

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

SCALAR OR DOT PRODUCT

Solved Examples And Exercises

1. If the median to the base of a triangle is perpendicular to the base,

then triangle is isosceles.

Watch Video Solution

2. If AD is the median of ABC, using vectors, prove that $AB^2 + AC^2 = 2 \bigl(AD^2 + CD^2 \bigr).$

3. In a triangle OAB, $\angle AOB = 90^0$. If P and Q are points of trisection of AB, prove that $OP^2 + OQ^2 = \frac{5}{9}AB^2$

4. If \hat{a} and \hat{b} are unit vectors inclined at an angle θ , then prove that $\frac{\cos\theta}{2} = \frac{1}{2} \left| \hat{a} + \hat{b} \right| \frac{\tan\theta}{2} = \frac{1}{2} \left| \frac{\hat{a} - \hat{b}}{\hat{a} + \hat{b}} \right|$

Watch Video Solution

5. (Pythagoras's Theorem) Prove by vector method that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

6. Prove that; If the diagonals of a quadrilateral bisect each other at right

angles, then it is a rhombus.

Watch Video Solution

7. prove using vectors: The quadrilateral obtained by joining mid-points of adjacent sides a rectangle is a rhombus.

Watch Video Solution

8. prove by vector method that the sum of the squares of the diagonals

of a parallelogram is equal to the sum of the squares of its sides.

9. prove that the diagonals of a rectangle are perpendicular if and only if

the rectangle is a square.

10. Using analytical geometry, prove that the diagonals of a rhombus are

perpendicular to each other.

Watch Video Solution

11. If
$$|a| = a$$
 and $\left|\overrightarrow{b}\right| = b$, prove that $\left(\frac{\overrightarrow{a}}{a^2} - \frac{\overrightarrow{b}}{b^2}\right)^2 = \left(\frac{\overrightarrow{a} - \overrightarrow{b}}{ab}\right)^2$

Watch Video Solution

12. If
$$\overrightarrow{a} = \hat{i} - \hat{j}$$
 and $\overrightarrow{b} = -\hat{j} + 2\hat{k}$, find $\left(\overrightarrow{a} - 2\overrightarrow{b}\right)\overrightarrow{a} + \overrightarrow{b}$.

Watch Video Solution

13. Find the angles which the vector $\overrightarrow{a}=\hat{i}-\hat{j}+\sqrt{2}\hat{k}$ makes with the

coordinate axes.

14. Dot product of a vector with $\hat{i} + \hat{j} - 3\hat{k}$, $\hat{i} + 3\hat{j} - 2\hat{k}$ and $2\hat{i} + \hat{j} + 4\hat{k}$ are 0, 5 and 8 respectively. Find the vector.

Watch Video Solution

15. Find
$$\overrightarrow{a}$$
, when (i) $\overrightarrow{a} = \hat{i} - 2\hat{j} + \hat{k}$ and $\overrightarrow{b} = 4\hat{i} - 4\hat{j} + 7\hat{k}$ (ii) $\overrightarrow{a} = \hat{j}$
+2 \hat{k} and $\overrightarrow{b} = 2\hat{i} + \hat{k}$ (iii) $\overrightarrow{a} = \hat{j} - \hat{k}$ and $\overrightarrow{b} = 2\hat{i} + 3\hat{j} - 2\hat{k}$

Watch Video Solution

16. For what value of λ are the vector \overrightarrow{a} and \overrightarrow{b} perpendicular to each other? where: $\overrightarrow{a} = \lambda \hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{b} = 4\hat{i} - 9\hat{j} + 2\hat{k}$ $\overrightarrow{a} = \lambda \hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{b} = 5\hat{i} - 9\hat{j} + 2\hat{k}$ $\overrightarrow{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\overrightarrow{b} = 3\hat{i} + 2\hat{j} - \lambda\hat{k}\vec{a} = \lambda\hat{i} + 3\hat{j} + 2\hat{k}$ and $\overrightarrow{b} = \hat{i} - \hat{j} + 3\hat{k}$ 17. If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $|\overrightarrow{a}| = 4$, $|\overrightarrow{b}| = 3$ and \overrightarrow{a} $\overrightarrow{b} = 6$. Find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

18. Find the angles of a triangle whose vertices are A(0, -1, -2), B(3, 1, 4) and C (5,7,1).

Watch Video Solution

19. Find the projection of $\vec{b} + \vec{c}$ on \vec{a} , where $\vec{a} = 2\hat{i} - 2\hat{j} + \hat{k}$, $= \hat{i} + 2\hat{j} - 2\hat{j} - 2\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$.

20. Find the values of x and y if the vectors $\vec{a} = 3\hat{i} + x\hat{j} - \hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + y\hat{k}$ are mutually perpendicular vectors of equal magnitude.

21. In a quadrilateral ABCD, prove that $AB^2 + BC^2 + CD^2 + DA^2 = AC^2 + BD^2 + 4PQ^2$, where P and Q are middle points of diagonals AC and BD.

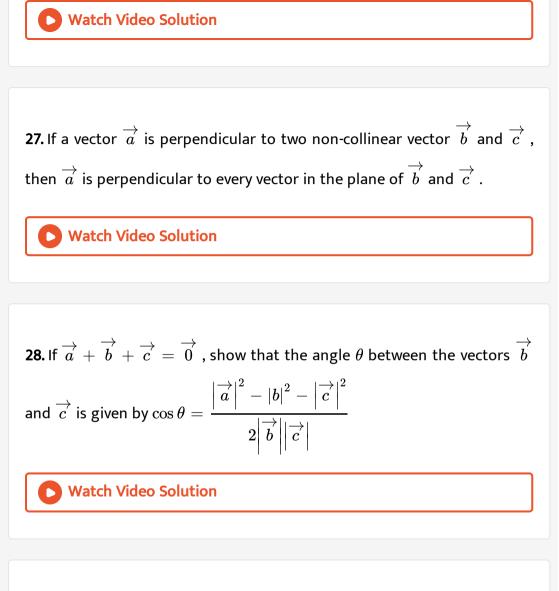
Watch Video Solution

Watch Video Solution

22. If \overrightarrow{a} and \overrightarrow{b} are two non-collinear unit vectors such that $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \sqrt{3}$, find $\left(2\overrightarrow{a} - 5\overrightarrow{b}\right)3\overrightarrow{a} + \overrightarrow{b}$.

23. If \overrightarrow{a} , \overrightarrow{b} are two vectors such that $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \left|\overrightarrow{b}\right|$, then prove that $\overrightarrow{a} + 2\overrightarrow{b}$ is perpendicular to \overrightarrow{a} .

Watch Video Solution


24. If \overrightarrow{c} is perpendicular to both \overrightarrow{a} and \overrightarrow{b} , then prove that it is perpendicular to both $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$.

Watch Video Solution

25. If $\overrightarrow{a} \overrightarrow{a} = 0$ and $\overrightarrow{a} \overrightarrow{b} = 0$, what can you conclude about the vector \overrightarrow{b} ?

Watch Video Solution

26. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three non coplanar vectors such that $\overrightarrow{a}, \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} = 0$, then show that \overrightarrow{d} is the null vector.

29. Let
$$\overrightarrow{u}, \overrightarrow{v}$$
 and \overrightarrow{w} be vector such $\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} = \overrightarrow{0}$. If $\left|\overrightarrow{u}\right| = 3, \left|\overrightarrow{v}\right| = 4$ and $\left|\overrightarrow{w}\right| = 5$, then find $\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}$.

30. Let $\overrightarrow{a} = x^2\hat{i} + 2\hat{j} - 2\hat{k}$, $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = x^2\hat{i} + 5\hat{j} - 4\hat{k}$ be three vectors. Find the values of x for which the angle between \overrightarrow{a} and \overrightarrow{b} is acute and the angle between \overrightarrow{b} and \overrightarrow{c} is obtuse.

Watch Video Solution

31. 12). Show that the vector $\hat{i} + \hat{j} + \hat{k}$ is equally inclined with the coordinate axes. (13)show that the vectors $\vec{a} = \frac{1}{7} \left(2\hat{i} + 3\hat{j} + 6\hat{k} \right), \vec{b} = \frac{1}{7} \left(3\hat{i} - 6\hat{j} + 2\hat{k} \right), \vec{c} = \frac{1}{7} \left(6\hat{i} + 2\hat{j} - 3\hat{k} \right)$

are mutually perpendicular unit vectors.

