

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

MEAN VALUE THEOREMS

Solved Examples And Exercises

1. Using Lagranges mean value theorem, show that `sin<>0.`

2. Using mean value theorem, prove that $\tan x > x$ for all

 $x\left(0, \frac{\pi}{2}\right)$.

Watch Video Solution

3. Using Lagranges mean value theorem, find a point on the curve $y = \sqrt{x-2}$ defined on the interval [2,3], where the tangent is parallel to the chord joining the end points of the curve.

A.
$$x = \frac{9}{2}$$

B. $x = \frac{9}{4}$
C. $x = \frac{3}{2}$

D. None of these

Answer: C

4. Verify Lagranges mean value theorem for the following functions on the indicated intervals. $f(x) = x - 2\sin x on[-\pi, \pi]$ $f(x) = 2\sin x + \sin 2x on[0, \pi]$ $f(x) = (\log)_e x on[1, 2]$ $f(x) = \{2 + x^3, \text{ if } x \le 13x, x > 0on[-1, 2]$

Watch Video Solution

5. Verify lagranges mean value theorem for the function

$$f(x)=(x-3)(x-6)(x-9)on[3,5]$$

6. Verify lagranges mean value theorem for the following functions on the indicated intervals. Also, find a point c in the indicated interval: f(x) = x(x-2)on[1,3] $f(x) = x(x-1)(x-2)on\left[0,\frac{1}{2}\right].$

Watch Video Solution

7. Find the point on the curve
$$y = \cos x - 1, x \in \left[rac{\pi}{2}, rac{3\pi}{2}
ight]$$
 at which the tangent in

parallel to the x-axis.

8. It is given that the Rolles theorem holds for the function $f(x)=x^3+bx^2+cx, x\in [1,2]$ at the point $x=rac{4}{3}.$

Find the values of b and c dot

• Watch Video Solution
9. Using Lagranges mean value theorem, prove that

$$\frac{b-a}{b} < \log\left(\frac{b}{a}\right) < \frac{b-a}{a}$$
, where $0 < a < b$
• Watch Video Solution

10. Let fandg be differentiable on [0,1] such that f(0)=2, g(0)=0, f(1)=6andg(1)=2. Show that there exists $c\in (0,1)$ such that f'(c)=2g'(c).

11. If the value of c prescribed inRolles theorem for the function $f(x) = 2x(x-3)^n$ on the interval $[0, 2\sqrt{3}]is\frac{3}{4}$, write the value of n (a positive integer).

Watch Video Solution

12. Using Lagranges mean value theorem, prove that $(b-a)\sec^2 a < (\tan b - \tan a) < (b-a)\sec^2 b$, where $0 < a < b < rac{\pi}{2}$

13. It is given that for the function $f(x)=x^3-6x^2+ax+bon[1,3]$, Rolles theorem holds with $c=2+rac{1}{\sqrt{3}}$.

Find the values of aandb, if f(1) = f(3) = 0.

Watch Video Solution

14. Verify Rolles theorem for each of the following functions on the indicated intervals: $f(x) = x(x+3)e^{-\frac{x}{2}}on[-3,0]$ $f(x) = e^x(\sin x - \cos x)on\left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$

15. Find a point on the curve $y = x^2 + x$, where the tangent is parallel to the chord joining (0,0) and (1,2).

A.
$$x=2$$

B. $x=1$
C. $x=rac{1}{2}$
D. $x=rac{2}{3}$

Answer: C

Watch Video Solution

16. Let f be a twice differentiable function such that f(a) = f(b) = 0 and f(c) > 0 for a < c < b. Prove that

there exists at least one value λ between aandb fow which

 $f^{\lambda} < 0.$

17. find the percentage error in calculating the volume of the cubical box if an error of 1% is made in measuring the length of the edges of the cube.

$$f(x)=x^2-5x+6$$
 on the interval $[2,3]_{\cdot}$

19. Verify Rolles theorem for the function $f(x) = (x - a)^m (x - b)^n$ on the interval [a, b], where m, n are positive integers.

