びdoubtnut

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

RELATIONS

Solved Examples And Exercises

1. An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.

- Watch Video Solution

2. If R and S are relations on a set A, then prove the following : R and S are symmetric $R \cap S$ and $R \cup S$ are symmetric R is reflexive and S is any relation $R \cup S$ is reflexive.
3. If R and S are transitive relations on a set A, then prove that $R \cup S$ may not be a transitive relation on A.

- Watch Video Solution

4. Let L be the set of all lines in $X Y=$ plane and R be the relation in L defined as $R=\left\{\left(L_{1}, L_{2}\right): L_{1}\right.$ is parallel to $\left.L_{2}\right\}$. Show that R is an equivalence relation. Find the set of all lines related to the line $y=2 x+4$.

- Watch Video Solution

5. Show that the relation \geq on the set R of all real numbers is reflexive and transitive but nut symmetric.
6. Let S be a relation on the set R of all real numbers defined by $S=\left\{(a, b) R x R: a^{2}+b^{2}=1\right\}$. Prove that S is not an equivalence relation on R.

- Watch Video Solution

7. Given to relation $R=\{(1,2),(2,3)\}$ on the set $A=\{1,2,3\}$, add a minimum number of ordered pairs so that the enlarged relation is symmetric, transitive and reflexive.

- Watch Video Solution

8. Let O be the origin. We define a relation between two points P and Q in a plane if $O P=O Q$. Show that the relation, so defined is an equivalence relation.

- Watch Video Solution

9. The following relations are defined on the set of real number: $a R b$ if $a-b>0 a R b$ if $1+a b>0 a R b$ if $|a| \leq b$ Find whether these relations are reflexive, symmetric or transitive.

- Watch Video Solution

Find whether or not each of the relations R_{1}, R_{2}, R_{3} on A is (i) reflexive
(ii) symmetric (iii) transitive.

- Watch Video Solution

11. Let R be a relation defined on the set of natural numbers N as $R=\{(x, y): x, y \in N, 2 x+y=41\}$ Find the domain and range of R
. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.

- Watch Video Solution

12. Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.

- Watch Video Solution

13. Let $A=\{1,2,3\}$ and $R=\{(1,2),(1,1),(2,3)\}$ be a relation on A.

What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.

- Watch Video Solution

14. Show that the relation R defined by $R=\{(a, b): a-b$ is divisible by $3 ; a, b Z\}$ is an equivalence relation.

- Watch Video Solution

15. Test whether the following relations R_{1}, R_{2} and R_{3}, are (i) reflexive (ii) symmetric and (iii) transitive: R_{1} on Q_{0} defined by $(a, b) R_{1} a=\frac{1}{b} R_{2}$ on $Z \quad$ defined \quad by $\quad(a, b) R_{2}|a-b| \leq 5 \quad R_{3} \quad$ on $\quad R \quad$ defined \quad by $(a, b) R_{3} a^{2}-4 a b+3 b^{2}=0$

- Watch Video Solution

16. Three relations $R_{1}, R_{2} a n d R_{3}$ are defined on set $A=\{a, b, c\}$ as follow:

$$
R_{1}=\{(a, a),(a, b),(a, c),(b, b),(b, c),(c, a),(c, b),(c, c)\}
$$

$R_{2}=\{(a, b),(b, a),(a, c),(c, a)\} \quad R_{3}=\{(a, b),(b, c),(c, a)\} \quad$ Find whether each of R_{1}, R_{2}, R_{3} is reflexive, symmetric and transitive.

- Watch Video Solution

17. Show that the relation R on the set $A\{x Z ; 0 \leq 12\}$, given by $R=\{(a, b): a=b\}$, is an equivalence relation. Find the set of all elements related to 1 .
18. Let n be a fixed positive integer. Define a relation R on Z as follows: $(a, b) R a-b$ is divisible by n. Show that R is an equivalence relation on Z.

- Watch Video Solution

19. Let Z be the set of all integers and Z_{0} be the set of all non=zero integers. Let a relation R on $Z x Z_{0}$ be defined as follows: $(a, b) R(c, d) a d=b c$ for all $(a, b),(c, d) Z x Z_{0}$ Prove that R is an equivalence relation on $Z x Z_{0}$.

- Watch Video Solution

20. Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.
21. Let Z be the set of integers. Show that the relation $R=\{(a, b): a, b Z$ and $a+b$ is even $\}$ is an equivalence relation on Z.

- Watch Video Solution

22. If R is an equivalence relation on a set A , then R^{-1} is A . reflexive only B. symmetric but not transitive C. equivalence D. None of these

Watch Video Solution

23. On the set N of all natural numbers, a relation R is defined as follows:
$\forall n, m \in N, n R m$ Each of the natural numbers n and m leaves the remainder less than 5 .Show that R is an equivalence relation. Also, obtain the pairwise disjoint subsets determined by R.

- Watch Video Solution

24. If R_{1} and R_{2} are equivalence relations in a set A , show that $R_{1} \cap R_{2}$ is also an equivalence relation.

- Watch Video Solution

25. Let Z be the set of all integers and Z_{0} be the set of all non=zero integers. Let a relation R on $Z \times Z_{0}$ be defined as follows: $(a, b) R(c, d) a d=b c$ for all $(a, b),(c, d) Z \times Z_{0}$ Prove that R is an equivalence relation on $Z \times Z_{0}$.