Watch Video Solution

32. If
$$\overrightarrow{\alpha} = 3\overrightarrow{i} + 4\overrightarrow{j} + 5\overrightarrow{k}$$
 and $\overrightarrow{\beta} = 2\overrightarrow{i} + \overrightarrow{j} - 4\overrightarrow{k}$, then express $\overrightarrow{\beta}$ in the form of $\overrightarrow{\beta} = \overrightarrow{\beta}_1 + \overrightarrow{\beta}_2$, where $\overrightarrow{\beta}_1$ is parallel to $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}_2$ is perpendicular to $\overrightarrow{\alpha}$.

33. If $\overrightarrow{p} = 5\overrightarrow{i} + \lambda\overrightarrow{j} - 3\overrightarrow{k}$ and $\overrightarrow{q} = \overrightarrow{i} + 3\overrightarrow{j} - 5\overrightarrow{k}$, then find the value of λ , so that $\overrightarrow{p} + \overrightarrow{q}$ and $\overrightarrow{p} - \overrightarrow{q}$ are perpendicular vectors.

Watch Video Solution

34. For any two vectors
$$\overrightarrow{a}$$
 and \widehat{b} , show that :
 $\left(\overrightarrow{a} + \overrightarrow{b}\right)\overrightarrow{a} - \overrightarrow{b} = 0|\overrightarrow{a}| = |\overrightarrow{b}|$
Vatch Video Solution

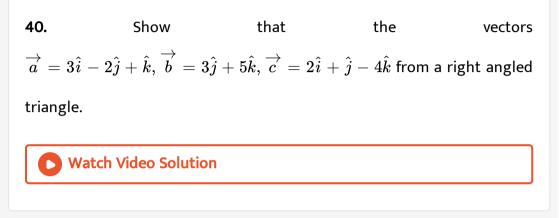
35. Show that the vectors
$$\overrightarrow{a} = \frac{1}{7} \Big(2\hat{i} + 3\hat{j} + 6\hat{k} \Big), \ \overrightarrow{b} = \frac{1}{7} \Big(3\hat{i} - 6\hat{j} + 2\hat{k} \Big), \ \overrightarrow{c} = \frac{1}{7} \Big(6\hat{i} + 2\hat{j} - 3\hat{k} \Big)$$

are mutually perpendicular unit vectors.

36. Let $\overrightarrow{a} = 5\hat{i} - \hat{j} + 7\hat{k}$ and $\overrightarrow{b} = \hat{i} - \hat{j} + \lambda\hat{k}$. Find λ such that $\overrightarrow{a} + \overrightarrow{b}$ is orthogonal to $\overrightarrow{a} - \overrightarrow{b}$.

Watch Video Solution

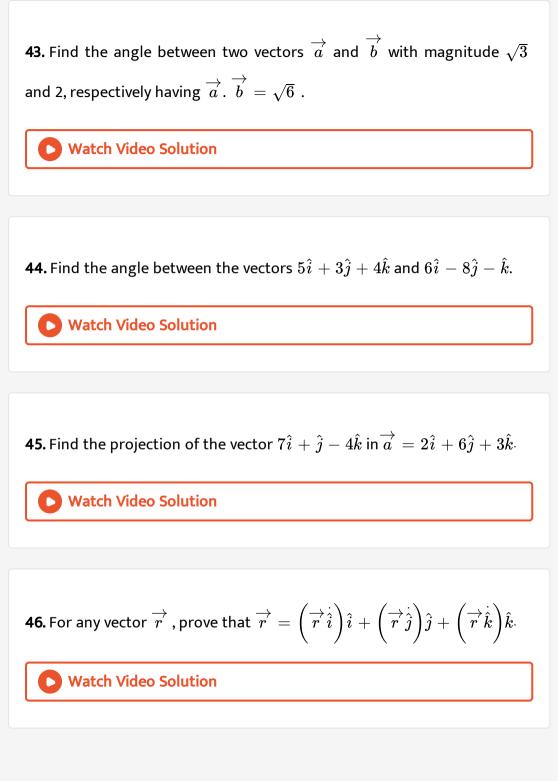
37. If \overrightarrow{a} and \overrightarrow{b} are two vectors of the same magnitude inclined at an angle of 30^0 such that $\overrightarrow{a} \overrightarrow{b} = 3$, find $|\overrightarrow{a}|, |\overrightarrow{b}|$.


Watch Video Solution

38. Docompose the vector $6\hat{i}-3\hat{j}-6\hat{k}$ into vectors which are parallel

and perpendicular to the vector $\hat{i}+\hat{j}+\hat{k}$ Then the vectors are .

Watch Video Solution


39. Express $2\hat{i} - \hat{j} + 3\hat{k}$ as the sum of vector parallel and a vector perpendicular to $2\hat{i} + 4\hat{j} - 2\hat{k}$.

41. (Projection Formulae) if a, b, c are the lengths of the sides opposite respectively to the angles A, B, C of a triangle ABC, show that (i) $a = b \cos C + osB$ (ii) $b = osA + a \cos C$ (iii) $c = a \cos B + b \cos A$

Watch Video Solution

42. Prove using vectors: If two medians of a triangle are equal, then it is isosceles.

47. Find
$$\overrightarrow{a} \cdot \overrightarrow{b}$$
 when $\overrightarrow{a} = 2\hat{i} + 2\hat{j} - \hat{k}and \overrightarrow{b} = 6\hat{i} - 3\hat{j} + 2\hat{k}$,
 $\overrightarrow{a} = (1, 1, 2)and \overrightarrow{b} = (3, 2, -1)$

Watch Video Solution

48. Find the value of λ so that the vectors $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}and\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ are perpendicular to each other.

Watch Video Solution

49. Find the value of p for which the vectors $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\vec{b} = \hat{i} + p\hat{j} + 3\hat{k}$ are (i) perpendicular (ii) parallel

Watch Video Solution

50. Find the values of a which the vector $ec{r}=ig(a^2-4ig)\hat{i}+2\hat{j}-ig(a^2-9ig)\hat{k}$ makes acute angle with the

coordinate axes.

51. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are unit vector, prove that
 $\left|\overrightarrow{a} - \overrightarrow{b}\right|^2 + \left|\overrightarrow{b} - \overrightarrow{c}\right|^2 + \left|\overrightarrow{c} - \overrightarrow{a}\right|^2 \le 9.$
Watch Video Solution
52. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are mutually perpendicular unit vectors, find
 $\left|2\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right|.$

Watch Video Solution

I

53. Find the value of c for which the vectors $\overrightarrow{a} = (c \log_2 x)\hat{i} - 6\hat{j} + 3\hat{k}$ and $\overrightarrow{b} = ((\log)_2 x)\hat{i} + 2\hat{j} + (2c(\log)_2 x)\hat{k}$ make an obtuse angle for any $x \in (0, \infty)$.

54. Let $\overrightarrow{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\overrightarrow{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \overrightarrow{d} which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} and \overrightarrow{c} . \overrightarrow{d} =18.

55. Dot products of a vector with vectors $3\hat{i} - 5\hat{k}, 2\hat{i} + 7\hat{j}and\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$ are respectively -1, 6 and 5. Find the vector.

Watch Video Solution

56. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three vectors such that $\left|\overrightarrow{a}\right| = 1, \left|\overrightarrow{b}\right| = 2and\left|\overrightarrow{c}\right| = 3$. If the projection of \overrightarrow{b} along a is equal to the projection of \overrightarrow{c} along \overrightarrow{a} and $\overrightarrow{b}, \overrightarrow{c}$ are perpendicular to each other, find $\left|3\overrightarrow{a}-2\overrightarrow{b}+2\overrightarrow{c}\right|$.