Answer: C

21. Verify Rolle's theorem for each of the following functions on indicated intervals; $f(x) = \sin^2 x$ on $0 \le x \le \pi$ $f(x) = \sin x + \cos x - 1$ on $\left[0, \frac{\pi}{2}\right]$ $f(x) = \sin x - \sin 2x$ on $[0, \pi]$

Watch Video Solution

22. Verify Rolle theorem for the function
$$f(x) = \log \left\{ rac{x^2 + ab}{x(a+b)}
ight\} on[a,b],$$
 where `0

23. Rolles theorem is applicable for

A.
$$f(x) = |x|$$
 on $[\,-1,1]$

B. f(x) = [x] for $x \in [5, 9]$

C.
$$f(x)=x^2 ext{-}\,1x\in[1,2]$$

D. NOne of these

Answer: D

24. Discuss the applicability of Rolles theorem for the function $f(x) = 3 + (x-2)^{2/3}$ on [1, 3]

25. Discuss the applicability of Rolles theorem for f(x) = an x on $[0, \ \pi]$

Watch Video Solution

26. Discuss the applicability of Rolle's theorem on the function

$$f(x) = ig\{x^2+1, ext{when } 0 \leq x \leq 1ig\}$$

$$\{3-x$$
 , when $1 < x \leq 2$

27. Verify Rolles theorem for the function $f(x) = x^2 - 5x + 6$ on the interval [2, 3].

30. Verify Rolles theorem for the function $f(x) = (x-a)^m (x-b)^n$ on the interval [a, b] , where

 $m, \ n$ are positive integers.

Watch Video Solution

31. Verify Rolles theorem for the function $f(x) = \sqrt{4-x^2}$

on $[\,-\,2,\,\,2]$.

Watch Video Solution

32. Verify Rolles theorem for the function
$$f(x) = \log\left\{\frac{x^2 + ab}{x(a+b)}
ight\}$$
 on $[a, b]$, where `0

33. Verify Rolles theorem for the function: $f(x) = s \in^2 x$ on $0 < x < \pi$ Watch Video Solution **34.** Verify Rolles theorem for the function: $f(x) = \sin x + \cos x - 1$ on $[0, \ \pi/2]$. Watch Video Solution **35.** Verify Rolles theorem for the function: $f(x) = \sin x - \sin 2x$ on $[0, \pi]$ Watch Video Solution

36. Verify Rolles theorem for the function: $f(x) = x(x+3)e^{-x/2}$ on [-3, 0].

Watch Video Solution

37. Verify Rolles theorem for the function: $f(x) = e^x(\sin x - \cos x)$ on $[\pi/4, 5\pi/4]$.

holds with $c = 2 + rac{1}{\sqrt{3}}$. Find the values of a and b , if f(1) = f(3) = 0 .

Watch Video Solution

39. It is given that for the function f given by $f(x)=x^3+bx^2+ax$, $x\in[1,\ 3]$. Rolles theorem holds with $c=2+rac{1}{\sqrt{3}}$. Find the values of a and b .

Watch Video Solution

40. Find the point on the curve
$$y = \cos x - 1, \ x \in \left[rac{\pi}{2}, rac{3\pi}{2}
ight]$$
 at which the tangent is

parallel to the x-axis.

41. Discuss the applicability of Rolles theorem for the function $f(x) = 3 + (x-2)^{2/3}$ on [1, 3]

Watch Video Solution

42. Discuss the applicability of Rolles theorem for the function f(x) = [x] for $-1 \leq x \leq 1$, where [x] denotes

the greatest integer not exceeding x

43. Discuss the applicability of Rolles theorem for the function $f(x) = rac{\sin 1}{x}$ for $-1 \le x \le 1$

Watch Video Solution

45. Discuss the applicability of Rolles theorem for the function $f(x) = x^{2/3}$ on [-1, 1]

49. Verify Rolles theorem for function $f(x) = x(x-1)^2$ on $[0,\ 1]$

51. Verify Rolles theorem for function $f(x) = x(x-4)^2$ on

[0, 4]

52. Verify Rolles theorem for function $f(x) = x(x-2)^2$ on [0, 2]

55. Verify Rolles theorem for function $f(x)=\sin 2x$ on $[0,\ \pi/2]$

57. Verify Rolles theorem for function $f(x)=e^x\sin x$ on $[0,\ \pi]$

58. Verify Rolles theorem for function $f(x) = e^x \cos x$ on

$$[\,-\,\pi\,/\,2,\,\,\pi\,/\,2]$$

61. Verify Rolles theorem for function $f(x) = \sin 3x$ on

 $[0,\ \pi]$

72. Using Rolles theorem, find points on the curve $y=16-x^2$, $x\in [\,-1,\,1]$, where tangent is parallel to x-axis

73. At what points on the curve $y=x^2$ on $[\,-2,\ 2]$ is the

tangent parallel to x-axis?

