of inflection, if any:

- Watch Video Solution

144. Find the points of local maxima or minima and corresponding local maximum and
minimum values of $f(x)=x e^{x}$. Also, find the points of inflection, if any:

D Watch Video Solution

145. Find the points of local maxima or minima and corresponding local maximum and minimum values
$f(x)=x / 2+2 / x, x>0$. Also, find the points of inflection, if any:

D Watch Video Solution

146. Find the points of local maxima or minima and corresponding local maximum and minimum values of
$f(x)=(x+1)(x+2)^{1 / 3}, x \geq-2$. Also,
find the points of inflection, if any:

- Watch Video Solution

147. Find the points of local maxima or minima and corresponding local maximum and
$f(x)=x \sqrt{32-x^{2}}, \quad-5 \leq x \leq 5$. Also, find
the points of inflection, if any:

D Watch Video Solution

148. Find the points of local maxima or minima and corresponding local maximum and minimum values of $f(x)=x^{3}-2 a x^{2}+a^{2} x$
, $a>0, x \in R$. Also, find the points of inflection, if any:
149. Find the points of local maxima or minima and corresponding local maximum and minimum values of
$f(x)=x+\frac{a^{2}}{x}, a>0, x \neq 0$. Also, find the points of inflection, if any:

- Watch Video Solution

150. Find the points of local maxima or minima and corresponding local maximum and
$f(x)=x \sqrt{2-x^{2}}-\sqrt{2} \leq x \leq \sqrt{2}$. Also,
find the points of inflection, if any:

- Watch Video Solution

151. Find the points of local maxima or minima and corresponding local maximum and minimum values
$f(x)=x+\sqrt{1-x}, \quad x \leq 1$
152. The function $y=a \log x+b x^{2}+x$ has extreme values at $x=1$ and $x=2$. Find a and b.

D Watch Video Solution

153. Show that $\frac{\log x}{x}$ has a maximum value at $x=e$.
154. Find the maximum and minimum values of
the function $f(x)=\frac{4}{x+2}+x$.

D Watch Video Solution

155. Find the maximum and minimum values of
the function $f(x)=\tan x-2 x$.
(Watch Video Solution
156. If $f(x)=x^{3}+a x^{2}+b x+c$ has a maximum at $x=-1$ and minimum at $x=3$
. Determine a, b and c.

- Watch Video Solution

157. Prove that $f(x)=\sin x+\sqrt{3} \cos x$ has
maximum value at $x=\frac{\pi}{6}$.

D Watch Video Solution

158. Find the maximum and minimum values of
$f(x)=2 x^{3}-24 x+107$ in the interval $[1,3]$

D Watch Video Solution

159. Find the maximum and minimum values of
$f(x)=x+\sin 2 x$.

D Watch Video Solution
160. Find the maximum and minimum values of
$f(x)=\sin x+\frac{1}{2} \cos 2 x$ in $[0, \pi / 2]$.

D Watch Video Solution
161. Find the maximum and minimum values of $f(x)=x^{50}-x^{20}$ in the interval $[0,1]$.

D Watch Video Solution

162. Find the maximum and minimum values of $f(x)=x+\sin 2 x$ in the interval $[0,2 \pi]$

D Watch Video Solution

163. Find the difference between the greatest and least values of the function
$f(x)=\sin 2 x-x$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

D Watch Video Solution

164. Show that $f(x)=\sin x(1+\cos x)$ is maximum at $x=\frac{\pi}{3}$ in the interval $[0, \pi]$.

D Watch Video Solution

165. Find the absolute maximum value and the

> absolute \quad minimum \quad value $f(x)=2 x^{3}-15 x^{2}+36 x+1$ in $[1,5]$

D Watch Video Solution

166. Find the absolute maximum value and the absolute minimum value
$f(x)=\sin x+\cos x$ in $[0, \pi]$

- Watch Video Solution

167. Find both the maximum and the minimum
value of $3 x^{4}-8 x^{3}+12 x^{2}-48 x+25$ on
the interval $[0,3]$.

D Watch Video Solution

168. Find the absolute maximum and absolute minimum values of $f(x)=4 x-\frac{x^{2}}{2}$ in $[-2,4.5]$

- Watch Video Solution

169. Find the absolute maximum and absolute minimum values of $f(x)=(x-1)^{2}+3$ in $[-3,1]$
A. absolute maximum $=19$ absolute minimum $=3$
B. absolute maximum = 16 absolute