- Watch Video Solution

26. Let R be the equivalence relation in the set $A=\{0,1,2,3,4,5\}$ given by $R=\{(a, b)$: divides $(a-b)\}$. Write the equivalence class [0].

- Watch Video Solution

27. An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.

- Watch Video Solution

28. Show that the relation \geq on the set R of all real numbers is reflexive and transitive but nut symmetric.

- Watch Video Solution

29. m is said to be related to n if m and n are integers and $m-n$ is divisible by 13. Does this define an equivalence relation?

- Watch Video Solution

30. Let O be the origin. We define a relation between two points P and Q in a plane if $O P=O Q$. Show that the relation, so defined is an

equivalence relation.

- Watch Video Solution

31. Show that the relation R defined by $R=\{(a, b): a-b$ is divisible by $3 ; a, b Z\}$ is an equivalence relation.

- Watch Video Solution

32. Prove that a relation R on a set A is symmetric iff $R=R^{-1}$

- Watch Video Solution

33. Three relations R_{1}, R_{2} and R_{3} are defined on set $A=\{a, b, c\}$ as follow:
$R_{1}=\{(a, a),(a, b),(a, c),(b, b),(b, c),(c, a),(c, b),(c, c)\}$
$R_{2}=\{(a, b),(b, a),(a, c),(c, a)\}$
$R_{3}=\{(a, b),(b, c),(c, a)\}$
Find whether each of R_{1}, R_{2}, R_{3} is reflexive, symmetric and transitive.

- Watch Video Solution

34. Let a relation R_{1} on the set R of real numbers be defined as $(a, b) \in R \Leftrightarrow 1+a b>0$ for all $a, b \in R$. Show that R_{1} is reflexive and symmetric but not transitive.

- Watch Video Solution

35. Let S be the set of all points in a plane and R be a relation on S defines as $R=\{(P, Q)$: distance between P and Q is less than 2 units $\}$ Show that R is reflexive and symmetric but not transitive.

- Watch Video Solution

36. The following relations are defined on the set of real number: $a R b$ if $1+a b>0$ Find whether these relations are reflexive, symmetric or transitive.

- Watch Video Solution

37. Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.

- Watch Video Solution

38. Let R be a relation defined on the set of natural numbers N as $R=\{(x, y): x, y \in N, 2 x+y=41\}$ Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.

- Watch Video Solution

39. Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by $(a, b) R(c, d) \Leftrightarrow a d(b+c)=b c(a+d)$. Check whether R is an equivalence relation on $N \times N$

- Watch Video Solution

40. Let N be the set of all natural numbers and let R be a relation on $N \times N \quad, \quad$ defined \quad by $\quad(a, b) R(c, d) \Leftrightarrow a d=b c \quad$ for \quad all $(a, b),(c, d) \in N \times N$. Show that R is an equivalence relation on $N \times N$.

- Watch Video Solution

41. Let R be a relation on the set of all line in a plane defined by
$\left(l_{1}, l_{2}\right) \in R i$ is parallel to line l_{2}. Show that R is an equivalence relation.

- Watch Video Solution

42. Each of the following defines a relation on N : $x \rightarrow y,(i) x, y \in N x+y=10 x, \int e \geq r,(i i i) \mathrm{x}, \mathrm{y}$ in $\mathrm{N} \mathrm{x}+4 \mathrm{y}=10, \mathrm{x}, \mathrm{y}$ in N^{\prime}

- Watch Video Solution

43. Let $A=\{a, b, c)$ and the relation R be defined on A as follows: $R=\{(a, a),(b, c),(a, b)\}$. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.

- Watch Video Solution

44. Given the relation $R=\{(1,2),(2,3)$ on the set $A=\{1,2,3\}$, add a minimum number of ordered pairs so that the enlarged relation is symmetric, transitive and reflexive.

- Watch Video Solution

45. Let $A=\{1,2,3, \ldots ., 9\}$ and R be the relation in $A \times A$ defined by $(a, b) R(c, d)$ if $a+d=b+c$ for $(a, b),(c, d)$ in $A \times A$. Prove that R is an equivalence relation. Also obtain the equivalence class [(2,5)].

- Watch Video Solution

46. Prove that the relation R on the set $N \times N$ defined by $(a, b) R(c, d) a+d=b+c$ for all $(a, b),(c, d) \in N \times N$ is an equivalence relation. Also, find the equivalence classes $[(2,3)]$ and $[(1,3)]$.

- Watch Video Solution

47. Let n be a positive integer. Prove that the relation R on the set Z of all integers numbers defined by $(x, y) \in R \Leftrightarrow x-y$ is divisible by n, is an equivalence relation on Z .

- Watch Video Solution

48. Let T be the set of all triangles in a plane with R as relation in T given by $R=\left\{\left(T_{1}, T_{2}\right):(T)_{1} \cong T_{2}\right\}$. Show that R is an equivalence relation.

- Watch Video Solution

49. If R and S are relations on a set A, then prove the following : R and S are symmetric $R \cap S$ and $R \cup S$ are symmetric R is reflexive and S is any relation $R \cup S$ is reflexive.