57. (Cosine Formulae) if a, b, c are the lengths of the sides opposite respectively to the angles A, B, C of a triangle ABC, show that

$$(i)\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
(ii) $\cos B = \frac{c^2 + a^2 - b^2}{2ac}$ (iii) $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

Watch Video Solution

58. Prove that the altitudes of a triangle are concurrent.

Watch Video Solution

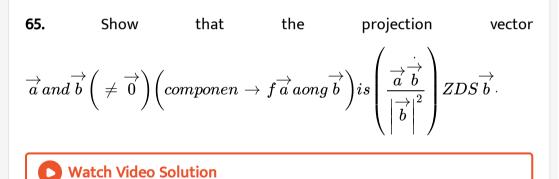
59. Find the components of a unit vector which is perpendicular to the

vectors $\hat{i}+2\hat{j}-\hat{k}and3\hat{i}-\hat{j}+2\hat{k}$.

60. If a unit vector \overrightarrow{a} makes angle $\pi/4$ with $\hat{i}, \pi/3$ with \hat{j} and an acute angle θ with \hat{k} , then find the components of \overrightarrow{a} and the angle θ .

61. If $\widehat{a}and\widehat{b}$ are unit vectors inclined at an angle θ , then prove that $\frac{\sin\theta}{2} = \frac{1}{2}|\widehat{a} - \widehat{b}|$.

Watch Video Solution


62. If two vectors
$$\overrightarrow{a} and \overrightarrow{b}$$
 are such that $\left|\overrightarrow{a}\right| = 2$, $\left|\overrightarrow{b}\right| = 3$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 4$, ., Find $\overrightarrow{a} - \overrightarrow{b} \mid \cdot$

Watch Video Solution

63. Find
$$\left| \overrightarrow{a} \right| and \left| \overrightarrow{b} \right|$$
, if $\left(\overrightarrow{a} - \overrightarrow{b} \right) \overrightarrow{a} + \overrightarrow{b} = 27$ and $\left| \overrightarrow{a} \right| = 2 \left| \overrightarrow{b} \right|$.

64. If two vectors $\overrightarrow{a} and \overrightarrow{b}$ are such that $\left|\overrightarrow{a}\right| = 2$, $\left|\overrightarrow{b}\right| = 3and \overrightarrow{a} \overrightarrow{b} = 4$, find $\left(\overrightarrow{a} - \overrightarrow{b}\right)$

Watch Video Solution

66. Using dot product of vectors, prove that a parallelogram, whose diagonals are equal, is a rectangle

67. For any three vectors
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
, prove that
 $|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|^2 = |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 + |\overrightarrow{c}|^2 + 2\left(\overrightarrow{a}, \overrightarrow{b} + \overrightarrow{b}, \overrightarrow{c} + \overrightarrow{\cdot}, \overrightarrow{a}\right)$
(Watch Video Solution
68. Show that the angle between two diagonals of a cube is $\cos^{-1}\left(\frac{1}{3}\right)$.
(Watch Video Solution
69. Find $(\overrightarrow{a} + 3\overrightarrow{b}).(2\overrightarrow{a} - \overrightarrow{b})$, If $\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}$ and
 $\overrightarrow{b} = 3\overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}$
(Watch Video Solution
70. Find the angle between two vectors $\overrightarrow{a}, \overrightarrow{b}$ having the same length
 $\sqrt{2}$ and their scalar product is -1.

71. If $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} - 3\hat{k}$ and $\hat{i} - 6\hat{j} - \hat{k}$ respectively are the position vectors of points A, B, C, D then find the angle between the straight lines AB, CD. Deduce that AB, CD are collinear.

Watch Video Solution

72. Let \overrightarrow{a} , \overrightarrow{b} be two vectors of the same magnitude such that the angle between then is 60^0 and $\overrightarrow{a} \cdot \overrightarrow{b} = 8$. Find $|\overrightarrow{a}|$, $|\overrightarrow{b}|$

Watch Video Solution

73. Find
$$\left|\overrightarrow{x}\right|$$
 if for a unit vector \overrightarrow{a} , $\left(\overrightarrow{x} - \overrightarrow{a}\right) \cdot \left(\overrightarrow{x} + \overrightarrow{a}\right) = 15.$

74. If $\overrightarrow{a} = 5\hat{i} - \hat{j} - 3\hat{k}$, $\overrightarrow{b} = \hat{i} + 3\hat{j} - 5\hat{k}$ then show that the vectors $\overrightarrow{a} + \overrightarrow{b}$, $\overrightarrow{a} - \overrightarrow{b}$ are perpendicular.

Watch Video Solution

75. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$
, $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$ and $|\overrightarrow{c}| = 7$.

Find the angle betweeen \overrightarrow{a} and \overrightarrow{b}

Watch Video Solution

76. For any vector
$$\overrightarrow{a}$$
 and \overrightarrow{b} prove that $\left|\overrightarrow{a} + \overrightarrow{b}\right| \leq \left|\overrightarrow{a}\right| + \left|\overrightarrow{b}\right|$.

Watch Video Solution

77. For any two vectors \overrightarrow{a} and \overrightarrow{b} prove that $\left(\overrightarrow{a}, \overrightarrow{b}\right)^2 \leq \left|\overrightarrow{a}\right|^2 \left|\overrightarrow{b}\right|^2$ and hence show that $(a_1b_2 + a_2b_2 + a_3b_3)^2 \leq (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)$

78. If \overrightarrow{a} , \overrightarrow{b} , are two vectors such that $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \left|\overrightarrow{a}\right|$, then prove that $2\overrightarrow{a} + \overrightarrow{b}$ is perpendicular to \overrightarrow{b} .

Watch Video Solution

79. The scalar product of the vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of the vectors $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{c} = \lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to 1. Find the value

of λ and hence find the unit vector along \overrightarrow{b} + $\overrightarrow{\cdot}$

Watch Video Solution

80. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are three vectors such that $\overrightarrow{a} \stackrel{\cdot}{\overrightarrow{b}} = \overrightarrow{a} \stackrel{\cdot}{\overrightarrow{c}}$ then show that $\overrightarrow{a} = 0$ or , $\overrightarrow{b} = c$ or $\overrightarrow{a} \perp \left(\overrightarrow{b} - \overrightarrow{c}\right)$.

81. Show that the vector $2\hat{i}-\hat{j}+\hat{k},\ \hat{i}-3\hat{j}-5\hat{k},\ 3\hat{i}-4\hat{j}-4\hat{k}$ form

the sides of a rights angled triangle.

82. Show that the points A, B, C with position vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ respectively, are the vertices of a right angled triangle. Also, find the remaining angles of the triangle.

Watch Video Solution

83. If with reference to a right handed system of mutually perpendicular unit vectors \hat{i} , \hat{j} and \hat{k} , we have $\overrightarrow{\alpha} = 3\hat{i} - \hat{j}$, and $\overrightarrow{\beta} = 2\hat{i} + \hat{j} - 3\hat{k}$. then express $\overrightarrow{\beta}$ in the form $\overrightarrow{\beta} = \overrightarrow{\beta}_1 + \overrightarrow{\beta}_2$, where $\overrightarrow{\beta}_1$ is parallel to $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}_2$ is perpendicular to $\overrightarrow{\alpha}$

A.
$$\overrightarrow{\beta}_1 = \frac{3}{2}\hat{i} - \frac{1}{2}\hat{j}$$
 ,and $\overrightarrow{\beta}_2 = \frac{1}{2}\hat{i} + \frac{3}{2}\hat{j} - 3\hat{k}$.
B. $\overrightarrow{\beta}_1 = \frac{3}{2}\hat{i} + \frac{1}{2}\hat{j}$,and $\overrightarrow{\beta}_2 = \frac{1}{3}\hat{i} + \frac{3}{2}\hat{j} - 3\hat{k}$.

C.
$$\overrightarrow{\beta}_1 = \frac{1}{2}\hat{i} - \frac{1}{2}\hat{j}$$
 ,and $\overrightarrow{\beta}_2 = \frac{1}{2}\hat{i} + \frac{3}{2}\hat{j} - 3\hat{k}$.
D. $\overrightarrow{\beta}_1 = \frac{1}{2}\hat{j} - \frac{1}{2}\hat{k}$,and $\overrightarrow{\beta}_2 = \frac{1}{2}\hat{i} + \frac{3}{2}\hat{j} + 3\hat{k}$.

Answer: A

84. Find the value of x for which the ngle between the vectors $\overrightarrow{a} = 2x^2\hat{i} + 4x\hat{j} + \hat{k}$ and $\overrightarrow{b} = 7\hat{i} - 2\hat{j} + x\hat{k}$ is obtuse.