minimum $=3$

C. absolute maximum = 3 absolute
minimum $=19$
D. None of these

Answer: A
(Watch Video Solution
170. Find the absolute maximum and absolute minimum values
$f(x)=3 x^{4}-8 x^{3}+12 x^{2}-48 x+25$
$[0,3]$

- Watch Video Solution

171. Find the absolute maximum and the absolute minimum values of the following function in the given intervals:
$f(x)=(x-2) \sqrt{x-1}$ in $[1,9]$
172. Find the maximum value of
$2 x^{3}-24 x+107$ in the interval $[1,3]$. Find the maximum value of the same function in $\left[\begin{array}{cc}-3, & -1]\end{array}\right.$.

D Watch Video Solution
173. Find the absolute maximum and minimum
values of the function f given by
$f(x)=\cos ^{2} x+\sin x, x \in[0, \pi]$.
174. Find absolute maximum and minimum
values of a function f given by
$f(x)=12 x^{4 / 3}-6 x^{1 / 3}, x \in[-1,1]$.

- Watch Video Solution

175. Find the absolute maximum and minimum
values of a function f given by
$f(x)=2 x^{3}-15 x^{2}+36 x+1$ on the interval
$[1,5]$.

D Watch Video Solution

176. Find two numbers whose sum is 24 and whose product is as large as possible.

D Watch Video Solution

177. Find two positive numbers x and y such
that $x+y=60$ and $x y^{3}$ is maximum.
178. Find two positive numbers x and y such that their sum is 35 and the product $x^{2} y^{5}$ is a maximum.

D Watch Video Solution

179. Amongst all pairs of positive numbers with product 256 , find those whose sum is the least.

Watch Video Solution

180. Find two positive numbers whose sum is

14 and the sum of whose squares is minimum.

D Watch Video Solution

181. A beam of length l is supported at one end. If W is the uniform load per unit length, the bending moment M at a distance x from the end is given by $M=\frac{1}{2} l x-\frac{1}{2} W x^{2}$. Find
the point on the beam at which the bending moment has the maximum value.

D Watch Video Solution

182. Find the minimum value of $a x+b y$, where $x y=c^{2}$ and a, b, c are positive.

D Watch Video Solution

183. Show that all the rectangles with a given perimeter, the square has the largest area.
184. Show that of all the rectangles of given area, the square has the smallest perimeter.

D Watch Video Solution

185. Show that of all the rectangles inscribed in a given circle, the square has the maximum area.
186. Show that the rectangle of maximum perimeter which can be inscribed in a circle of radius a is a square of side $\sqrt{2} a$.

D Watch Video Solution

187. $A B$ is a diameter of a circle and C is any point on the circle. Show that the area of $A B C$ is maximum, when it is isosceles.
188. Tangent to the circle $x^{2}+y^{2}=a^{2}$ at any
point on it in the first quadrant makes intercepts $O A$ and $O B$ on x and y axes respectively, O being the centre of the circle.

Find the minimum value of $O A+O B$.

- Watch Video Solution

189. If the sum of the lengths of the hypotenues and a side of a right angled triangle is given, show that the area of the
triangle is maximum when the angle between
them is $\pi / 3$.

D Watch Video Solution

190. Prove that the area of right-angled triangle of given hypotenuse is maximum when the triangle is isosceles.

D Watch Video Solution
191. Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.

D Watch Video Solution

192. An open tank with a square base and
vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of the material will
be least when depth of the tank is half of its width.

D Watch Video Solution

193. A metal box with a square base and vertical sides is to contain 1024 cm 3 of water,
the material for the top and bottom costs Rs 5
per cm 2 and the material for the sides costs Rs 2.50 per cm 2 . Find the least cost of the box.