- Watch Video Solution

50. Let S be a relation on the set R of all real numbers defined by $S=\left\{(a, b) R \times R: a^{2}+b^{2}=1\right\}$. Prove that S is not an equivalence relation on R.

- Watch Video Solution

51. Write the domain of the relation R defined on the set Z of integers as follows $(a, b) \in R \Leftrightarrow a^{2}+b^{2}=25$

Watch Video Solution

52. If R and S are transitive relations on a set A, then prove that $R \cup S$ may not be a transitive relation on A.

- Watch Video Solution

53. Let R be the equivalence relation in the set $A=\{0,1,2,3,4,5\}$ given by $R=\{(a, b)$: divides $(a-b)\}$. Write the equivalence class [0].

- Watch Video Solution

54. If $R=\{(x, y): x+2 y=8\}$ is a relation on N , write the range of R .
55. Let Z be the set of all integers and R be the relation on Z defined as $R=\{(a, b) ; a, b \in Z$, and $(a-b)$ is divisible by 5.$\}$. Prove that R is an equivalence relation.

- Watch Video Solution

56. The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.

- Watch Video Solution

57. Let A be the set of all students of a boys school. Show that the relation R on A given by $R=\{(a, b): a$ is sister of $b\}$ is empty relation and $R^{\prime}=\{(a, b)$: the difference between the heights of a and b is less than 5 meters\} is the universal relation.
58. Prove that a relation R on a set A is symmetric iff $R=R^{-1}$.

- Watch Video Solution

59. The relation R on the set N of all natural numbers defined by $(x, y) \in R \Leftrightarrow x$ divides y, for all $x, y \in N$ is transitive.

- Watch Video Solution

60. Three relations $R_{1}, R_{2} a n d R_{3}$ are defined on set $A=\{a, b, c\}$ as follow:

$$
R_{1}=\{(a, a),(a, b),(a, c),(b, b),(b, c),(c, a),(c, b),(c, c)\}
$$

$R_{2}=\{(a, b),(b, a),(a, c),(c, a)\} \quad R_{3}=\{(a, b),(b, c),(c, a)\} \quad$ Find whether each of R_{1}, R_{2}, R_{3} is reflexive, symmetric and transitive.

- Watch Video Solution

61. Show that the relation R on the set $A=\{1,2,3\}$ given by $R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ is reflexive but neither symmetric nor transitive.

- Watch Video Solution

62. Show that the relation R on the set $A=\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ is symmetric but neither reflexive nor transitive.

- Watch Video Solution

63. Check the following relations R and S for reflexivity, symmetry and transitivity: (i) $a R b$ iff b is divisible by $a, a, b \in N$ (ii) $l_{1} S l_{2}$ iff $l_{1} \perp l_{2}$, where l_{1} and l_{2} are straight lines in a plane.

- Watch Video Solution

64. Let a relation R_{1} on the set R of real numbers be defined as $(a, b) \in R_{1} \Leftrightarrow 1+a b>0$ for all $a, b \in R$. Show that R_{1} is reflexive and symmetric but not transitive.

- Watch Video Solution

65. Determine whether Relation R on the set $A=\{1,2,3,, 13,14\}$ defined as $R=\{(x, y): 3 x-y=0\}$ is reflexive, symmetric or transitive.

- Watch Video Solution

66. Determine whether Relation R on the set N of all natural numbers defined as $R=\{(x, y): y=x+5$ and $x<4\}$ is reflexive, symmetric or transitive.

- Watch Video Solution

67. Determine whether Relation R on the set $A=\{1,2,3,4,5,6\}$ defined as $R=\{(x, y): y$ is divisible by $x\}$ is reflexive, symmetric or transitive.

- Watch Video Solution

68. Determine whether Relation R on the set Z of all integer defined as $R=\{(x, y):(x-y)=$ integer $\}$ is reflexive, symmetric or transitive.

- Watch Video Solution

69. Show that the relation R on R defined as $R=\{(a, b): a \leq b\}$, is reflexive and transitive but not symmetric.

- Watch Video Solution

70. Let S be the set of all points in a plane and R be a relation on S defines as $R=\{(P, Q)$: distance between P and Q is less than 2 units $\}$ Show that R is reflexive and symmetric but not transitive.

- Watch Video Solution

71. Let $X=\{1,2,3,4,5,6,7,8,9\}$, Let R_{1} be a relation on X given by $R_{1}=\{(x, y): x-y$ is divisible by 3$\}$ and R_{2} be another relation on X given by $R_{2}=\{(x, y):\{x, y\} \subset\{1,4,7\}$ or $\{x, y\} \subset\{2,5,8\}$ or $\{x, y\} \subset\{3,6,9\}\}$. Show that $R_{1}=R_{2}$.

- Watch Video Solution

72. Show that the relations R on the set R of all real numbers, defined as
$R=\left\{(a, b): a \leq b^{2}\right\}$ is neither reflexive nor symmetric nor transitive.

- Watch Video Solution

73. Let $A=\{1,2,3\}$. Then, show that the number of relations containing (1,2) and $(2,3)$ which are reflexive and transitive but not symmetric is three.