Watch Video Solution

Watch Video Solution

85. If
$$l, m, n$$
 are scalars and $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are vectors, prove that
 $\left| l\overrightarrow{a} + m\overrightarrow{b} + n\overrightarrow{c} \right|^2 = l^2 |\overrightarrow{a}|^2 + m^2 |\overrightarrow{b}|^2 + n^2 |\overrightarrow{c}|^2 + 2 \left\{ lm\left(\overrightarrow{a}, \overrightarrow{b}\right) + m\right\}$.
Also deduce that
 $\left| l\overrightarrow{a} + m\overrightarrow{b} + n\overrightarrow{c} \right|^2 = l^2 |\overrightarrow{a}|^2 + m^2 |\overrightarrow{b}|^2 + n^2 |\overrightarrow{c}|^2$ if $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are

mutually perpendicular vectors.

86. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three mutually perpendicular vectors of equal magniltgude, prove that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is equally inclined with vectors \overrightarrow{a} , \overrightarrow{b} , and $\overrightarrow{\cdot}$ also find the angle.

Watch Video Solution

87. Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three vectors of magnitudes 3, 4 and 5 respectively.

If each one is perpendicular to the sum of the other two vectors, prove

that
$$\left| \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right| = 5\sqrt{2}$$
 .

Watch Video Solution

88. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ find the value of $\overrightarrow{a} \overrightarrow{b} + \overrightarrow{b} \overrightarrow{c} + \overrightarrow{c} = \overrightarrow{a}$.

89. Three vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} satisfy the condition $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$.

Evaluate the quantity

$$\mu = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}, \quad \text{if} \quad |\overrightarrow{a}| = 1, \ |\overrightarrow{b}| = 4 \text{ and } |\overrightarrow{c}| = 2.$$

$$A \cdot -\frac{27}{2}$$

$$B \cdot -\frac{21}{2}$$

$$C \cdot -\frac{29}{2}$$

$$D \cdot -\frac{19}{2}$$

Answer: B

90. Find
$$\overrightarrow{a} \stackrel{\cdot}{\overrightarrow{b}}$$
 when: $\overrightarrow{a} = \hat{i} - 2\hat{j} + \hat{k}$ and $\overrightarrow{b} = 4\hat{i} - 4\hat{j} + 7\hat{k}$

91. Find
$$\overrightarrow{a}\stackrel{\cdot}{\overrightarrow{b}}$$
 when: $\overrightarrow{a}=\hat{j}+2\hat{k}$ and $\overrightarrow{b}=2\hat{i}+\hat{k}$

92. Find
$$\overrightarrow{a}\overset{\cdot}{\overrightarrow{b}}$$
 when: $\overrightarrow{a}=\hat{j}-\hat{k}$ and $\overrightarrow{b}=2\hat{i}+3\hat{j}-2\hat{k}$

Watch Video Solution

93. For what value of λ are the vector \overrightarrow{a} and \overrightarrow{b} perpendicular to each other? Where; $\overrightarrow{a} = \lambda \hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{b} = 4\hat{i} - 9\hat{j} + 2\hat{k}$

Watch Video Solution

94. For what value of λ are the vector \overrightarrow{a} and \overrightarrow{b} perpendicular to each other? Where; $\overrightarrow{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\overrightarrow{b} = 3\hat{i} + 2\hat{j} - \lambda\hat{k}$

95. For what value of λ are the vector \overrightarrow{a} and \overrightarrow{b} perpendicular to each other? Where; $\overrightarrow{a} = \lambda \hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{b} = 5\hat{i} - 9\hat{j} + 2\hat{k}$

Watch Video Solution

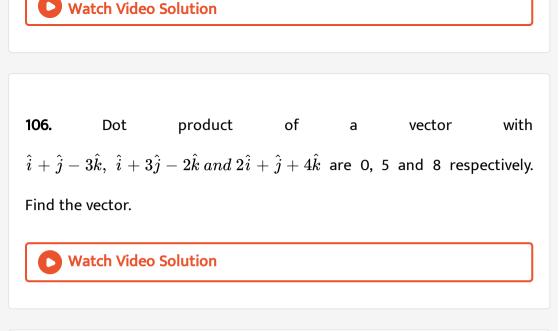
96. For what value of λ are the vector \overrightarrow{a} and \overrightarrow{b} perpendicular to each other? Where; $\overrightarrow{a} = \lambda \hat{i} + 3\hat{j} + 2\hat{k}$ and $\overrightarrow{b} = \hat{i} - \hat{j} + 3\hat{k}$

Watch Video Solution

97. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are two vectors such that $\left|\overrightarrow{a}\right| = 4$, $\left|\overrightarrow{b}\right| = 3$ and \overrightarrow{a} $\overrightarrow{b} = 6$. Find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

98. If
$$\overrightarrow{a} = \hat{i} - \hat{j}$$
 and $\overrightarrow{b} = -\hat{j} + 2\hat{k}$, $f \in d\left(\overrightarrow{a} - 2\overrightarrow{b}\right)\overrightarrow{a} + \overrightarrow{b}$.


99. Find the angle between the vectors \overrightarrow{a} and \overrightarrow{b} where: $\overrightarrow{a} = \hat{i} - \hat{j}$ and $\overrightarrow{b} = \hat{j} + \hat{k}$ Watch Video Solution **100.** Find the angle between the vectors \overrightarrow{a} and \overrightarrow{b} where: $\overrightarrow{a}=3\hat{i}-2\hat{j}-6\hat{k}\,and\,\overrightarrow{b}=4\hat{i}-\hat{j}+8\hat{k}$ Watch Video Solution 101. Find the angle between the vectors \overrightarrow{a} and \overrightarrow{b} where: $\overrightarrow{a}=2\hat{i}-\hat{j}+2\hat{k}$ and $\overrightarrow{b}=4i+4\hat{j}-2\hat{k}$ Watch Video Solution

102. Find the angle between the vectors
$$\vec{a} \ and \vec{b}$$
 where:
 $\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \ and \vec{b} = 4\hat{i} + 4\hat{j} - 2\hat{k}$
Watch Video Solution
103. Find the angle between the vectors $\vec{a} \ and \vec{b}$ where:
 $\vec{a} = 2\hat{i} - 3\hat{j} + \hat{k} \ and \vec{b} = \hat{i} + \hat{j} - 2\hat{k}$
Watch Video Solution
104. Find the angle between the vectors $\vec{a} \ and \vec{b}$ where:
 $\vec{a} = \hat{i} + 2\hat{j} - \hat{k}, \ \vec{b} = \hat{i} - \hat{j} + \hat{k}$
Watch Video Solution

105. Find the angles which the vector $\overrightarrow{a} = \hat{i} - \hat{j} + \sqrt{2}\hat{k}$ makes with the

coordinate axes.

107. Dot products of a vector with vectors $\hat{i} - \hat{j} + \hat{k}$, $2\hat{i} + \hat{j} - 3\hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$ are respectively 4, 0 and 2. Find the vector.

Watch Video Solution

108. If \hat{a} and \hat{b} are unit vectors inclined at an angle θ then prove that

$$rac{\cos heta}{2} = rac{1}{2} ig| \widehat{a} + \widehat{b} ig| \; rac{ an heta}{2} = rac{ig| \widehat{a} - \widehat{b} ig|}{ig| \widehat{a} + \widehat{b} ig|}$$

109. If the sum of two unit vector sis a unit vector prove that the magnitude of their difference is $\sqrt{3}$.

110. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three mutually perpendicular unit vectors, then prove that $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right| = \sqrt{3}$

Watch Video Solution

111. If
$$\left|\overrightarrow{a} + \overrightarrow{b}\right| = 60, \ \left|\overrightarrow{a} - \overrightarrow{b}\right| = 40 \left|\overrightarrow{b}\right| = 46 \ f \in d \left|\overrightarrow{a}\right|$$

Watch Video Solution

112. Show that the vector $\hat{i} + \hat{j} + \hat{k}$ is equally inclined with the coordinate axes.

113. Show that the vector

$$\overrightarrow{a} = \frac{1}{7} \left(2\hat{i} + 3\hat{j} + 6\hat{k} \right), \quad \overrightarrow{b} = \frac{1}{7} \left(3\hat{i} - 6\hat{j} + 2\hat{k} \right), \quad \overrightarrow{c} = \frac{1}{7} \left(6\hat{i} + 2\hat{j} - 3\hat{k} \right)$$
are mutually perpendicular unit vectors.
Watch Video Solution
114. For any tow vectors $a \text{ and } b$ show that
 $\left(\overrightarrow{a} + \overrightarrow{b} \right) \overrightarrow{a} - \overrightarrow{b} = 0 \Leftrightarrow \left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right|$.
Watch Video Solution

115.

$$\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{i} + \hat{j} - 2\hat{k} \ and \ \overrightarrow{c} = \hat{i} + 3\hat{j} - \hat{k}, \ f \in d \ \lambda \ {
m such}$$
 that \overrightarrow{a} is perpendicular to $\lambda \overrightarrow{b} + \overrightarrow{\cdot}$

If

116. If $\overrightarrow{p} = 5\hat{i} + \lambda\hat{j} - 3\hat{k}$ and $\overrightarrow{q} = \hat{i} + 3\hat{j} - 5\hat{k}$, then find the value of λ such that $\overrightarrow{p} + \overrightarrow{q}$ and $\overrightarrow{p} - \overrightarrow{q}$ are perpendicular vectors.