D Watch Video Solution

194. An open box with a square base is to be made out of a given quantity of card board of area c^{2} square units. Show that the maximum
volume of the box is $\frac{c^{3}}{6 \sqrt{3}}$ cubic units.

D Watch Video Solution

195. The sum of the surface areas of the cuboid with sides $x, 2 x$ and $\frac{x}{3}$ and a sphere is given to be constant. Prove that the sum of the volumes is minimum, if x is equal to three
times the radius of the sphere. Also, find the minimum value of the sum of their volumes.

D Watch Video Solution
196. Show that the triangle of maximum area
that can be inscribed in a given circle is an equilateral triangle.

D Watch Video Solution
197. A wire of length 36 m is to be cut into two
pieces. One of the pieces is to be made into a
square and the other into a circle. What should be the lengths of the two pieces, so that the combined area of the square and the circle is minimum?

D Watch Video Solution

198. A figure consists of a semi-circle with a rectangle on its diameter. Given the perimeter
of the figure, find its dimensions in order that the area may be maximum.

D Watch Video Solution

199. A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the
flaps to form a box. What should be the side of the square to be cut off so that the volume of
the box is maximum? Also, find the maximum volume.
200. A rectangular sheet of fixed perimeter with sides having their lengths in the ratio

8:15 is converted into anopen rectangular box by folding after removing squares of equal area from all four corners. If the total area of removed squares is 100 , the resulting box has maximum volume. Then the length of the sides of the rectangular sheet are 24 (b) 32 (c) 45 (d) 60

- Watch Video Solution

201. Find the volume of the larges cylinder that can be inscribed in a sphere of radius r

- Watch Video Solution

202. Show that a right-circular cylinder of given volume, open at the top, has minimum total surface area, provided its height is equal to the radius of the base.
203. Show that the height of a closed right circular cylinder of given surface and maximum volume, is equal to the diameter of its base.

D Watch Video Solution

204. Show that a cylinder of a given volume which is open at the top has minimum total
surface area, when its height is equal to the radius of its base.
205. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $\frac{2 R}{\sqrt{3}}$.

- Watch Video Solution

206. Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is $\tan ^{-1} \sqrt{2}$.

Watch Video Solution

207. Show that semi-vertical angle of right circular cone of given surface area and maximum volume is $\sin ^{-1}\left(\frac{1}{3}\right)$.

D Watch Video Solution

208. Prove that the volume of the largest cone
that can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the volume of the sphere.
209. Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone.

D Watch Video Solution

210. Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi
vertical angle is one-third that of the cone and
the greatest volume of cylinder is $\frac{4}{27} \pi h^{3} \tan ^{2} \alpha$.

- Watch Video Solution

211. Let $A P$ and $B Q$ be two vertical poles at points A and B respectively. If
$A P=16 m, B Q=22 m$ and $A B=20 m$, then find the distance of a point R on $A B$ from the point A such that $R P^{2}+R Q^{2}$ is minimum.

Watch Video Solution

212. If the length of three sides of a trapezium other than base are equal to 10 cm , then find the area of trapezium when it is maximum.

- Watch Video Solution

213. A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs 300 per subscriber. The company proposes to increase the annual subscription
and it is believed that every increase of Rs 1 one subscriber will discontinue the service.

Find what increase will bring maximum revenue?

D Watch Video Solution

214. Find the point on the curve $y^{2}=4 x$ which is nearest to the point $(2,1)$.

D Watch Video Solution

215. A jet of enemy is along the curve $y=x^{2}+2$ and a soldier is placed at (3,2).Find the minimum distance between the jet and soldier.

- Watch Video Solution

216. The shortest distance between line
$y-x=1$ and curve $x=y^{2}$ is (a) $\frac{3 \sqrt{2}}{8}$
$\frac{8}{3 \sqrt{2}}$ (c) $\frac{4}{\sqrt{3}}$ (d) $\frac{\sqrt{3}}{4}$

D Watch Video Solution
217. Find the shortest distance of the point (0 ,
c) from the parabola $y=x^{2}$, where
$0 \leq c \leq 5$.