- Watch Video Solution

74. Let A be the set of all human beings in a town at a particular time. Determine whether Relation $R=\{(x, y): x$ and y work at the same place is reflexive, symmetric and transitive:

- Watch Video Solution

75. Let A be the set of all human beings in a town at a particular time. Determine whether Relation $R=\{(x, y): x$ and y live in the same locality\} is reflexive, symmetric and transitive:

- Watch Video Solution

76. Let A be the set of all human beings in a town at a particular time. Determine whether Relation $R=\{(x, y): x$ is wife of $y\}$ is reflexive, symmetric and transitive:

- Watch Video Solution

77. Let A be the set of all human beings in a town at a particular time. Determine whether Relation $R=\{(x, y): x$ is father of $y\}$ is reflexive, symmetric and transitive:

- Watch Video Solution

78. $R_{1}=\{(a, a),(a, b),(a, c),(b, b),(b, c),(c, a),(c, b),(c, c)\}$ is defined on set $A=\{a, b, c\}$. Find whether or not it is (i) reflexive (ii) symmetric (iii) transitive.

- Watch Video Solution

79. $R_{2}=\{(a, a)\}$ is defined on set $A=\{a, b, c\}$. Find whether or not it is (i) reflexive (ii) symmetric (iii) transitive.

- Watch Video Solution

80. $R_{3}=\{(b, c)\}$ is defined on set $A=\{a, b, c\}$. Find whether or not it is (i) reflexive (ii) symmetric (iii) transitive.

- Watch Video Solution

81. Test whether, R_{1} on Q_{0} defined by $(a, b) \in R_{1} \Leftrightarrow a=1 / b$ is (i) reflexive (ii) symmetric and (iii) transitive:

- Watch Video Solution

82. Test whether, R_{2} on Z defined by $(a, b) \in R_{2} \Leftrightarrow|a-b| \leq 5$ is (i) reflexive (ii) symmetric and (iii) transitive.
83. Test whether, R_{3} on R defined by
$(a, b) \in R_{3} \Leftrightarrow a^{2}-4 a b+3 b^{2}=0$.

- Watch Video Solution

84. Find whether or not $R_{1}=\{(1,1),(1,3),(3,1),(2,2),(2,1)$,
$(3,3)\}$, on $A=\{1,2,3\}$ is (i) reflexive (ii) symmetric (iii) transitive.

- Watch Video Solution

85. Find whether or not $R_{2}=\{(2,2),(3,1),(1,3)\}$, on $A=\{1,2,3\}$ is (i) reflexive (ii) symmetric (iii) transitive.

- Watch Video Solution

86. Find whether or not $R_{3}=\{(1,3),(3,3)\}$, on $A=\{1,2,3\}$ is (i) reflexive (ii) symmetric (iii) transitive.

- Watch Video Solution

87. $a R b$ if $a-b>0$ is defined on the set of real numbers, find whether it is reflexive, symmetric or transitive.

- Watch Video Solution

88. $a R b$ iff $1+a b>0$ is defined on the set of real numbers, find whether it is reflexive, symmetric or transitive.

- Watch Video Solution

89. $a R b$ if $|a| \leq b$ is defined on the set of real numbers, find whether it is reflexive, symmetric or transitive.
90. Check whether the relation R defined on the set $A=\{1,2,3,4,5,6\} \quad$ as $\quad R=\{(a, b): b=a+1\} \quad$ is reflexive, symmetric or transitive.

- Watch Video Solution

91. Check whether the relation R on R defined by $R=\left\{(a, b): a \leq b^{3}\right\}$ is reflexive, symmetric or transitive.

- Watch Video Solution

92. Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.

- Watch Video Solution

93. If $A=\{1,2,3,4\}$ define relations on A which have properties of being reflexive, transitive but not symmetric.

- Watch Video Solution

94. If $A=\{1,2,3,4\}$ define relations on A which have properties of being symmetric but neither reflexive nor transitive.

- Watch Video Solution

95. If $A=\{1,2,3,4\}$ define relations on A which have properties of being reflexive, symmetric and transitive.

- Watch Video Solution

96. Let R be a relation defined on the set of natural numbers N as
$R=\{(x, y): x, y \in N, 2 x+y=41\}$ Find the domain and range of R
. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.
97. Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.

- Watch Video Solution

98. An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.

- Watch Video Solution

99. Show that the relation " \geq " on the set R of all real numbers is reflexive and transitive but not symmetric.

- Watch Video Solution

100. Give an example of a relation which is reflexive and symmetric but not transitive.

- Watch Video Solution

101. Give an example of a relation which is reflexive and transitive but not symmetric.

- Watch Video Solution

102. Give an example of a relation which is symmetric and transitive but not reflexive.

- Watch Video Solution

103. Give an example of a relation which is symmetric but neither reflexive nor transitive.
104. Give an example of a relation which is transitive but neither reflexive nor symmetric.

- Watch Video Solution

105. Given the relation $R=\{(1,2),(2,3)\}$ on the set $A=\{1,2,3\}$, add a minimum number of ordered pairs so that the enlarged relation is symmetric, transitive and reflexive.

- Watch Video Solution

106. Let $A=\{1,2,3\}$ and $R=\{(1,2),(1,1),(2,3)\}$ be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.
107. Let $A=\{a, b, c)$ and the relation R be defined on A as follows: $R=\{(a, a),(b, c),(a, b)\}$. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.

