

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

RELATIONS

Solved Examples And Exercises

1. An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.

2. If R and S are relations on a set A, then prove the following : R and S are symmetric $R \cap S$ and $R \cup S$ are symmetric R is reflexive and S is any relation $R \cup S$ is reflexive.

3. If R and S are transitive relations on a set $A, \,$ then prove that $R\cup S$ may not be a transitive relation on A.

Watch Video Solution

4. Let L be the set of all lines in XY = plane and R be the relation in L defined as $R = \{(L_1, L_2) : L_1 \text{ is parallel to } L_2\}$. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.

Watch Video Solution

5. Show that the relation \geq on the set R of all real numbers is reflexive and transitive but nut symmetric.

6. Let S be a relation on the set R of all real numbers defined by $S=ig\{(a,b)RxR:a^2+b^2=1ig\}$. Prove that S is not an equivalence relation on R.

Watch Video Solution

7. Given to relation $R = \{(1, 2), (2, 3)\}$ on the set $A = \{1, 2, 3\}$, add a minimum number of ordered pairs so that the enlarged relation is symmetric, transitive and reflexive.

8. Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.

9. The following relations are defined on the set of real number: aRb if a - b > 0 aRb if 1 + ab > 0 aRb if $|a| \le b$ Find whether these relations are reflexive, symmetric or transitive.

10.Let
$$A = \{1, 2, 3\},$$
andlet $R_1 = \{(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)\}R_2 = \{(2, 2), 3, 1), (1, 3)\},$ Find whether or not each of the relations R_1, R_2, R_3 on A is (i) reflexive(ii) symmetric (iii) transitive.

Watch Video Solution

11. Let R be a relation defined on the set of natural numbers N as $R = \{(x, y) : x, y \in N, 2x + y = 41\}$ Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.

12. Is it true that every relation which is symmetric and transitive is also

reflexive? Give reasons.

13. Let $A = \{1,2,3\}$ and $R = \{(1,2),(1,1),(2,3)\}$ be a relation on A .

What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.

Watch Video Solution

14. Show that the relation R defined by $R = \{(a, b) : a - b \text{ is divisible by } \}$

 $3; a, bZ\}$ is an equivalence relation.

15. Test whether the following relations R_1 , R_2 and R_3 , are (i) reflexive (ii) symmetric and (iii) transitive: R_1 on Q_0 defined by $(a, b)R_1a = \frac{1}{b}R_2$ on Z defined by $(a, b)R_2|a - b| \le 5$ R_3 on R defined by $(a, b)R_3a^2 - 4ab + 3b^2 = 0$

Watch Video Solution

16. Three relations $R_1, R_2 and R_3$ are defined on set $A = \{a, b, c\}$ as follow: $R_1 = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)\}$ $R_2 = \{(a, b), (b, a), (a, c), (c, a)\}$ $R_3 = \{(a, b), (b, c), (c, a)\}$ Find whether each of R_1, R_2, R_3 is reflexive, symmetric and transitive.

Watch Video Solution

17. Show that the relation R on the set $A\{xZ; 0 \le 12\}$, given by $R = \{(a, b) : a = b\}$, is an equivalence relation. Find the set of all elements related to 1.

18. Let n be a fixed positive integer. Define a relation R on Z as follows: (a, b)Ra - b is divisible by n. Show that R is an equivalence relation on Z.

Watch Video Solution

19. Let Z be the set of all integers and Z_0 be the set of all non=zero integers. Let a relation R on ZxZ_0 be defined as follows: (a, b)R(c, d)ad = bc for all $(a, b), (c, d)ZxZ_0$ Prove that R is an equivalence relation on ZxZ_0 .

Watch Video Solution

20. Prove that every identity relation on a set is reflexive, but the converse

is not necessarily true.

21. Let Z be the set of integers. Show that the relation $R = \{(a, b) : a, bZ$ and a + b is even} is an equivalence relation on Z.

23. On the set N of all natural numbers, a relation R is defined as follows: $\forall n, m \in N, nRm$ Each of the natural numbers n and m leaves the remainder less than 5.Show that R is an equivalence relation. Also, obtain the pairwise disjoint subsets determined by R.

24. If R_1 and R_2 are equivalence relations in a set A, show that $R_1 \cap R_2$ is also an equivalence relation.

Watch Video Solution

25. Let Z be the set of all integers and Z_0 be the set of all non=zero integers. Let a relation R on $Z \times Z_0$ be defined as follows: (a, b)R(c, d)ad = bc for all $(a, b), (c, d)Z \times Z_0$ Prove that R is an equivalence relation on $Z \times Z_0$.