- Watch Video Solution

218. Find the area of the greatest isosceles triangle that can be inscribed in the ellipse $\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)=1 \quad$ having its vertex
coincident with one extremity of the major axis.

D Watch Video Solution
219. Find the area of the greatest rectangle
that can be inscribed in an ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

D Watch Video Solution
220. A point on the hypotenuse of a right triangle is at distances a and b from the sides of the triangle. Show that the minimum length of the hypotenuse is $\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{3}{2}}$

D Watch Video Solution

221. Determine two positive numbers whose
sum is 15 and the sum of whose squares is minimum.
222. Divide 64 into two parts such that the sum of the cubes of two parts is minimum.

D Watch Video Solution

223. How should we choose two numbers, each greater than or equal to -2 , whose sum is
$1 / 2$ so that the sum of the first and the cube of the second is minimum?
224. Divide 15 into two parts such that product of square of one part and cube of other is maximum

D Watch Video Solution

225. Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm 3 , which has the minimum surface area?
226. A beam is supported at the two ends and
is uniformly loaded. The bending moment M
at a distance x from one end is given by
$M=\frac{W L}{2} x-\frac{W}{2} x^{2}$. Find the point at which M is maximum.

D Watch Video Solution

227. A beam is supported at the two ends and
is uniformly loaded. The bending moment M
at a distance x from one end is given by
$M=\frac{W x}{3}-\frac{W}{3} \frac{x^{3}}{L^{2}}$. Find the point at which
M is maximum.

- Watch Video Solution

228. A wire of length 28 m is to be cut into two
pieces. One of the pieces is to be made into a
square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?
229. A wire of length 20 m is to be cut into two
pieces. One of the places will be bent into
shape of a square and the other shape of an
equilateral triangle. Where the wire should be cut so that the sum of the areas of the square and triangle is minimum?

D Watch Video Solution

230. Given the sum of the perimeters of a square and a circle, show that the sum of their
areas is least when one side of the square is equal to diameter of the circle.

D Watch Video Solution
231. Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.

- Watch Video Solution

232. Two sides of a triangle have lengths ' a ' and ' b ' and the angle between them is θ.

What value of θ will maximize the area of the triangle? Find the maximum area of the triangle also.

D Watch Video Solution

233. A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the
flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Also, find the maximum volume.

D Watch Video Solution

234. A rectangular sheet of tin 45 cm by 24 cm
is to be made into a box without top, by
cutting off squares from each corners and folding up the flaps. What should be the side
of the square to be cut off so that the volume of the box is maximum possible?

D Watch Video Solution

235. A tank with rectangular base and rectangular sides, open at the top is to be constructed so that its depth is 2 m and volume is 8 m 3 . If building of tank costs Rs 70 per square metre for the base and Rs 45 per square metre for sides, what is the cost of least expensive tank?

Watch Video Solution

236. A window in the form of a rectangle is surmounted by a semi-circular opening. The total perimeter of the window is 10 m . Find the dimensions of the rectangular part of the window to admit maximum light through the whole opening.

- Watch Video Solution

237. A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle that will produce the largest area of the window.

D Watch Video Solution

238. Show that the height of the cylinder of maximum volume that can be inscribed in a
sphere of radius R is $\frac{2 R}{\sqrt{3}}$.

D Watch Video Solution

239. A rectangle is inscribed in a semi-circle of
radius r with one of its sides on diameter of semi-circle. Find the dimensions of the rectangle so that its area is maximum. Find also the area.
240. Prove that a conical tent of given capacity
will require the least amount of canvas when
the height is $\sqrt{2}$ times the radius of the base.

- Watch Video Solution

241. Show that the cone of the greatest
volume which can be inscribed in a given
sphere has an altitude equal to $2 / 3$ of the diameter of the sphere.
242. Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is $\cot ^{-1}(\sqrt{2})$.