Watch Video Solution

117. If
$$\overrightarrow{\alpha} = 3\hat{i} + 4\hat{j} + 5\hat{k}$$
 and $\overrightarrow{\beta} = 2\hat{i} + \hat{j} - 4\hat{k}$, then express $\overrightarrow{\beta}$ in the form of $\overrightarrow{\beta} = \overrightarrow{\beta}_1 + \overrightarrow{\beta}_2$ where $\overrightarrow{\beta}_1$ is parallel to $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}_2$ is perpendicular to $\overrightarrow{\alpha}$.

Watch Video Solution

118. If either $\overrightarrow{a} = \overrightarrow{0}$ or $\overrightarrow{b} = \overrightarrow{0}$ then $\overrightarrow{a} \overrightarrow{b} = \overrightarrow{0}$ but, the converse

need not be true. Justify your answer with an example.

119. Show that the vectors $\vec{a} = 3\hat{i} - 2\hat{j} + \hat{k}, \ \vec{b} = \hat{i} - 3\hat{j} + 5\hat{k}, \ \vec{c} = 2\hat{i} + \hat{j} - 4\hat{k}$ form a right angled triangle.

Watch Video Solution

120. If
$$\overrightarrow{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$$
, $\overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j}$ are such that $\overrightarrow{a} + \lambda \overrightarrow{b}$ perpendiculr to \overrightarrow{c} , then find the value of λ .

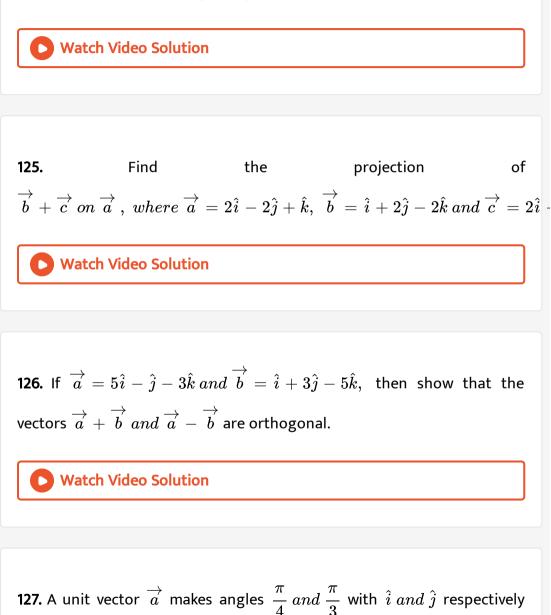
Watch Video Solution

121. Find the angles of a triangle whose vertices are A(0, -1, -2), B(3, 1, 4) and C(5, 7, 1).

122. Find the magnitude of two vectors \overrightarrow{a} and \overrightarrow{b} having the same magnitude and such that the angle between them is 60^0 and their scalar product is .

A.
$$\left| \overrightarrow{a} \right| = 1, \left| \overrightarrow{b} \right| = 2$$

B. $\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right| = 1$
C. $\left| \overrightarrow{a} \right| = 3, \left| \overrightarrow{b} \right| = 2$
D. $\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right| = 2$


Answer: B

123. Show that the points whose position vectors are $\overrightarrow{a} = 4\hat{i} - 3\hat{j} + k$, $\overrightarrow{b} = 2\hat{i} - 4\hat{j} + 5k$, $\overrightarrow{c} = \hat{i} - \hat{j}$ form a right

triangle.

124. If A, B, C have position vectors (0, 1, 1), (3, 1, 5), (0, 3, 3) respectively,

show that DeltaABC is right angled at C.

and an acute angle heta with \hat{k} . Find the angle heta and components of \overrightarrow{a} .

128. If two vectors
$$\overrightarrow{a} and \overrightarrow{b}$$
 are such that $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 1$ and $\overrightarrow{a} \overrightarrow{b} = 1$, then find rthe value of $(3\overrightarrow{a} - 5\overrightarrow{b})2\overrightarrow{a} + 7\overrightarrow{b}$.

129. If \overrightarrow{a} is a unit vector, then find $|\overrightarrow{x}|$ in each of the following: $(\overrightarrow{x} - \overrightarrow{a})\overrightarrow{x} + \overrightarrow{a} = 8$

Watch Video Solution

130. If \overrightarrow{a} is a unit vector, then find $|\overrightarrow{x}|$ in each of the following: $(\overrightarrow{x} - \overrightarrow{a})\overrightarrow{x} + \overrightarrow{a} = 12$

131. Find
$$\left|\overrightarrow{a}\right| and \left|\overrightarrow{b}\right|$$
, if $:\left(\overrightarrow{a} + \overrightarrow{b}\right)\overrightarrow{a} - \overrightarrow{b} = 12 and \left|\overrightarrow{a}\right| = 2\left|\overrightarrow{b}\right|$

132. Find
$$\left|\overrightarrow{a}\right| and \left|\overrightarrow{b}\right|$$
, if : $\left(\overrightarrow{a} + \overrightarrow{b}\right) \overrightarrow{a} - \overrightarrow{b} = 8 and \left|\overrightarrow{a}\right| = 8\left|\overrightarrow{b}\right|$

Watch Video Solution

133. Find
$$\left|\overrightarrow{a}\right| and \left|\overrightarrow{b}\right|$$
, if : $\left(\overrightarrow{a} + \overrightarrow{b}\right) \overrightarrow{a} - \overrightarrow{b} = 13 and \left|\overrightarrow{a}\right| = 2\left|\overrightarrow{b}\right|$

D Watch Video Solution

134. Find
$$\left| \overrightarrow{a} - \overrightarrow{b} \right|$$
, if $: \left| \overrightarrow{a} \right| = 2$, $\left| \overrightarrow{b} \right| = 5$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 8$

135. Find
$$\left| \overrightarrow{a} - \overrightarrow{b} \right|$$
, if $: \left| \overrightarrow{a} \right| = 3$, $\left| \overrightarrow{b} \right| = 4$ and $\overrightarrow{a} \overrightarrow{b} = 1$

136. Find
$$\left| \overrightarrow{a} - \overrightarrow{b} \right|$$
, if $: \left| \overrightarrow{a} \right| = 2$, $\left| \overrightarrow{b} \right| = 3$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 4$

Watch Video Solution

137. Find the angle between two vectors
$$\overrightarrow{a} and \overrightarrow{b}$$
, if $: |\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 3$ and $\overrightarrow{a} \overrightarrow{b} = 1$
() Watch Video Solution

138. Express the vector $\overrightarrow{a} = 5\hat{i} - 2\hat{j} + 5\hat{k}$ as the sum of two vectors such that one is parallel to the vector $\overrightarrow{b} = 3\hat{i} + \hat{k}$ and other is perpendicular to \overrightarrow{b} .

139. If \overrightarrow{a} and \overrightarrow{b} are two vectors of the same magnitude inclined at angle of 30^0 such that $\overrightarrow{a} \stackrel{\cdot}{\overrightarrow{b}} = 3$, find $|\overrightarrow{a}|, |\overrightarrow{b}|$.