Watch Video Solution

26. Let R be the equivalence relation in the set $A = \{0, 1, 2, 3, 4, 5\}$

given by $R = \{(a, b) : divides(a - b)\}$. Write the equivalence class [0].

27. An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.

Watch Video Solution

28. Show that the relation \geq on the set R of all real numbers is reflexive

and transitive but nut symmetric.

Watch Video Solution

29. m is said to be related to n if m and n are integers and m-n is

divisible by 13. Does this define an equivalence relation?

30. Let O be the origin. We define a relation between two points P and Qin a plane if OP = OQ. Show that the relation, so defined is an

33. Three relations R_1, R_2 and R_3 are defined on set $A = \{a, b, c\}$ as

follow:

 $R_3 = \{(a,b), (b,c), (c,a)\}$

Find whether each of R_1, R_2, R_3 is reflexive, symmetric and transitive.

Watch Video Solution

34. Let a relation R_1 on the set R of real numbers be defined as $(a,b) \in R \Leftrightarrow 1+ab>0$ for all $a,b \in R$. Show that R_1 is reflexive and symmetric but not transitive.

Watch Video Solution

35. Let S be the set of all points in a plane and R be a relation on S defines as $R = \{(P, Q): \text{ distance between } P \text{ and } Q \text{ is less than 2 units} \}$ Show

that R is reflexive and symmetric but not transitive.

36. The following relations are defined on the set of real number: aRb if 1 + ab > 0 Find whether these relations are reflexive, symmetric or transitive.

37. Prove that every identity relation on a set is reflexive, but the converse

is not necessarily true.

Watch Video Solution

38. Let R be a relation defined on the set of natural numbers N as

 $R = \{(x, y) : x, y \in N, 2x + y = 41\}$ Find the domain and range of R.

Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.

39. Let N denote the set of all natural numbers and R be the relation on N imes N defined by $(a,b)R(c,d) \Leftrightarrow ad(b+c) = bc(a+d)$. Check whether R is an equivalence relation on N imes N

40. Let N be the set of all natural numbers and let R be a relation on $N \times N$, defined by $(a, b)R(c, d) \Leftrightarrow ad = bc$ for all $(a, b), (c, d) \in N \times N$. Show that R is an equivalence relation on $N \times N$.

Watch Video Solution

41. Let R be a relation on the set of all line in a plane defined by $(l_1, l_2) \in Ri$ is parallel to line l_2 . Show that R is an equivalence relation.

42. Each of the following defines a relation on N: $x o y, (i)x, y\in Nx+y=10x, \int e\geq r, (iii)x$, y in Nx+4y=10 ,x , y in N`

Watch Video Solution

43. Let $A = \{a, b, c\}$ and the relation R be defined on A as follows: $R = \{(a, a), (b, c), (a, b)\}$. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.

Watch Video Solution

44. Given the relation $R = \{(1, 2), (2, 3) \text{ on the set } A = \{1, 2, 3\}, \text{ add a}$ minimum number of ordered pairs so that the enlarged relation is symmetric, transitive and reflexive.

45. Let $A = \{1, 2, 3, ..., 9\}$ and R be the relation in $A \times A$ defined by (a, b)R(c, d) if a + d = b + c for (a, b), (c, d) in $A \times A$. Prove that R is an equivalence relation. Also obtain the equivalence class [(2,5)].

Watch Video Solution

46. Prove that the relation R on the set $N \times N$ defined by (a, b)R(c, d)a + d = b + c for all $(a, b), (c, d) \in N \times N$ is an equivalence relation. Also, find the equivalence classes [(2, 3)] and [(1, 3)].

Watch Video Solution

47. Let n be a positive integer. Prove that the relation R on the set Z of all integers numbers defined by $(x, y) \in R \Leftrightarrow x - y$ is divisible by n, is an equivalence relation on Z.

48. Let T be the set of all triangles in a plane with R as relation in T given by $R = \{(T_1, T_2) : (T)_1 \cong T_2\}$. Show that R is an equivalence relation.

49. If R and S are relations on a set A, then prove the following : R and S are symmetric $R \cap S$ and $R \cup S$ are symmetric R is reflexive and S is any relation $R \cup S$ is reflexive.

Watch Video Solution

50. Let S be a relation on the set R of all real numbers defined by $S = \{(a, b)R \times R : a^2 + b^2 = 1\}$. Prove that S is not an equivalence relation on R.

51. Write the domain of the relation R defined on the set Z of integers as

follows $(a,b)\in R\Leftrightarrow a^2+b^2=25$

52. If R and S are transitive relations on a set $A,\,$ then prove that $R\cup S$ may not be a transitive relation on A.

Watch Video Solution

53. Let R be the equivalence relation in the set $A = \{0, 1, 2, 3, 4, 5\}$

given by $R = \{(a, b) : divides(a - b)\}$. Write the equivalence class [0].