- Watch Video Solution

108. Each of the following defines a relation on N : (i) $x>y, x, y \in N$
(ii) $x+y=10, x, y \in N$
(iii) $x y$ is square of an integer, $x, y \in N$
(iv) $x+4 y=10, x, y \in N$

Determine which of the above relations are reflexive, symmetric and transitive.

- Watch Video Solution

109. Let R be a relation on the set of all lines in a plane defined by $\left(l_{1}, l_{2}\right) \in R \ll>$ line l_{1} is parallel to line l_{2}. Show that R is an equivalence relation.

(D) Watch Video Solution

110. Show that the relation 'is congruent to' on the set of all triangles in a plane is an equivalence relation

- Watch Video Solution

111. Show that the relation R defined on the set A of all triangles in a plane as $R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is similar to $\left.T_{2}\right)$ is an equivalence relation. Consider three right angle triangle T_{1} with sides $3,4,5 ; T_{2}$ with sides $5,12,13$ and T_{3} with sides $6,8,10$. Which triangles among T_{1}, T_{2} and T_{3} are related?

- Watch Video Solution

112. Let n be a positive integer. Prove that the relation R on the set Z of all integers numbers defined by $(x, y) \in R \Leftrightarrow x-y$ is divisible by n, is an equivalence relation on Z .

(D) Watch Video Solution

113. Show that the relation R on the set A of all the books in a library of a college given by $R=\{(x, y): x$ and y have the same number of pages $\}$, is an equivalence relation.

- Watch Video Solution

114. Show that the relation R on the set $A=\{1,2,3,4,5\}$, given by $R=\{(a, b):|a-b|$ is even $\}$, is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other and all the elements of $\{2,4\}$ are related to each other. But, no element of $\{1,3,5\}$ is related to any element of $\{2,4\}$.

- Watch Video Solution

115. Show that the relation R on the set $A=\{x \in Z: 0 \leq x \leq 12\}$, given by $R=\{(a, b):|a-b|$ is a multiple of 4$\}$ is an equivalence
relation. Find the set of all elements related to 1 i.e. equivalence class [1].

- Watch Video Solution

116. Show that the relation R on the set A of points in a plane, given by $R=\{(P, Q):$ Distance of the point P from the origin is same as the distance of the point Q from the origin\}, is an equivalence relation. Further show that the set of all points related to a point $P \neq(0,0)$ is the circle passing through P with origin as centre.

- Watch Video Solution

117. Prove that the relation R on the set $N \times N$ defined by $(a, b) R \Leftrightarrow(c, d) a+d=b+c$ for all $(a, b),(c, d) \in N \times N$ is an equivalence relation. Also, find the equivalence classes $[(2,3)]$ and $[(1,3)]$.

- Watch Video Solution

118. Let $A=\{1,2,3,, 9\}$ and R be the relation on $A \times A$ defined by $(a, b) R(c, d)$ if $a+d=b+c$ for all $(a, b),(c, d) \in A \times A$. Prove that R is an equivalence relation and also obtain the equivalence class $[(2,5)]$.

- Watch Video Solution

119. Let N be the set of all natural numbers and let R be a relation on
$N \times N \quad, \quad$ defined \quad by $\quad(a, b) R(c, d) \Leftrightarrow a d=b c \quad$ for \quad all
$(a, b),(c, d) \in N \times N$. Show that R is an equivalence relation on
$N \times N$. Also, find the equivalence class [(2,6)].

- Watch Video Solution

120. Let N denote the set of all natural numbers and R be the relation on
$N x N$ defined by $(a, b) R(c, d) \Leftrightarrow a d(b+c)=b c(a+d)$. Check whether R is an equivalence relation on $N x N$.
121. Prove that the relation congruence modulo m on the set Z of all integers is an equivalence relation.

- Watch Video Solution

122. Show that the number of equivalence relations on the set $\{1,2,3\}$ containing $(1,2)$ and $(2,1)$ is two.

- Watch Video Solution

123. Given a non-empty set X, consider $P(X)$ which is the set of all subsets of X. Define a relation in $P(X)$ as follows: For subsets A, B in $P(X), \quad A R B$ if $A \subset B$. Is R an equivalence relation on $P(X)$? Justify your answer.
124. Let R be the equivalence relation in the set $A=\{0,1,2,3,4,5\}$ given by $R=\{(a, b): 2$ divides $(a-b)\}$. Write the equivalence class [0].

- Watch Video Solution

125. On the set N of all natural numbers, a relation R is defined as follows: $n R m$ <=> Each of the natural numbers n and m leaves the same remainder less than 5 when divided by 5 . Show that R is an equivalence relation. Also, obtain the pairwise disjoint subsets determined by R.

- Watch Video Solution

126. Show that the relation R defined by $R=\{(a, b): a-b$ is divisible by $3 ; a, b Z\}$ is an equivalence relation.

- Watch Video Solution

127. Show that the relation R on the set Z of integers, given by $R=\{(a, b): 2$ divides $a-b\}$, is an equivalence relation.