D Watch Video Solution

243. An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of the triangle is maximum when $\theta=\frac{\pi}{6}$.
244. Prove that the least perimeter of an isosceles triangle in which a circle of radious r can be inscribed is $6 \sqrt{3} r$

- Watch Video Solution

245. Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides.
246. Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12 cm is 16 cm .

- Watch Video Solution

247. A closed cylinder has volume 2156 cm 3 .

What will be the radius of its base so that its total surface area is minimum?
248. Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius $5 \sqrt{3} \mathrm{~cm}$ is $500 \pi \mathrm{~cm}^{3}$.

D Watch Video Solution

249. Show that among all positive numbers x and y with $x^{2}+y^{2}=r^{2}$, the sum $x+y$ is larger when $x=y=r / \sqrt{2}$.
250. Determine the points on the curve $x^{2}=4 y$ which are nearest to the point $(0,5)$
(Watch Video Solution
251. Find the point on the curve $y^{2}=4 x$ which is nearest to the point $(2,-8)$.

D Watch Video Solution

252. Find the point on the curve $x^{2}=8 y$ which is nearest to the point $(2,4)$.

D Watch Video Solution
253. Find the point on the parabolas $x^{2}=2 y$ which is closest to the point $(0,5)$.

- Watch Video Solution

254. Find the coordinates of a point on the parabola $y=x^{2}+7 x+2$ which is closest to the straight line $y=3 x-3$.

- Watch Video Solution

255. Find the point on the curve $y^{2}=2 x$ which is at a minimum distance from the point $(1,4)$.
256. Find the maximum slope of the curve
$y=-x^{3}+3 x^{2}+2 x-27$.

D Watch Video Solution

257. The total cost of producing x radio sets
per day is $R s \frac{x^{2}}{4} 35 x+25$ and the price per set at which they may be sold is $R s 50-\frac{x}{2}$.

Find the daily output to maximize the total profit.
258. A manufacturer can sell x items at a price of Rs. $\left(5-\frac{x}{100}\right)$ each. The cost price of x items is Rs. $\left(\frac{x}{5}+500\right)$. Find the number of items he should sell to earn maximum profit.

D Watch Video Solution

259. An open tank is to be constructed with square base and vertical sides so as to contain
a given quantity of water. Show that the
expenses of lining with lead will be least, if depth is made half of width.

D Watch Video Solution

260. A box of constant volume c is to be twice as long as it is wide. The material on the top and four sides cost three times as much per square metre as that in the bottom. What are the most economic dimensions?

D Watch Video Solution

261. The sum of the surface areas of a sphere and a cube is given. Show that when the sum of their volumes is least, the diameter of the sphere is equal to the edge of the cube.

- Watch Video Solution

262. The given quantity of metal is to be cost
into a half cylinder with a rectangular base and semicircular ends. Show that in order that
the total surface area may be minimum, the ratio of the length of the cylinder to the
diameter of its semi-circular ends is
$\pi:(\pi+2)$.

D Watch Video Solution
263. The strength of a beam varies as the product of its breadth and square of its depth.

Find the dimensions of the strongest beam which can be cut from a circular log of radius a.

- Watch Video Solution

264. A straight line is drawn through a given point $P(1,4)$. Determine the least value of the sum of the intercepts on the coordinate axes.

- Watch Video Solution

265. The total area of a page is $150 \mathrm{~cm}^{2}$. The combined width of the margin at the top and bottom is 3 cm and the side 2 cm . What must be the dimensions of the page in order that the area of the printed matter may be maximum?

- Watch Video Solution

266. The space s described in time t by a particle moving in a straight line is given by $s=t^{5}-40 t^{3}+30 t^{2}+80 t-250$. Find the minimum value of acceleration.

D Watch Video Solution

267. A particle is moving in a straight line such that its distance s at any time t is given by
$s=\frac{t^{4}}{4}-2 t^{3}+4 t^{2}-7$. Find when its
velocity is maximum and acceleration

minimum.