54. If $R = \{(x, y) : x + 2y = 8\}$ is a relation on N, write the range of R.

55. Let Z be the set of all integers and R be the relation on Z defined as $R = \{(a, b); a, b \in Z, \text{ and } (a - b) \text{ is divisible by 5. } \}$. Prove that R is an equivalence relation.

Watch Video Solution

56. The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.

Watch Video Solution

57. Let A be the set of all students of a boys school. Show that the relation R on A given by $R = \{(a, b) : a \text{ is sister of } b\}$ is empty relation and $R' = \{(a, b) : \text{ the difference between the heights of } a \text{ and } b \text{ is less than 5 meters} \}$ is the universal relation.

58. Prove that a relation R on a set A is symmetric iff $R = R^{-1}$.

59. The relation R on the set N of all natural numbers defined by $(x, y) \in R \Leftrightarrow x$ divides y, for all $x, y \in N$ is transitive.

Watch Video Solution

60. Three relations $R_1, R_2 and R_3$ are defined on set $A = \{a, b, c\}$ as follow: $R_1 = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)\}$ $R_2 = \{(a, b), (b, a), (a, c), (c, a)\}$ $R_3 = \{(a, b), (b, c), (c, a)\}$ Find whether each of R_1, R_2, R_3 is reflexive, symmetric and transitive.

61. Show that the relation R on the set $A = \{1, 2, 3\}$ given by $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}$ is reflexive but neither symmetric nor transitive.

Watch Video Solution

62. Show that the relation R on the set $A = \{1, 2, 3\}$ given by $R = \{(1, 2), (2, 1)\}$ is symmetric but neither reflexive nor transitive.

Watch Video Solution

63. Check the following relations R and S for reflexivity, symmetry and transitivity: (i)aRb iff b is divisible by $a, a, b \in N$ (ii) $l_1 S l_2$ iff $l_1 \perp l_2$, where l_1 and l_2 are straight lines in a plane.

64. Let a relation R_1 on the set R of real numbers be defined as $(a, b) \in R_1 \Leftrightarrow 1 + ab > 0$ for all $a, b \in R$. Show that R_1 is reflexive and symmetric but not transitive.

Watch Video Solution

65. Determine whether Relation R on the set $A = \{1, 2, 3, , 13, 14\}$

defined as $R = \{(x, y): 3x - y = 0\}$ is reflexive, symmetric or transitive.

Watch Video Solution

66. Determine whether Relation R on the set N of all natural numbers

defined as $R = \{(x, y) : y = x + 5 \text{ and } x < 4\}$ is reflexive, symmetric or

transitive.

67. Determine whether Relation R on the set $A = \{1, 2, 3, 4, 5, 6\}$ defined as $R = \{(x, y) : y \text{ is divisible by } x\}$ is reflexive, symmetric or transitive.

Watch Video Solution

68. Determine whether Relation R on the set Z of all integer defined as

 $R = \{(x, y) : (x - y) = integer\}$ is reflexive, symmetric or transitive.

Watch Video Solution

69. Show that the relation R on R defined as $R = \{(a, b) : a \leq b\}$, is

reflexive and transitive but not symmetric.

70. Let S be the set of all points in a plane and R be a relation on S defines as $R = \{(P, Q): \text{ distance between } P \text{ and } Q \text{ is less than 2 units} \}$ Show that R is reflexive and symmetric but not transitive.

Watch Video Solution

71. Let $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, Let R_1 be a relation on X given by $R_1 = \{(x, y) : x - y \text{ is divisible by 3} \text{ and } R_2$ be another relation on X given by $R_2 = \{(x, y) : \{x, y\} \subset \{1, 4, 7\} \text{ or } \{x, y\} \subset \{2, 5, 8\} \text{ or}$ $\{x, y\} \subset \{3, 6, 9\}\}$. Show that $R_1 = R_2$.

Watch Video Solution

72. Show that the relations R on the set R of all real numbers, defined as $R = \{(a, b) : a \le b^2\}$ is neither reflexive nor symmetric nor transitive.

73. Let $A = \{1, 2, 3\}$. Then, show that the number of relations containing (1, 2) and (2, 3) which are reflexive and transitive but not symmetric is three.