- Watch Video Solution

128. Prove that the relation R on Z defined by $(a, b) \in R \Leftrightarrow a-b$ is divisible by 5 is an equivalence relation on Z.

- Watch Video Solution

129. Let n be a fixed positive integer. Define a relation R on Z as follows:
$(a, b) \in R \Leftrightarrow a-b$ is divisible by n. Show that R is an equivalence relation on Z.

- Watch Video Solution

130. Let Z be the set of integers. Show that the relation $R=\{(a, b): a, b \in Z$ and $a+b$ is even $\}$ is an equivalence relation on Z.

- Watch Video Solution

131. m is said to be related to n if m and n are integers and $m-n$ is divisible by 13 . Does this define an equivalence relation?

- Watch Video Solution

132. Let R be a relation on the set A of ordered pairs of integers defined by $(x, y) R(u, v)$ iff $x v=y u$. Show that R is an equivalence relation.

- Watch Video Solution

133. Show that the relation R on the set $A=\{x \in Z ; 0 \leq x \leq 12\}$, given by $R=\{(a, b): a=b\}$, is an equivalence relation. Find the set of
all elements related to 1 .

- Watch Video Solution

134. Let L be the set of all lines in $X Y$-plane and R be the relation in L defined as $R=\left\{\left(L_{1}, L_{2}\right): L_{1}\right.$ is parallel to $\left.L_{2}\right\}$. Show that R is an equivalence relation. Find the set of all lines related to the line $y=2 x+4$.

- Watch Video Solution

135. Show that the relation R, defined on the set A of all polygons as $R=\left\{\left(P_{1}, P_{2}\right): P_{1}\right.$ and P_{2} have same number of sides $\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3,4 and 5 ?

- Watch Video Solution

136. Let O be the origin. We define a relation between two points P and Q in a plane if $O P=O Q$. Show that the relation, so defined is an equivalence relation.

- Watch Video Solution

137. Let R be the relation defined on the set $A=\{1,2,3,4,5,6,7\}$ by $R=\{(a, b)$: both a and b are either odd or even $\}$. Show that R is an equivalence relation. Further, show that all the elements of the subset $\{1$, $3,5,7\}$ are related to each other and all the elements of the subset $\{2,4$, $6\}$ are related to each other, but no element of the subset $\{1,3,5,7\}$ is related to any element of the subset $\{2,4,6\}$.

- Watch Video Solution

138. Let S be a relation on the set R of all real numbers defined by $S=\left\{(a, b) \in R \times R: a^{2}+b^{2}=1\right\}$. Prove that S is not an equivalence relation on R.

- Watch Video Solution

139. Let Z be the set of all integers and Z_{0} be the set of all non-zero integers. Let a relation R on $Z \times Z_{0}$ be defined as follows: $(a, b) R(c, d) \Leftrightarrow a d=b c$ for all $(a, b),(c, d) \in Z \times Z_{0}$ Prove that R is an equivalence relation on $Z \times Z_{0}$

- Watch Video Solution

140. If R and S are relations on a set A, then prove the following: R and S are symmetric $\Rightarrow R \cap S$ and $R \cup S$ are symmetric (ii) R is reflexive and S is any relation $\Rightarrow R \cup S$ is reflexive.

- Watch Video Solution

141. If R and S are transitive relations on a set A, then prove that $R \cup S$ may not be a transitive relation on A.
142. Write the domain of the relation R defined on the set Z of integers as follows: $(a, b) \in R \Leftrightarrow a^{2}+b^{2}=25$

- Watch Video Solution

143. If $R=\left\{(x, y): x^{2}+y^{2} \leq 4 ; x, y \in Z\right\}$ is a relation on Z, write the domain of R.

- Watch Video Solution

144. Write the identity relation on set $A=\{a, b, c\}$.

- Watch Video Solution

145. Write the smallest reflexive relation on set $A=\{1,2,3,4\}$.
146. If $R=\{(x, y): x+2 y=8\}$ is a relation on N, then write the range of R.

- Watch Video Solution

147. If R is a symmetric relation on a set A, then write a relation between R and R^{-1}.

- Watch Video Solution

148. Let $R=\left\{(x, y):\left|x^{2}-y^{2}\right|<1\right\}$ be a relation on set $A=\{1,2,3,4,5\}$. Write R as a set of ordered pairs.

- Watch Video Solution

149. If $A=\{2,3,4\}, B=\{1,3,7\}$ and $\mathrm{R}=\{(\mathrm{x}, \mathrm{y}): \mathrm{x}$ in $\mathrm{A}, \backslash \mathrm{y}$ in $\mathrm{B} \backslash \mathrm{an} \mathrm{d} \backslash$ X

- Watch Video Solution

150. Let $A=\{3,5,7\}, B=\{2,6,10\}$ and R be a relation from A to B defined by $R=\{(x, y): x$ and y are relatively prime. $\}$ Then, write R and R^{-1}.