76. It is given that the Rolles theorem holds for the function $f(x)=x^3+bx^2+cx,\ x\in[1,2]$ at the point $x=rac{4}{3}$. Find the values of b and c .

Watch Video Solution

77. Verify Lagrange's mean value theorem for the function

f(x)=(x-3)(x-6)(x-9) on the interval $\left[3.\,5
ight]$

Watch Video Solution

78. Verify Lagranges mean value theorem for f(x) = x(x - 2) on [1, 3] on the indicated intervals. Also, find a point c in the indicated interval:

81. Verify Lagranges mean value theorem for function $f(x) = x^2 - 1$ on [2, 3] and find a point 'c' in the

82. Verify Lagranges mean value theorem for function f(x) = x(x-1) on [1, 2] and find a point 'c' in the indicated interval:

83. Verify Lagranges mean value theorem for function $f(x) = x^2 - 3x + 2$ on [-1, 2]

Watch Video Solution

84. Verify Lagranges mean value theorem for function $f(x) = 2x^2 - 3x + 1$ on [1, 3] and find a point 'c' in the indicated interval:

Watch Video Solution

85. Verify Lagranges mean value theorem for function $f(x) = x^2 - 2x + 4$ on [1, 5] and find a point 'c' in the

indicated interval:

86. Verify Lagranges mean value theorem for function $f(x)=2x-x^2$ on $[0,\ 1]$ and find a point 'c' in the

indicated interval:

87. Verify Lagranges mean value theorem for function $f(x) = \sqrt{25 - x^2}$ on [-3, 4] and find a point 'c' in the indicated interval:

Watch Video Solution

88. Verify Lagranges mean value theorem for function $f(x) = \tan^{-1} x$ on [0, 1] and find a point 'c' in the indicated interval:

89. Verify Lagranges mean value theorem for function $f(x) = x + \frac{1}{x}$ on [1, 3] and find a point 'c' in the indicated interval:

Watch Video Solution

90. Verify Lagranges mean value theorem for function $f(x) = \sqrt{x^2 - 4}$ on [2, 4] and find a point 'c' in the

indicated interval:

91. Verify Lagranges mean value theorem for function $f(x) = x^2 + x - 1$ on [0, 4] and find a point 'c' in the

92. Discuss the applicability of Lagranges mean value

theorem for the function f(x)=|x| on $[\,-1,\,\,1]$.

Watch Video Solution

93. Show that the lagranges mean value theorem is not

applicable to the function $f(x)=rac{1}{x}$ on $[\,-1,\,\,1]$.

94. Find a point on the parabola $y = \left(x-4
ight)^2$, where the

tangent is parallel to the chord joining (4, 0) and (5, 1).

97. Find the points on the curve $y = x^3 - 3x$, where the tangent to the curve is parallel to the chord joining (1, -2) and (2, 2)

Watch Video Solution

98. Find a point on the curve $y = x^3 + 1$ where the tangent is parallel to the chord joining (1, 2) and (3, 28).

Watch Video Solution

99. Let *C* be a curve defined parametrically as $x = a \cos^3 \theta$

,
$$y=a\sin^3 heta, \ 0\leq heta\leq rac{\pi}{2}$$
 . Determine a point P on C ,

where the tangent to C is parallel to the chord joining the

points (a, 0) and (0, a).

then write the value of c in Rolles theorem.

Watch Video Solution

101. State Rolle's theorem.

102. Cauchys mean value theorem

103. Find the value of c prescribed by Lagranges mean value theorem for the function $f(x)=\sqrt{x^2-4}$ defined on $[2,\ 3]$.