74. Let A be the set of all human beings in a town at a particular time. Determine whether Relation $R = \{(x, y) : x \text{ and } y \text{ work at the same place}\}$ is reflexive, symmetric and transitive:

75. Let A be the set of all human beings in a town at a particular time. Determine whether Relation $R = \{(x, y) : x \text{ and } y \text{ live in the same locality}\}$ is reflexive, symmetric and transitive:

76. Let A be the set of all human beings in a town at a particular time. Determine whether Relation $R = \{(x, y) : x \text{ is wife of } y \}$ is reflexive, symmetric and transitive:

Watch Video Solution

77. Let A be the set of all human beings in a town at a particular time. Determine whether Relation $R = \{(x, y) : x \text{ is father of } y \}$ is reflexive, symmetric and transitive:

Watch Video Solution

78. $R_1 = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)\}$ is defined on set $A = \{a, b, c\}$. Find whether or not it is (i) reflexive (ii) symmetric (iii) transitive.

79. $R_2 = \{(a, \ a)\}$ is defined on set $A = \{a, \ b, \ c\}$. Find whether or not

it is (i) reflexive (ii) symmetric (iii) transitive.

80. $R_3 = \{(b,c)\}$ is defined on set $A = \{a, \ b, \ c\}$. Find whether or not it

is (i) reflexive (ii) symmetric (iii) transitive.

Watch Video Solution

81. Test whether, R_1 on Q_0 defined by $(a, b) \in R_1 \Leftrightarrow a = 1/b$ is (i) reflexive (ii) symmetric and (iii) transitive:

82. Test whether, R_2 on Z defined by $(a, \ b) \in R_2 \Leftrightarrow |a-b| \leq 5$ is (i)

reflexive (ii) symmetric and (iii) transitive.

83. Test whether, R_3 on R defined by $(a, b) \in R_3 \Leftrightarrow a^2 - 4 \, ab + 3b^2 = 0$.

Watch Video Solution

84. Find whether or not $R_1 = \{(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), \}$

 $(3,\ 3)\}$, on $A=\{1,\ 2,\ 3\}$ is (i) reflexive (ii) symmetric (iii) transitive.

Watch Video Solution

85. Find whether or not $R_2 = \{(2,\ 2),\ (3,\ 1),\ (1,\ 3)\}$, on

 $A=\{1,\ 2,\ 3\}$ is (i) reflexive (ii) symmetric (iii) transitive.

86. Find whether or not $R_3 = \{(1,\ 3),\ (3,\ 3)\}$, on $A = \{1,\ 2,\ 3\}$ is (i)

reflexive (ii) symmetric (iii) transitive.

87. aRb if a-b>0 is defined on the set of real numbers, find whether it

is reflexive, symmetric or transitive.

Watch Video Solution

88. aRb iff 1 + ab > 0 is defined on the set of real numbers, find whether

it is reflexive, symmetric or transitive.

89. aRb if $|a| \leq b$ is defined on the set of real numbers, find whether it is

reflexive, symmetric or transitive.

is not necessarily true.

93. If $A = \{1, 2, 3, 4\}$ define relations on A which have properties of being reflexive, transitive but not symmetric.

94. If $A = \{1, 2, 3, 4\}$ define relations on A which have properties of being symmetric but neither reflexive nor transitive. Watch Video Solution

95. If $A = \{1, 2, 3, 4\}$ define relations on A which have properties of being reflexive, symmetric and transitive.

Watch Video Solution

Watch Video Solution

96. Let R be a relation defined on the set of natural numbers N as $R = \{(x, y) : x, y \in N, 2x + y = 41\}$ Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.

97. Is it true that every relation which is symmetric and transitive is also

reflexive? Give reasons.

Watch Video Solution

98. An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.

Watch Video Solution

99. Show that the relation " \geq " on the set R of all real numbers is

reflexive and transitive but not symmetric.

100. Give an example of a relation which is reflexive and symmetric but

not transitive.

Watch Video Solution

101. Give an example of a relation which is reflexive and transitive but not symmetric.

Watch Video Solution

102. Give an example of a relation which is symmetric and transitive but

not reflexive.

103. Give an example of a relation which is symmetric but neither reflexive

nor transitive.

104. Give an example of a relation which is transitive but neither reflexive nor symmetric.

Watch Video Solution

105. Given the relation $R = \{(1, 2), (2, 3)\}$ on the set $A = \{1, 2, 3\}$, add a minimum number of ordered pairs so that the enlarged relation is symmetric, transitive and reflexive.

Watch Video Solution

106. Let $A = \{1, 2, 3\}$ and $R = \{(1, 2), (1, 1), (2, 3)\}$ be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A. **107.** Let $A = \{a, b, c\}$ and the relation R be defined on A as follows: $R = \{(a, a), (b, c), (a, b)\}$. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.