D Watch Video Solution

268. Write necessary condition for a point $x=c$ to be an extreme point of the function $f(x)$.

D Watch Video Solution

269. Write sufficient conditions for a point $x=c$ to be a point of local maximum.

D Watch Video Solution

270. If $f(x)$ attains a local minimum at $x=c$,
then write the values of $f^{\prime}(c)$ and $f(c)$.

- Watch Video Solution

271. Write the minimum value of
$f(x)=x+\frac{1}{x}, x>0$

- Watch Video Solution

272. Write the maximum value of
$f(x)=x+\frac{1}{x}, x<0$.

- Watch Video Solution

273. Write the point where $f(x)=x(\log)_{e} x$ attains minimum value.

- Watch Video Solution

274. Find the least value of $f(x)=a x+\frac{b}{x}$, where $a>0, b>0$ and $x>0$.

- Watch Video Solution

275. Write the minimum value of $f(x)=x^{x}$.

- Watch Video Solution

276. Write the maximum value of $f(x)=x^{1 / x}$

- Watch Video Solution

> 277. Write the maximum value of
> $f(x)=\frac{\log x}{x}$, if it exists.

- Watch Video Solution

278. The maximum value of $x^{\frac{1}{x}}, x>0$ is (a) $e^{\frac{1}{e}}$
(b) $\left(\frac{1}{e}\right)^{e}$ (c) 1 (d) none of these

(Watch Video Solution

279. If $a x+\frac{b}{x} \geq c$ for all positive x where
$a, b,>0$, then $a b<\frac{c^{2}}{4}$ (b) $\geq \frac{c^{2}}{4}$
$a b \geq \frac{c}{4}$ (d) none of these

D Watch Video Solution
280. The minimum value of $\frac{x}{(\log)_{e} x}$ is $e(b)$ $1 / e(c) 1$ (d) none of these

D Watch Video Solution
281. For the function $f(x)=x+\frac{1}{x} x=1$ is
a point of maximum (b) $x=-1$ is a point of
minimum (c) maximum value $>$ minimum value
(d) maximum value < minimum value

D Watch Video Solution

282. Let $f(x)=x^{3}+3 x^{2}-9 x+2$. Then, $f(x)$ has a maximum at $x=1$ (b) a minimum at $x=1$ (c) neither a maximum nor a minimum at $x=-3(\mathrm{~d})$ none of these

- Watch Video Solution

283. The minimum value of
$f(x)=x^{4}-x^{2}-2 x+6$ is (a) 6 (b) 4 (c) 8
(d) none of these

D Watch Video Solution

284. The number which exceeds its square by
the greatest possible quantity is $\frac{1}{2}$ (b) $\frac{1}{4}$ (c) 3 $\frac{3}{4}$ (d) none of these

D Watch Video Solution

285.

Let
$f(x)=(x-a)^{2}+(x-b)^{2}+(x-c)^{2}$
Then, $f(x)$ has a minimum at $x=\frac{a+b+c}{3}$
(b) $3 \sqrt{a b c}$ (c) $\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}$ (d) none of these
286. The sum of two non-zero numbers is 8 ,
the minimum value of the sum of their reciprocals is $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) $\frac{1}{8}$ (d) none of these

D Watch Video Solution

287. The function $f(x)=\sum_{r=1}^{5}(x-r)^{2}$ assuming minimum value at $x=$ (a) 5 (b) $\frac{5}{2}$
(c)3 (d) 2
288. At $x=\frac{5 \pi}{6}, f(x)=2 \sin 3 x+3 \cos 3 x$
is (a) 0 (b) maximum (c) minimum (d) none of
these

- Watch Video Solution

289. If x lies in the interval $[0,1]$, then the
least value of $x^{2}+x+1$ is (a) 3 (b) $3 / 4$ (c) 1
(d) none of these
290. The least value of the function
$f(x)=x^{3}-18 x^{2}+96 x$ in the interval $[0,9]$
is 126 (b) 135 (c) 160 (d) 0