O Watch Video Solution

104. For the function $f(x)=x+rac{1}{x}, \ x\in [1,\ 3]$, the

value of c for the Lagranges mean value theorem is (a) 1 (b)

 $\sqrt{3}$ (c) 2 (d) none of these

105. The value of c in Rolles theorem when $f(x)=2x^3-5x^2-4x+3$, is $x\in [1/3,\ 3]$

Watch Video Solution

106. When the tangent to the curve $y = x \log x$ is parallel

to the chord joining the points (1, 0) and (e, e) , the value

of
$$x$$
 is $e^{1/1-e}$ (b) $e^{\left(e-1
ight)\left(2e-1
ight)}$ (c) $e^{rac{2e-1}{e-1}}$ (d) $rac{e-1}{e}$

Watch Video Solution

107. The value of c in Rolles theorem for the function

$$f(x)=rac{x(x+1)}{e^x}$$
 defined on $[-1,\ 0]$ is 0.5 (b) $rac{1+\sqrt{5}}{2}$ (c) $rac{1-\sqrt{5}}{2}$ (d) -0.5

108. The value of c in Largrange's mean value theorem for

the function f(x)=x(x-2) when $x\in [1,2]$ is

109. The value of c in Rolles theorem for the function $f(x)=x^3-3x$ in the interval $\left[0,\ \sqrt{3}
ight]$ is (a) 1 (b) -1 (c) 3/2 (d) 1/3

110. If $f(x)=e^x\sin x$ in $[0,\ \pi]$, then c in Rolles theorem is $\pi/6$ (b) $\pi/4$ (c) $\pi/2$ (d) $3\pi/4$

Others

1. Discuss the applicability of Rolles theorem for the function

 $f(x)=\{-4x+5,\quad 0\leq x\leq 1$

$$\{2x-3, \quad 1\leq x\leq 2$$

View Text Solution

2. At what points on the curve y = 12(x+1)(x-2) on

```
[ -1, 2 ].
```


3. Examine if Rolles theorem is applicable to any one of the following functions: f(x) = [x] for $x \in [5, 9]$ Can you say something about the converse of Rolles Theorem from these functions?

5. Using Lagranges mean value theorem, find a point on the curve $y = \sqrt{x-2}$ defined on the interval [2, 3], where the tangent is parallel to the chord joining the end points of the curve.

7. Using Langrange mean value theorem, show that $\sin x < x$ for x > 0

8. Using mean value theorem, prove that an x > x for all $x \ (0, \ \pi/2)$

View Text Solution

9. Let f and g be differentiable on [0, 1] such that f(0)=2 , g(0)=0 , f(1)=6 and g(1)=2 . Show that there exists $c\in(0,\ 1)$ such that $f'(c)=2\,g'(c)$.

View Text Solution

10. Verify Lagranges mean value theorem for function $f(x) = x^3 - 2x^2 - x + 3$ on [0, 1] and find a point 'c' in the indicated interval:

Watch Video Solution

11. Verify Lagranges mean value theorem for function f(x) = (x - 1)(x - 2)(x - 3) on [0, 4] and find a point 'c' in the indicated interval:

12. Verify Lagranges mean value theorem for function $f(x) = x(x+4)^2$ on [0, 4] and find a point 'c' in the indicated interval:

Watch Video Solution

13. Verify Lagranges mean value theorem for function

 $f(x)=\sin x-\sin 2x-x$ on $[0,\ \pi]$

View Text Solution

14. Verify Lagranges mean value theorem for function

$$f(x)=x^3-5x^2-3x ext{ on } [1,\ 3]$$

15. Verify the hypothesis and conclusion of Lagranges mean

value theorem for the function $f(x)=rac{1}{4x-1},\ 1\leq x\leq 4\,.$

View Text Solution

16. If the value of c prescribed in Rolles theorem for the function $f(x) = 2x(x-3)^n$ on the interval $\begin{bmatrix} 0, & 2\sqrt{3} \end{bmatrix}$ is $\frac{3}{4}$, write the value of n (a positive integer)

17. If the polynomial equation $a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dot{+} a_2 x^2 + a_1 x + a_0 = 0$ n being a positive integer, has two different real roots α and β , then between α and β , the equation $n a_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \dot{+} a_1 = 0$ has

- A. (a) exactly one root
- B. (b) almost one root
- C. (c) at least one root
- D. (d) no root

Answer: (c) at least one root

18. If 4a+2b+c=0 , then the equation $3ax^2+2bx+c=0$ has at least one real lying in the interval (0,2)

19. Rolles theorem is applicable in case of $\varphi(x) = a^{\sin x}$, a > 0 in (a) any interval (b) the interval $[0, \pi]$ (c) the interval $(0, \pi/2)$ (d) none of these

View Text Solution