Watch Video Solution

108. Each of the following defines a relation on $N\colon$ (i) $x>y,\;x,\;y\in N$

(ii) $x+y=10,\;x,\;y\in N$

(iii) xy is square of an integer, $x, \; y \in N$

(iv) $x+4y=10,\;x,\;y\in N$

Determine which of the above relations are reflexive, symmetric and transitive.

Watch Video Solution

109. Let R be a relation on the set of all lines in a plane defined by $(l_1, l_2) \in R$ <=> line l_1 is parallel to line l_2 . Show that R is an equivalence relation.

110. Show that the relation 'is congruent to' on the set of all triangles in a

plane is an equivalence relation

Watch Video Solution

111. Show that the relation R defined on the set A of all triangles in a plane as $R = \{(T_1, T_2): T_1 \text{ is similar to } T_2) \text{ is an equivalence relation.}$ Consider three right angle triangle T_1 with sides 3, 4, 5; T_2 with sides 5, 12, 13 and T_3 with sides 6, 8, 10. Which triangles among T_1 , T_2 and T_3 are related?

Watch Video Solution

112. Let n be a positive integer. Prove that the relation R on the set Z of all integers numbers defined by $(x, y) \in R \Leftrightarrow x - y$ is divisible by n, is an equivalence relation on Z. **113.** Show that the relation R on the set A of all the books in a library of a college given by $R = \{(x, y) : x \text{ and } y \text{ have the same number of pages}\}$, is an equivalence relation.

Watch Video Solution

114. Show that the relation R on the set $A = \{1, 2, 3, 4, 5\}$, given by $R = \{(a, b) : |a - b| \text{ is even }\}$, is an equivalence relation. Show that all the elements of $\{1, 3, 5\}$ are related to each other and all the elements of $\{2, 4\}$ are related to each other. But, no element of $\{1, 3, 5\}$ is related to any element of $\{2, 4\}$.

Watch Video Solution

115. Show that the relation R on the set $A=\{x\in Z\colon 0\leq x\leq 12\}$, given by $R=\{(a,\ b)\colon |a-b|$ is a multiple of 4} is an equivalence

relation. Find the set of all elements related to 1 i.e. equivalence class [1].

Watch Video Solution

116. Show that the relation R on the set A of points in a plane, given by $R = \{(P, Q): \text{ Distance of the point } P \text{ from the origin is same as the distance of the point <math>Q$ from the origin}, is an equivalence relation. Further show that the set of all points related to a point $P \neq (0, 0)$ is the circle passing through P with origin as centre.

Watch Video Solution

117. Prove that the relation R on the set $N \times N$ defined by $(a, b)R \Leftrightarrow (c, d)a + d = b + c$ for all $(a, b), (c, d) \in N \times N$ is an equivalence relation. Also, find the equivalence classes [(2, 3)] and [(1, 3)].

118. Let $A = \{1, 2, 3, , 9\}$ and R be the relation on $A \times A$ defined by (a, b)R(c, d) if a + d = b + c for all $(a, b), (c, d) \in A \times A$. Prove that R is an equivalence relation and also obtain the equivalence class [(2, 5)].

Watch Video Solution

119. Let N be the set of all natural numbers and let R be a relation on $N \times N$, defined by $(a, b)R(c, d) \Leftrightarrow ad = bc$ for all $(a, b), (c, d) \in N \times N$. Show that R is an equivalence relation on $N \times N$. Also, find the equivalence class [(2,6)].

Watch Video Solution

120. Let N denote the set of all natural numbers and R be the relation on NxN defined by $(a, b)R(c, d) \Leftrightarrow ad(b + c) = bc(a + d)$. Check whether R is an equivalence relation on NxN.

121. Prove that the relation congruence modulo m on the set Z of all

integers is an equivalence relation.

Watch Video Solution	
----------------------	--

122. Show that the number of equivalence relations on the set $\{1, 2, 3\}$ containing (1, 2) and (2, 1) is two.

Watch Video Solution

123. Given a non-empty set X, consider P(X) which is the set of all subsets of X. Define a relation in P(X) as follows: For subsets A, B in P(X), A R B if $A \subset B$. Is R an equivalence relation on P(X)? Justify your answer.

124. Let R be the equivalence relation in the set $A=\{0,\ 1,\ 2,\ 3,\ 4,\ 5\}$

given by $R = \{(a, b): 2 \text{ divides } (a - b)\}$. Write the equivalence class [0].

Watch Video Solution

125. On the set N of all natural numbers, a relation R is defined as follows: $nRm \ll$ Each of the natural numbers n and m leaves the same remainder less than 5 when divided by 5. Show that R is an equivalence relation. Also, obtain the pairwise disjoint subsets determined by R.