D Watch Video Solution

291. The maximum value of
$f(x)=\frac{x}{4-x+x^{2}}$ on $[-1,1]$ is (a) $\frac{1}{4}$ (b)
$-\frac{1}{3}$ (c) $\frac{1}{6}$ (d) $\frac{1}{5}$

- Watch Video Solution

292. Find the point on the curve $y^{2}=4 x$ which is nearest to the point $(2,1)$.

D Watch Video Solution

293. If $x+y=8$, then the maximum value of
$x y$ is (a) 8 (b) 16 (c) 20 (d) 24

D Watch Video Solution
294. The least and greatest values of
$f(x)=x^{3}-6 x^{2}+9 x$ in $[0,6]$, are $3,4(b)$
0,6 (c) 0,3 (d) 3,6

D Watch Video Solution

295. $f(x)=\sin +\sqrt{3} \cos x$ is maximum when
A. $x=\frac{\pi}{3}$
B. $x=\frac{\pi}{4}$
C. $x=\frac{\pi}{6}$

$$
\text { D. } x=0
$$

Answer: C

D Watch Video Solution

296. If a cone of maximum volume is inscribed
in a given sphere, then the ratio of the height of the cone to the diameter of the sphere is $3 / 4$ (b) $1 / 3$ (c) $1 / 4$ (d) $2 / 3$
297. The minimum value of $\left(x^{2}+\frac{250}{x}\right)$ is (a)

75 (b) 50 (c) 25 (d) 55

- Watch Video Solution

298. If $f(x)=x+\frac{1}{x}, x>0$, then its greatest value is -2 (b) 0 (c) 3 (d) none of these
299. If $f(x)=\frac{1}{4 x^{2}+2 x+1}$, then its
maximum value is
(a) $\frac{4}{3}$
(b) $\frac{2}{3}$
(c) 1
(d) $\frac{3}{4}$

D Watch Video Solution

300. Let x, y be two variables and $x>0, x y=1$, then minimum value of
$x+y$ is (a) 1 (b) 2 (c) $2 \frac{1}{2}$ (d) $3 \frac{1}{3}$

D Watch Video Solution

301.

$f(x)=1+2 \sin x+3 \cos ^{2} x, 0 \leq x \leq \frac{2 \pi}{3}$
is Minimum at $x=\pi / 2$ (b) Maximum at
$x=\sin ^{-1}(1 / \sqrt{3})$ (c) Minimum at $x=\pi / 6$
(d) Maximum at $\sin ^{-1}(1 / 6)$

D Watch Video Solution

302.

$f(x)=2 x^{3}-15 x^{2}+36 x+4$ is maximum at $x=(\mathrm{a}) 3$ (b) 0 (c) 4 (d) 2

D Watch Video Solution

303. The maximum value of
$f(x)=\frac{x}{4-x+x^{2}}$ on $[-1,1]$ is (a) $\frac{1}{4}$ (b)
$-\frac{1}{3}$ (c) $\frac{1}{6}$ (d) $\frac{1}{5}$
304. Let $f(x)=2 x^{3}-3 x^{2}-12 x+5$ on $[-2,4]$. The relative maximum occurs at $x=-2(\mathrm{~b})-1$ (c) 2 (d) 4

- Watch Video Solution

305. The minimum value of $x(\log)_{e} x$ is equal to $e(\mathrm{~b}) 1 / e$ (c) $-1 / e$ (d) $2 e$ (e) e

D Watch Video Solution

306. The minimum value of the function
$f(x)=2 x^{3}-21 x^{2}+36 x-20$ is
(a) -128
(b) -126
(c) -120
(d) none of these

- Watch Video Solution

Others

1. A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs. 300 per subscriber. The company proposes to increase the annual subscription and it is believed that every increase of Rs. 1 one subscriber will discontinue the services. Find what increase will bring maximum revenue?

D View Text Solution

2. The combined resistance R of two resistors

$R_{1} \quad$ and $\quad R_{2}\left(R_{1}, R_{2}>0\right) \quad$ is given by

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} .
$$

- View Text Solution