- Watch Video Solution

151. Define a reflexive relation.

- Watch Video Solution

152. Define a symmetric relation.
153. Define a transitive relation.

- Watch Video Solution

154. Define an equivalence relation.

- Watch Video Solution

155. If $A=\{3,5,7\}$ and $B=\{2,4,9\}$ and R is a relation given by is less than, write R as a set ordered pairs.

(Watch Video Solution

156. $A=\{1,2,3,4,5,6,7\}$ and if $R=\{(x, y): y$ is one half of $x ; x, y \in A\}$ is a relation on A, then write R as a set of ordered pairs.
157. Let $A=\{2,3,4,5\}$ and $B=\{1,3,4\}$. If R is the relation from A to B given by $a R b$ iff a is a divisor of b. Write R as a set of ordered pairs.

- Watch Video Solution

158. State the reason for the relation R on the set $\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ not to be transitive.

- Watch Video Solution

159. Let $R=\left\{\left(a, a^{3}\right): a\right.$ is a prime number less than 5$\}$ be a relation. Find the range of R.

- Watch Video Solution

160. Let R be the relation in the set Z of integers given by $R=\{(a, b): 2$ divides $a-b\}$. Show that the relation R transitive ? Write the equivalence class [0].

- Watch Video Solution

161. For the set $A=\{1,2,3\}$, define a relation R on the set A as follows: $R=\{(1,1),(2,2),(3,3),(1,3)\}$ Write the ordered pairs to be added to R to make the smallest equivalence relation.

- Watch Video Solution

162. Let $A=\{0,1,2,3\}$ and R be a relation on A defined as $R=\{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)\}$, is R reflexive? symmetric transitive?

- Watch Video Solution

163. If the relation R be defined on the set $A=\{1,2,3,4,5\}$ by $R=\left\{(a, b):\left|a^{2}-b^{2}\right|<8\right\}$. Then, R is given by

- Watch Video Solution

164. Let the relation R be defined in N by aRb, if $2 a+3 b=30$. Then $R=$

- Watch Video Solution

165. Write the smallest equivalence relation on the set $A=\{1,2,3\}$.

- Watch Video Solution

166. Let R be a relation on the set N given by $R=\{(a, b): a=b-2, b>6\}$. Then, $(2,4) \in R$ (b) $(3,8) \in R$ (c) $(6,8) \in R(\mathrm{~d})(8,7) \in R$

- Watch Video Solution

167. Which of the following is not an equivalence relation on Z ? $a R b \Leftrightarrow a+b$ is an even integer (b) $a R b \Leftrightarrow a-b$ is an even integer (c) $a R b \Leftrightarrow a=b$

- Watch Video Solution

168. R is a relation on the set Z of integers and it is given by $(x, y) \in R \Leftrightarrow|x-y| \leq 1$. Then, R is (a) reflexive and transitive (b) reflexive and symmetric (c) symmetric and transitive (d) an equivalence relation

- Watch Video Solution

169. Let $R=\{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ be a relation on the set $A=\{1,2$, $3,4\}$. The relation R is

- Watch Video Solution

170. Let R be the relation over the set of all straight lines in a plane such that $l_{1} R l_{2} \Leftrightarrow l_{1} \perp l_{2}$. Then, R is (a) symmetric (b) reflexive (c) transitive (d) an equivalence relation

- Watch Video Solution

171. Let $A=\{1,2,3\}$ Then number of relations containing $(1,2) \operatorname{and}(1,3)$ which are reflexive and symmetric but not transitive is (A) 1 (B) 2 (C) 3 (D) 4

- Watch Video Solution

172. The relation ' R ' in $N \times N$ such that
$(a, b) R(c, d) \Leftrightarrow a+d=b+c$ is reflexive but not symmetric reflexive and transitive but not symmetric an equivalence relation (d) none of these
173. If $A=\{1,2,3\}, B=\{1,4,6,9\}$ and R is a relation from A to B defined by ' x is greater than y '. The range of R is (a) $\{1,4,6,9\}$ (b) $\{4,6,9\}$ (c) $\{1\}$ (d) none of these

- Watch Video Solution

174. A relation R is defined from $\{2,3,4,5\}$ to $\{3,6,7,10\}$ by : $x R y \Leftrightarrow x$ is relatively prime to y. Then, domain of R is (a) $\{2,3,5\}$ (b) $\{3,5\}$ (c) $\{2,3,4\}$ (d) $\{2,3,4,5\}$

- Watch Video Solution

175. A relation φ from C to R is defined by $x \varphi y \Leftrightarrow|x|=y$. Which one is correct?
(a) $(2+3 i) \varphi 13$
(b) $3 \varphi(-3)$
(c) $(1+i) \varphi 2$
(d) $i \varphi 1$

- Watch Video Solution

176. Let R be a relation on N defined by $x+2 y=8$. The domain of R is
A. $\{2,4,8\}$
B. $\{2,4,6,8\}$
C. $\{2,4,6\}$
D. $\{1,2,3,4\}$

Answer: C) $\{2,4,6\}$

- Watch Video Solution

177. R is a relation from $\{11,12,13\}$ to $\{8,10,12\}$ defined by $y=x-3$. Then, R^{-1} is (a) $\{(8,11),(10,13)\}(\mathrm{b})\{(11,8),(13,10)\}(\mathrm{c})\{(10,13),(8,11),(8$, $10)\}$ (d) none of these
178. Let $R=\{(a, a),(b, b),(c, c),(a, b)\}$ be a relation on set $A=\{a, b, c\}$. Then, R is (a) identity relation (b) reflexive (c) symmetric (d) equivalence