Watch Video Solution

126. Show that the relation R defined by $R = \{(a, b) : a - b \text{ is divisible by }$

3; a, bZ is an equivalence relation.

127. Show that the relation R on the set Z of integers, given by $R = \{(a, b): 2 \text{ divides } a - b\}$, is an equivalence relation.

128. Prove that the relation R on Z defined by $(a, b) \in R \Leftrightarrow a - b$ is divisible by 5 is an equivalence relation on Z.

Watch Video Solution

129. Let n be a fixed positive integer. Define a relation R on Z as follows: $(a, b) \in R \Leftrightarrow a - b$ is divisible by n. Show that R is an equivalence relation on Z.

130. Let Z be the set of integers. Show that the relation $R = \{(a, b) : a, b \in Z \text{ and } a + b \text{ is even} \}$ is an equivalence relation on Z.

Watch Video Solution

131. m is said to be related to n if m and n are integers and m - n is divisible by 13. Does this define an equivalence relation?

Watch Video Solution

132. Let R be a relation on the set A of ordered pairs of integers defined

by (x, y) R(u, v) iff xv = yu. Show that R is an equivalence relation.

Watch Video Solution

133. Show that the relation R on the set $A=\{x\in Z; 0\leq x\leq 12\}$, given by $R=\{(a,\ b):a=b\}$, is an equivalence relation. Find the set of

all elements related to 1.

134. Let L be the set of all lines in XY -plane and R be the relation in L defined as $R = \{(L_1, L_2) : L_1 \text{ is parallel to } L_2\}$. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.

Watch Video Solution

135. Show that the relation R, defined on the set A of all polygons as $R = \{(P_1, P_2): P_1 \text{ and } P_2 \text{ have same number of sides}\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?

136. Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.

Watch Video Solution

137. Let *R* be the relation defined on the set $A = \{1, 2, 3, 4, 5, 6, 7\}$ by $R = \{(a, b):$ both *a* and *b* are either odd or even}. Show that *R* is an equivalence relation. Further, show that all the elements of the subset $\{1, 3, 5, 7\}$ are related to each other and all the elements of the subset $\{2, 4, 6\}$ are related to each other, but no element of the subset $\{1, 3, 5, 7\}$ is related to any element of the subset $\{2, 4, 6\}$.

Watch Video Solution

138. Let S be a relation on the set R of all real numbers defined by $S = \{(a, b) \in R imes R: a^2 + b^2 = 1\}$. Prove that S is not an equivalence relation on R.

139. Let Z be the set of all integers and Z_0 be the set of all non-zero integers. Let a relation R on $Z \times Z_0$ be defined as follows: $(a, b) R(c, d) \Leftrightarrow ad = bc$ for all $(a, b), (c, d) \in Z \times Z_0$ Prove that R is an equivalence relation on $Z \times Z_0$

Watch Video Solution

140. If R and S are relations on a set A, then prove the following: R and S are symmetric $\Rightarrow R \cap S$ and $R \cup S$ are symmetric (ii) R is reflexive and S is any relation $\Rightarrow R \cup S$ is reflexive.

141. If R and S are transitive relations on a set A , then prove that $R\cup S$

may not be a transitive relation on A .

142. Write the domain of the relation R defined on the set Z of integers

as follows: $(a,\ b)\in R\Leftrightarrow a^2+b^2=25$

Watch Video Solution

143. If
$$R=ig\{(x,\ y)\!:\!x^2+y^2\leq 4;x,\ y\in Zig\}$$
 is a relation on Z , write

the domain of R .

Watch Video Solution

144. Write the identity relation on set $A = \{a, b, c\}$.

145. Write the smallest reflexive relation on set $A=\{1,\ 2,\ 3,\ 4\}$.

146. If $R = \{(x, y) : x + 2y = 8\}$ is a relation on N , then write the range of R .

Watch Video Solution

147. If R is a symmetric relation on a set A , then write a relation between

R and R^{-1} .

Watch Video Solution

148. Let $R = \{(x, y): |x^2 - y^2| < 1\}$ be a relation on set $A = \{1, 2, 3, 4, 5\}$. Write R as a set of ordered pairs.

149. If $A = \{2, \ 3, \ 4\}$, $B = \{1, \ 3, \ 7\}$ and `R={(x ,\ y): x in A ,\ y in B\ a n d\

Х

150. Let $A = \{3, 5, 7\}$, $B = \{2, 6, 10\}$ and R be a relation from A to B defined by $R = \{(x, y) : x \text{ and } y \text{ are relatively prime.}\}$ Then, write R and R^{-1} .