Watch Video Solution

140. Express $2\hat{i} - \hat{j} + 3\hat{k}$ as the sum of a vector parallel and a vector perpendicular to $2\hat{i} + 4\hat{j} - 2\hat{k}$.

Watch Video Solution

141. Decompose the vector $6\hat{i} - 3\hat{j} - 6\hat{k}$ into vectors which are parallel and erpendicular to the vecrtor $\hat{i} + \hat{j} + \hat{k}$.

142. Let
$$\overrightarrow{a} = 5\hat{i} - \hat{j} + 7\hat{k}$$
 and $\overrightarrow{b} = \hat{i} - \hat{j} + \lambda\hat{k}$. Find λ such that $\overrightarrow{a} + \overrightarrow{b}$ is orthogonal to $\overrightarrow{a} - \overrightarrow{b}$.

143. If $\overrightarrow{a} \overrightarrow{a} = 0$ and $\overrightarrow{a} \overrightarrow{b} = 0$ what casn you conclude about the vector \overrightarrow{b} ?

Watch Video Solution

144. If \overrightarrow{c} is perpendicular to both \overrightarrow{a} and \overrightarrow{b} , then prove that it is perpendicular to both $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$.

145. If
$$\left|\overrightarrow{a}\right| = a \text{ and } \left|\overrightarrow{b}\right| = b$$
, prove that $\left(\frac{\overrightarrow{a}}{a^2} - \frac{\overrightarrow{b}}{b^2}\right)^2 = \left(\frac{\overrightarrow{a} - \overrightarrow{b}}{ab}\right)^2$ Watch Video Solution

146. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non coplanar vectors such that $\overrightarrow{a} = \overrightarrow{b} = \overrightarrow{c} = 0$, then show that d is the null vector.

Watch Video Solution

147. If a vector \overrightarrow{a} is perpendicular to two non collinear vectors \overrightarrow{b} and \overrightarrow{c} , then \overrightarrow{a} is perpendicular to every vector in the plane of \overrightarrow{b} and \overrightarrow{c}

148. If $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, show that the angle θ between the vectors \overrightarrow{b} and \overrightarrow{c} ig givne by $\cos \theta = \frac{\left|\overrightarrow{a}\right|^2 - \left|\overrightarrow{b}\right|^2 - \left|\overrightarrow{c}\right|^2}{2\left|\overrightarrow{b}\right|\left|\overrightarrow{c}\right|}$.

Watch Video Solution

149. Let
$$\overrightarrow{u}$$
, \overrightarrow{v} and \overrightarrow{w} be vector such $\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} = 0$. if $|\overrightarrow{u}| = 3$, $|\overrightarrow{v}| = 4$ and $|\overrightarrow{w}| = 5$, then find $\overrightarrow{u} \overrightarrow{v} + \overrightarrow{v} \overrightarrow{w} + \overrightarrow{w} \overrightarrow{u}$.

Watch Video Solution

150. Let $\overrightarrow{a} = x^2\hat{i} + 2\hat{j} - 2\hat{k}$, $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = x^2\hat{i} + 5\hat{j} - 4\hat{k}$ be three vectors find the values of x for which the angle between \overrightarrow{a} and \overrightarrow{b} acute and the angle between \overrightarrow{b} and \overrightarrow{c} is obtuse.

151. Find the value of x and y if the vectors $\vec{a} = 3\hat{i} + x\hat{j} - \hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + y\hat{k}$ are mutually perpendicular vectors of equal magnitude.

Watch Video Solution

152. If \overrightarrow{a} and \overrightarrow{b} are two non collinear unit vectors such that $\left|\overrightarrow{a} + \overrightarrow{b}\right| = 3$, find $\left(2\overrightarrow{a} - 5\overrightarrow{b}\right)3\overrightarrow{a} + \overrightarrow{b}$.

Watch Video Solution

153. If \overrightarrow{a} , \overrightarrow{b} are two vectors such that $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \left|\overrightarrow{b}\right|$, then prove that $\overrightarrow{a} + 2\overrightarrow{b}$ is perpendicular to \overrightarrow{a} .

154. Prove using vectors: The median to the base of an isosceles triangle

is perpendicular to the base.

Watch Video Solution

155. Show that the diagonals of a rhombus bisect each other at right angles.

Watch Video Solution

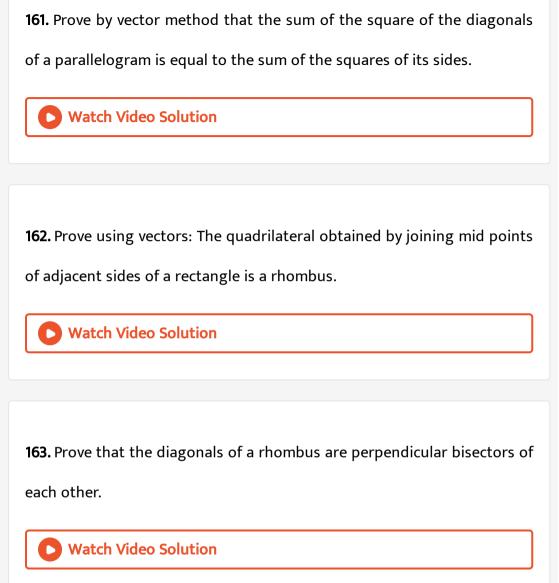
156. Using vector method, prove that the angel in a semi circle is a right

angle.

157. Prove that the cosine formula for triangles is equivalent to the

definition of the scalar product.

158. In a triangle OAB, $\angle AOB = 90^{\circ}$. If $P \ and \ Q$ are points of trisection of AB prove that $OP^2 + OQ^2 = \frac{5}{9}AB^2$.


Watch Video Solution

159. Prove that the if the diagonals of a quadrilateral bisect each other at

right angles then it is a rhombus.

160. (Pythagoras's Theorem) Prove by vector method that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

164. Prove that the diagonals of a rectangle are perpendicular if and only

if the rectangle is a square.

165. If AD is the median of riangle ABC, using vectors, prove that $AB^2 + AC^2 = 2(AD^2 + CD^2)$

166. If the median to the base of a triangle is perpendicular to the base then triangle is isosceles.

Watch Video Solution

167. In a quadrilateral ABCD prove that

 $AB^2 + BC^2 + CD^2 + DA^2 = AC^2 + BD^2 + 4PQ^2$ where P and Q

are middle points of diagonals $AC and BD_{\cdot}$

168. What is the angle between vectors \overrightarrow{a} and \overrightarrow{b} with magnitudes 2 and

3 respectively ? Given $\overrightarrow{a} \overrightarrow{b} = \sqrt{3}$.

Watch Video Solution

169. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are two vectors such that \overrightarrow{a} $\overrightarrow{b} = 6$, $\left|\overrightarrow{a}\right| = 3$ and $\left|\overrightarrow{b}\right| = 4$. Write the projection of \overrightarrow{a} on \overrightarrow{b} .

Watch Video Solution

170. Find he cosine of the angle between the vectors $4\hat{i} - 3\hat{j} + 3\hat{k}$ and $2\hat{i} - \hat{j} - \hat{k}$.

Watch Video Solution

171. If the vectors $3\hat{i}+m\hat{j}+\hat{k}$ and $2\hat{i}-\hat{j}-8\hat{k}$ are orthogonal, find $m_{\hat{-}}$

172. If the vectors $3\hat{i}-2\hat{j}-4\hat{k}$ and $18\hat{i}-12\hat{j}-m\hat{k}$ are palrallel find the value of m

Watch Video Solution

173. If \overrightarrow{a} and \overrightarrow{b} are vectors of equal magnitude, write the value of $\left(\overrightarrow{a} + \overrightarrow{b}\right)\overrightarrow{a} - \overrightarrow{b}$.

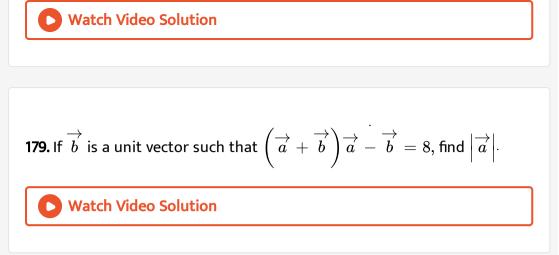
Watch Video Solution

174. If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $\left(\overrightarrow{a} + \overrightarrow{b}\right)\overrightarrow{a} - \overrightarrow{b} = 0$ find the relation between the magnitudes of \overrightarrow{a} and \overrightarrow{b} .