- Watch Video Solution

179. Let $A=\{1,2,3\}$ and $R=\{(1,2),(2,3),(1,3)\}$ be a relation on A. Then, R is (a)neither reflexive nor transitive (b)neither symmetric nor transitive (c) transitive (d) none of these

- Watch Video Solution

180. If R is the largest equivalence relation on a set A and S is any relation on A, then $R \subset S$ (b) $S \subset R$ (c) $R=S$ (d) none of these

- Watch Video Solution

181. If R is a relation on the set $A=\{1,2,3,4,5,6,7,8,9\}$ given by $x R y \Leftrightarrow y=3 x$, then $R=$ (a) $\{(3,1),(6,2),(8,2),(9,3)\}$ (b) $\{(3,1),(6,2)$, $(9,3)\}(b)\{(3,1),(2,6),(3,9)$ (d) none of these

- Watch Video Solution

182. If R is a relation on the set $A=\{1,2,3\}$ given by $R=(1,1),(2,2),(3,3)$, then R is (a) reflexive (b) symmetric (c) transitive (d) all the three options

- Watch Video Solution

183. If $A=\{a, b, c, d\}$, then a relation $R=\{(a, b),(b, a),(a, a)\}$ on A is (a)symmetric and transitive only (b)reflexive and transitive only (c) symmetric only (d) transitive only

- Watch Video Solution

184. If $A=\{1,2,3\}$, then a relation $R=\{(2,3)\}$ on A is (a) symmetric and transitive only (b) symmetric only (c) transitive only (d) none of these

- Watch Video Solution

185. Let R be the relation on the set $A=\{1,2,3,4\}$ given by $R=\{(1,2),(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}$. Then, R is reflexive and symmetric but not transitive (b) R is reflexive and transitive but not symmetric (c) R is symmetric and transitive but not reflexive (d) R is an equivalence relation

- Watch Video Solution

186. Let $A=\{1,2,3\}$. Then number of equivalence relations containing $(1,2)$ is (A) 1 (B) 2 (C) 3 (D) 4

- Watch Video Solution

187. The relation $R=\{(1,1),(2,2),(3,3)\}$ on the set $\{1,2,3\}$ is (a) symmetric only (b) reflexive only (c) an equivalence relation (d) transitive only

- Watch Video Solution

188. S is a relation over the set R of all real numbers and it is given by $(a, b) \in S \Leftrightarrow a b \geq 0$. Then, S is symmetric and transitive only reflexive and symmetric only (c) antisymmetric relation (d) an equivalence relation

- Watch Video Solution

189. In the set Z of all integers, which of the following relation R is not an equivalence relation? $x R y$: if $x \leq y$ (b) $x R y$: if $x=y$ (c) $x R y$: if $x-y$ is an even integer (d) $x R y$: if $x=y(\bmod 3)$

- Watch Video Solution

190. Let $A=\{1,2,3\}$ and consider the relation $R=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$. Then, R is (a) reflexive but not symmetric (b) reflexive but not transitive (c) symmetric and transitive (d) neither symmetric nor transitive

Watch Video Solution

191. The relation S defined on the set R of all real number by the rule $a S b$ iff $a \geq b$ is (a) equivalence relation (b)reflexive, transitive but not symmetric (c)symmetric, transitive but not reflexive (d) neither transitive nor reflexive but symmetric

- Watch Video Solution

192. The maximum number of equivalence relations on the set $A=\{1,2,3\}$ are
193. Let R be a relation on the set N of natural numbers defined by $n R m$ if n divides m. Then, R is
A. Reflexive and Symmetric
B. Symmetric and Transitive
C. Equivalence
D. Reflexive and Transitive but not Symmetric

Answer: D

- Watch Video Solution

194. Let L denote the set of all straight lines in a plane. Let a relation R be defined by $l R m$ if and only if l is perpendicular to $m f$ or all, $l, m \in L$. Then, R is (a) reflexive (b) symmetric (c) transitive (d) none of these
195. Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as $a R b$ if a is congruent to b for all $a, b \in T$
. Then, R is (a) reflexive but not symmetric (b) transitive but not symmetric (c) equivalence (d) none of these

- Watch Video Solution

196. Let R be a relation defined by $R=\{(a, b): a \geq b, a, b \in R\}$. The relation R is (a) reflexive, symmetric and transitive (b) reflexive, transitive but not symmetric (c) symmetric, transitive but not reflexive (d) neither transitive nor reflexive but symmetric

- Watch Video Solution

197. For real numbers x and y , we write $x \cdot y$, if $x-y+\sqrt{2}$ is an irrational number. Then, the relation • is an equivalence relation.
198. If $A=\{a, b, c\}$, then the relation $R=\{(b, c)\}$ on A is (a) reflexive only (b) symmetric only (c) transitive only (d) reflexive and transitive only

- View Text Solution

2. Let $A=\{2,3,4,5,, 17,18\}$. Let ' ' be the equivalence relation on $A \times A$, cartesian product of A with itself, defined by $(a, b)(c, d)$ iff $a d=b c$. Then, the number of ordered pairs of the equivalence class of $(3,2)$ is (a) 4 (b) 5 (c) 6 (d) 7

- View Text Solution