Watch Video Solution

151. Define a reflexive relation.

152. Define a symmetric relation.

153. Define a transitive relation.

155. If $A = \{3, 5, 7\}$ and $B = \{2, 4, 9\}$ and R is a relation given by is

less than, write R as a set ordered pairs.

Watch Video Solution

156. $A = \{1, 2, 3, 4, 5, 6, 7\}$ and if $R = \{(x, y) : y \text{ is one half of } x; x, y \in A\}$ is a relation on A , then write R as a set of ordered pairs.

157. Let $A = \{2, 3, 4, 5\}$ and $B = \{1, 3, 4\}$. If R is the relation from A to B given by a R b iff a is a divisor of b. Write R as a set of ordered pairs.

Watch Video Solution

158. State the reason for the relation R on the set {1, 2, 3} given by $R = \{(1, 2), (2, 1)\}$ not to be transitive.

Watch Video Solution

159. Let $R = \left\{ \left(a, \ a^3
ight) : a ext{ is a prime number less than 5}
ight\}$ be a relation. Find the range of R .

160. Let R be the relation in the set Z of integers given by R={(a,b):2 divides a-b}. Show that the relation R transitive ? Write the equivalence class [0].

161. For the set $A = \{1, 2, 3\}$, define a relation R on the set A as follows: $R = \{(1, 1), (2, 2), (3, 3), (1, 3)\}$ Write the ordered pairs to be added to R to make the smallest equivalence relation.

Watch Video Solution

162. Let $A = \{0, 1, 2, 3\}$ and R be a relation on A defined as $R = \{(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)\}$, is R reflexive? symmetric transitive?

167. Which of the following is not an equivalence relation on Z? $a \ R \ b \Leftrightarrow a + b$ is an even integer (b) $a \ R \ b \Leftrightarrow a - b$ is an even integer (c) $a \ R \ b \Leftrightarrow a = b$

168. R is a relation on the set Z of integers and it is given by $(x, y) \in R \Leftrightarrow |x - y| \le 1$. Then, R is (a) reflexive and transitive (b) reflexive and symmetric (c) symmetric and transitive (d) an equivalence relation

Watch Video Solution

169. Let R = {(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)} be a relation on the set A = {1, 2,

3, 4}. The relation R is

170. Let R be the relation over the set of all straight lines in a plane such that $l_1 R l_2 \Leftrightarrow l_1 \perp l_2$. Then, R is (a) symmetric (b) reflexive (c) transitive (d) an equivalence relation

171. Let $A = \{1, 2, 3\}$ Then number of relations containing (1, 2) and (1, 3)which are reflexive and symmetric but not transitive is (A) 1 (B) 2 (C) 3 (D)

172. The relation 'R' in $N \times N$ such that (a, b) $R(c, d) \Leftrightarrow a + d = b + c$ is reflexive but not symmetric reflexive and transitive but not symmetric an equivalence relation (d) none of these

173. If $A = \{1, 2, 3\}, B = \{1, 4, 6, 9\}$ and R is a relation from A to B defined by 'x is greater than y'. The range of R is (a) $\{1, 4, 6, 9\}$ (b) $\{4, 6, 9\}$ (c) $\{1\}$ (d) none of these

174. A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : $x R y \Leftrightarrow x$ is relatively prime to y. Then, domain of R is (a) {2, 3, 5} (b) {3, 5} (c) {2, 3, 4} (d) {2, 3, 4, 5}

Watch Video Solution

175. A relation arphi from C to R is defined by $x \, arphi \, y \Leftrightarrow |x| = y$. Which one

is correct?

(a) (2+3i)arphi 13 (b) 3arphi(-3) (c) (1+i)arphi 2 (d) iarphi 1

176. Let R be a relation on N defined by x + 2y = 8. The domain of R is

A. {2,4,8}

B. {2,4,6,8}

C. {2,4,6}

D. {1,2,3,4}

Answer: C) $\{2, 4, 6\}$

Watch Video Solution

177. R is a relation from {11, 12, 13} to {8, 10, 12} defined by y = x - 3. Then, R^{-1} is (a) {(8, 11), (10, 13)} (b) {(11, 8), (13, 10)} (c) {(10, 13), (8, 11), (8, 10)} (d) none of these

178. Let $R = \{(a, a), (b, b), (c, c), (a, b)\}$ be a relation on set $A = \{a, b, c\}$. Then, R is (a) identity relation (b) reflexive (c) symmetric (d) equivalence

Watch Video Solution

179. Let $A = \{1, 2, 3\}$ and $R = \{(1, 2), (2, 3), (1, 3)\}$ be a relation on A. Then, R is (a)neither reflexive nor transitive (b)neither symmetric nor transitive (c) transitive (d) none of these