175. For any two vectors \overrightarrow{a} and \overrightarrow{b} write when $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \left|\overrightarrow{a}\right| + \left|\overrightarrow{b}\right|$

holds.

176. For any two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} write when $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \left|\overrightarrow{a} - \overrightarrow{b}\right|$ holds.


Watch Video Solution

177. If \overrightarrow{a} and \overrightarrow{b} are two vectors of the same magnitude inclined at an

angel of 60^0 such that $\overrightarrow{a} \stackrel{\cdot}{b} = 8$ write the value of their magnitude.

Watch Video Solution

178. If $\overrightarrow{a} \overrightarrow{a} = 0$ and $\overrightarrow{a} \overrightarrow{b} = 0$ what can you conclude about the vector \overrightarrow{b} ?

180. If $\widehat{a},\ \hat{b}$ are unit vector such that $\widehat{a}+\hat{b}$ is a unit vectors, write the value of $|\widehat{a}-\widehat{b}|$.

Watch Video Solution

181. If
$$\left|\overrightarrow{a}\right| = 2$$
, $\left|\overrightarrow{b}\right| = 5$ and $\overrightarrow{a} \overrightarrow{b} = 2$, find $\left|\overrightarrow{a} - \overrightarrow{b}\right|$.

182. If
$$\overrightarrow{a} = \hat{i} - \hat{j}$$
 and $\overrightarrow{b} = -\hat{j} + \hat{k}$ find the projection of \overrightarrow{a} on \overrightarrow{b} .

183. For any two non zero vectors write the value of $\frac{\left|\overrightarrow{a} + \overrightarrow{b}\right|^{2} + \left|\overrightarrow{a} - \overrightarrow{b}\right|^{2}}{\left|\overrightarrow{a}\right|^{2} + \left|\overrightarrow{b}\right|^{2}}$

Watch Video Solution

184. Writhe the projections of $\overrightarrow{r}=3\hat{i}-4\hat{j}+12\hat{k}$ ion the coordinate

axes.

Watch Video Solution

185. Writhe the component of \overrightarrow{b} along \overrightarrow{a} .

186. Writhe the value of
$$\left(\overrightarrow{a}\,\dot{\hat{i}}\right)\hat{i} + \left(\overrightarrow{a}\,\dot{\hat{j}}\right)\hat{j} + \left(\overrightarrow{a}\,\dot{\hat{k}}\right)\hat{k}$$
 where \overrightarrow{a} is any

vector.

187. Find the value of
$$\theta(0, \pi/2)$$
 for which vectors
 $\vec{a} = (\sin \theta)\hat{i} + (\cos \theta)\hat{j}$ and $\vec{b} = \hat{i} - \sqrt{3}\hat{j} + 2\hat{k}$ are perpendicular.

Watch Video Solution

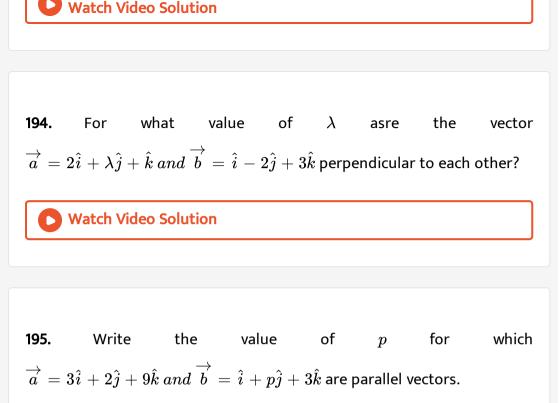
188. Write the projection of $\hat{i}+\hat{j}+\hat{k}$ along the vector \hat{j}_{\cdot}

Watch Video Solution

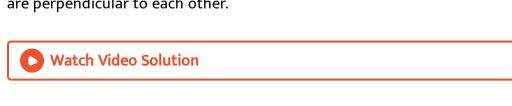
189. Writhe a vector satisfying $\overrightarrow{a} \stackrel{.}{\hat{i}} = \overrightarrow{a} \stackrel{.}{\hat{i}} + \hat{j} = \overrightarrow{a} \stackrel{.}{\hat{i}} + \hat{j} = \overrightarrow{a} \hat{i} + \hat{j} + \hat{k} = 1.$

190. If \overrightarrow{a} and \overrightarrow{b} are unit vectors find the angle between $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$.

Watch Video Solution


191. If \overrightarrow{a} and \overrightarrow{b} and \overrightarrow{c} are mutually perpendicular unit vectors, write the value of $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right|$.

Watch Video Solution


192. If \overrightarrow{a} and \overrightarrow{b} are mutually perpendicular unit vectors, write the value of $\left|\overrightarrow{a} + \overrightarrow{b}\right|$.

Watch Video Solution

193. Find the angel between the vectors $\vec{a} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} - \hat{k}$.

196. Find the value of λ . If the vectors $2\hat{i} + \lambda\hat{j} + 3\hat{k}$ and $3\hat{i} + 2\hat{j} - 4\hat{k}$ are perpendicular to each other.

197. If
$$\left| \overrightarrow{a} \right| = 2$$
, $\left| \overrightarrow{b} \right| = 3$ and $\overrightarrow{a} \overrightarrow{b} = 3$ find the projection of \overrightarrow{b} on \overrightarrow{a} .

198. Writhe the angle between two vectors \overrightarrow{a} and \overrightarrow{b} with magnitudes

 $\sqrt{3} \, and \, 2$ repsectively having $\overrightarrow{a} \stackrel{\cdot}{\overrightarrow{b}} = \sqrt{6}$.

Watch Video Solution

199. Write the projection of the vector $\hat{i}+3\hat{j}+7\hat{k}$ on the vector $2\hat{i}-3\hat{j}+6\hat{k}$.

Watch Video Solution

200. Find
$$\lambda$$
, when the projection of $\overrightarrow{a} = \lambda \hat{i} + \hat{j} + 4\hat{k}$ on $\overrightarrow{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$ is 4 units.

201. For what value of λ are the vectores $\overrightarrow{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\overrightarrow{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ perpendicular to each other?

202. Writhe the projection of the vector $7\hat{i}+\hat{j}-4\hat{k}$ on the vector $2\hat{i}+6\hat{j}+3\hat{k}$

Watch Video Solution

203. Write the value of λ so that the vector $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ are perpendicular to each

other.

204. Write the projection of $\overrightarrow{b} + \overrightarrow{c}$ on \overrightarrow{a} , when $\overrightarrow{a} = 2\hat{i} - 2\hat{j} + \hat{k}, \quad \overrightarrow{b} = \hat{i} + 2\hat{j} - 2\hat{k} \text{ and } \overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. **Vatch Video Solution**

205. If vectors \overrightarrow{a} and \overrightarrow{b} are such that $\left|\overrightarrow{a}\right| = 3$, $\left|\overrightarrow{b}\right| = \frac{2}{3}$ and $\overrightarrow{a} \times \overrightarrow{b}$ is a unit vector, then write the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

206. If \overrightarrow{a} and \overrightarrow{b} are two unit vectors such that $\overrightarrow{a} + \overrightarrow{b}$ is also a unit vector then find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

207. The vector \overrightarrow{a} and \overrightarrow{b} satisfy the equation $2\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{p}$ and $\overrightarrow{a} + 2\overrightarrow{b} = \overrightarrow{q}$, where $\overrightarrow{p} = \hat{i} + \hat{j}$ and $\overrightarrow{q} = \hat{i} - \overrightarrow{j}$. If heta is the angle between \overrightarrow{a} and $\overrightarrow{b} \setminus$, then

$$\operatorname{a.cos} \theta = rac{4}{5} \operatorname{b.sin} \theta = rac{1}{\sqrt{2}} \operatorname{c.cos} \theta = -rac{4}{5} \operatorname{d.cos} \theta = -rac{3}{5}$$

Watch Video Solution

208. If
$$\overrightarrow{a}\hat{i} = \overrightarrow{a}\hat{i} + \hat{j} = \overrightarrow{a}\hat{i} + \hat{j} + \hat{k} = 1$$
, then $\overrightarrow{a} =$