Watch Video Solution

180. If R is the largest equivalence relation on a set A and S is any relation on A , then $R \subset S$ (b) $S \subset R$ (c) R = S (d) none of these

181. If R is a relation on the set $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ given by $x R y \Leftrightarrow y = 3x$, then R = (a) {(3, 1), (6, 2), (8, 2), (9, 3)} (b) {(3, 1), (6, 2), (9, 3)} (b) {(3, 1), (2, 6), (3, 9) (d) none of these

182. If R is a relation on the set $A = \{1, 2, 3\}$ given by R = (1, 1), (2, 2), (3, 3), then R is (a) reflexive (b) symmetric (c) transitive (d) all the three options

Watch Video Solution

183. If $A = \{a, b, c, d\}$, then a relation $R = \{(a, b), (b, a), (a, a)\}$ on A is (a)symmetric and transitive only (b)reflexive and transitive only (c) symmetric only (d) transitive only

184. If $A=\{1,2,3\}$, then a relation $R=\{(2,3)\}$ on A is (a) symmetric

and transitive only (b) symmetric only (c) transitive only (d) none of these

Watch Video Solution

185. Let R be the relation on the set $A = \{1, 2, 3, 4\}$ given by $R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}$. Then, R is reflexive and symmetric but not transitive (b) R is reflexive and transitive but not symmetric (c) R is symmetric and transitive but not reflexive (d) R is an equivalence relation

Watch Video Solution

186. Let $A = \{1, 2, 3\}$. Then number of equivalence relations containing

(1, 2) is (A) 1 (B) 2 (C) 3 (D) 4

187. The relation $R = \{(1, 1), (2, 2), (3, 3)\}$ on the set $\{1, 2, 3\}$ is (a) symmetric only (b) reflexive only (c) an equivalence relation (d) transitive only

188. S is a relation over the set R of all real numbers and it is given by $(a, b) \in S \Leftrightarrow ab \ge 0$. Then, S is symmetric and transitive only reflexive and symmetric only (c) antisymmetric relation (d) an equivalence relation

Watch Video Solution

189. In the set Z of all integers, which of the following relation R is not an equivalence relation? x R y: if $x \le y$ (b) x R y: if x = y (c) x R y: if x - y is an even integer (d) x R y: if $x = y \pmod{3}$

190. Let $A = \{1, 2, 3\}$ and consider the relation $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$. Then, R is (a) reflexive but not symmetric (b) reflexive but not transitive (c) symmetric and transitive (d) neither symmetric nor transitive

Watch Video Solution

191. The relation S defined on the set R of all real number by the rule a Sb iff $a \ge b$ is (a) equivalence relation (b)reflexive, transitive but not symmetric (c)symmetric, transitive but not reflexive (d) neither transitive nor reflexive but symmetric

Watch Video Solution

192. The maximum number of equivalence relations on the set A = {1, 2, 3}

are

193. Let R be a relation on the set N of natural numbers defined by

 $n \ R \ m$ if n divides m. Then, R is

A. Reflexive and Symmetric

B. Symmetric and Transitive

C. Equivalence

D. Reflexive and Transitive but not Symmetric

Answer: D

Watch Video Solution

194. Let L denote the set of all straight lines in a plane. Let a relation R be defined by l R m if and only if l is perpendicular to m f or all, $l, m \in L$. Then, R is (a) reflexive (b) symmetric (c) transitive (d) none of these

195. Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as $a \ R \ b$ if a is congruent to b for all $a, \ b \in T$. . Then, R is (a) reflexive but not symmetric (b) transitive but not symmetric (c) equivalence (d) none of these

Watch Video Solution

196. Let R be a relation defined by $R = \{(a, b) : a \ge b, a, b \in R\}$. The relation R is (a) reflexive, symmetric and transitive (b) reflexive, transitive but not symmetric (c) symmetric, transitive but not reflexive (d) neither transitive nor reflexive but symmetric

Watch Video Solution

197. For real numbers x and y, we write $x \cdot y$, if $x - y + \sqrt{2}$ is an irrational number. Then, the relation \cdot is an equivalence relation.

1. If $A = \{a, b, c\}$, then the relation $R = \{(b, c)\}$ on A is (a) reflexive only (b) symmetric only (c) transitive only (d) reflexive and transitive only

View Text Solution

2. Let $A = \{2, 3, 4, 5, , 17, 18\}$. Let '' be the equivalence relation on $A \times A$, cartesian product of A with itself, defined by (a, b)(c, d) iff ad = bc. Then, the number of ordered pairs of the equivalence class of (3, 2) is (a) 4 (b) 5 (c) 6 (d) 7

View Text Solution