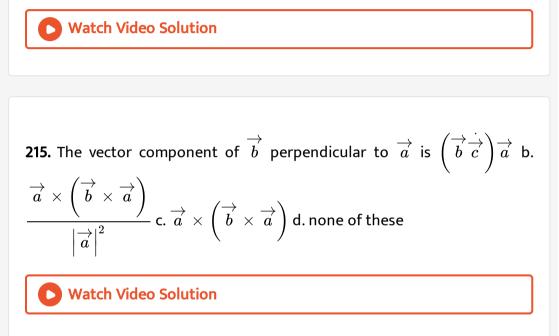
a. $\stackrel{
ightarrow}{0}$ b. \hat{i} c. \hat{j} d. $\hat{i}+\hat{j}+\hat{k}$

Watch Video Solution

209. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$
, $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$, $|\overrightarrow{c}| = 7$ then the angle between \overrightarrow{a} and \overrightarrow{b} is $\frac{\pi}{6}$ b. $\frac{2\pi}{3}$ c. $\frac{5\pi}{3}$ d. $\frac{\pi}{3}$

Watch Video Solution

210. Let \overrightarrow{a} and \overrightarrow{b} be two unit vectors and α be the angle between them, then $\overrightarrow{a} + \overrightarrow{b}$ is a unit vectors, if $a.\alpha = \frac{\pi}{4} b. \alpha = \frac{\pi}{3} c. \alpha = \frac{2\pi}{3} d. \alpha = \frac{\pi}{2}$ 211. The vector $(\coslpha\coseta)\hat{i}+(\coslpha s\ineta)\hat{j}+(s\inlpha)\hat{k}$ is a a. null


vector b. unit vector c. constant vector d. none of these

Watch Video Solution

212. If the position vectors of P and Q are $\hat{i} + 2\hat{j} - 7\hat{k}$ and $5\hat{i} - 3\hat{j} + 4\hat{k}$ them the cosine of the angle between $\overrightarrow{P}Q$ and y-axis is $\frac{5}{\sqrt{162}}$ b. $\frac{4}{\sqrt{162}}$ c. $-\frac{5}{\sqrt{162}}$ d. $\frac{11}{\sqrt{162}}$ Watch Video Solution

213. If \overrightarrow{a} and \overrightarrow{b} are unit vectors, then which of the following values \overrightarrow{a} \overrightarrow{b} is not possible? $\sqrt{3}$ b. $\sqrt{3}/2$ c. $1/\sqrt{2}$ d. -1/2

214. If the vectors $\hat{i} - 2x\hat{j} + 3y\hat{k}$ and $\hat{i} + 2x\hat{j} - 3y\hat{k}$ are perpendicular then the locus of (x, y) is a. a circle b. an ellipse c. a hyperbola d. none of these

216. The length of the longer diagonal of the parallelogram constructed on $5\overrightarrow{a} + 2\overrightarrow{b}$ and $\overrightarrow{a} - 3\overrightarrow{b}$ if it is given that $\left|\overrightarrow{a}\right| = 2\sqrt{2}$, $\left|\overrightarrow{b}\right| = 3$ and angle between \overrightarrow{a} and \overrightarrow{b} is $\pi/4$ is a.15 b. $\sqrt{113}$ c. $\sqrt{593}$ d. $\sqrt{369}$

217. If \overrightarrow{a} is a non zero vector a magnitude $a' and \lambda$ is a non a zero scalar, then $\lambda \overrightarrow{a}$ is a unit vector if $a = \lambda = 1$ b. $\lambda = -1$ c. $a - |\lambda|$ d. $a = \frac{1}{|\lambda|}$

Watch Video Solution

218. If θ is the angle between two vectors \overrightarrow{a} and \overrightarrow{b} , then \overrightarrow{a} $\overrightarrow{b} \geq 0$ only

when `0

Watch Video Solution

219. The values of x for which the angle between $\vec{a} = 2x^2 \hat{i} + 4x\hat{j} + \hat{k}, \quad \vec{b} = 7\hat{i} - 2\hat{j} + x\hat{k}$ is obtuse and the angle between \vec{b} and the z-axis is acute and less than $\frac{\pi}{6}$ are $x > \frac{1}{2}$ or x < 0b. 0

220. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are any time mutually perpendicular vectors of equal magnitude a, then $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right|$ is equal to a b. $\sqrt{2}a$ c. $\sqrt{3}a$ d. 2a e. none of these

Watch Video Solution

221. If the vectors
$$3\hat{i} + \lambda\hat{j} + \hat{k}$$
 and $2\hat{i} - \hat{j} + 8\hat{k}$ are perpendicular, then λ is equal to a.– 14 b. 7 c. 14 d. $\frac{1}{7}$

Watch Video Solution

222. The projection of the vector $\hat{i}+\hat{j}+\hat{k}$ along the vector of \hat{j} is 1 b. 0

c. 2 d. -1 e. -2

223. The vectors $2\hat{i} + 3\hat{j} - 4\hat{k}$ and $a\hat{i} = b\hat{j} + c\hat{k}$ are perpendicular if $a = 2, \ b = 3, \ c = -4$ $a = 4, \ b = 4, \ c = 5$ $a = 4, \ b = 4, \ c = -5$

$$a = -4, \ b = 4, \ c = -5$$

224. If
$$\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right|$$
, then $\left(\overrightarrow{a} + \overrightarrow{b} \right) \overrightarrow{a} - \overrightarrow{b} = a$. positive b. negative c.

0 d. none of these

225. If \overrightarrow{a} and \overrightarrow{b} are unit vectos inclined at an angle θ then the value of $\left|\overrightarrow{a} - \overrightarrow{b}\right|$ is a. $2\frac{\sin\theta}{2}$ b. $2\sin\theta$ c. $2\frac{\cos\theta}{2}$ d. $2\cos$ Watch Video Solution

226. If \overrightarrow{a} and \overrightarrow{b} are unit vectorts, then the greatest value fo $3\left|\overrightarrow{a}+\overrightarrow{b}\right|+\left|\overrightarrow{a}-\overrightarrow{b}\right|$ is 2 b. $2\sqrt{2}$ c. 4 d. none of these

227. If the angle between the vectors $x\hat{i} + 3\hat{j} - 7\hat{k}$ and $x\hat{i} - x\hat{j} + 4\hat{k}$ acute, then x lies in the interval (-4, 7) b. [-4, 7] c. R - [-4, 7] d. R - (4, 7)

Watch Video Solution

228. If \overrightarrow{a} and \overrightarrow{b} are two unit vectors inclined at an angle θ such that |a + b|, 1, then `theta(2pi)/3c. pi/3

Watch Video Solution

229. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three unit vectors such that $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right| = 1$ and \overrightarrow{a} is perpendicular to \overrightarrow{b} . If \overrightarrow{c} makes angle α and β with \overrightarrow{a} and \overrightarrow{b} respectively, then $\cos \alpha + \cos \beta = -\frac{3}{2}$ b. $\frac{3}{2}$ c. 1 d. -1

230. The orthogonal projection of \overrightarrow{a} on \overrightarrow{b} is $\frac{\left(\overrightarrow{a}, \overrightarrow{b}\right) \overrightarrow{a}}{|a|^2}$ b. $\frac{\left(\overrightarrow{a}, \overrightarrow{b}\right) \overrightarrow{b}}{\left|\overrightarrow{b}\right|^2}$ c. $\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$ d. $\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$ **Vatch Video Solution**

231. If θ is an acute angle and the vector $(\sin \theta)\hat{i} + (\cos \theta)\hat{j}$ is perpendicular to the vector $\hat{i} - \sqrt{3}\hat{j}$, then $\theta = \frac{\pi}{6}$ b. $\frac{\pi}{5}$ c. $\frac{\pi}{4}$ d. $\frac{\pi}{3}$

Watch Video Solution

232. If \overrightarrow{a} and \overrightarrow{b} be two unit vectors and θ is the angle between them. Then $\overrightarrow{a} + \overrightarrow{b}$ is an unit vector, if $\theta = \frac{\pi}{2}$ b. $\frac{2\pi}{3}$ c. $\frac{\pi}{4}$ d. $\frac{\pi}{3}$