

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

TANGENTS AND NORMALS

Solved Examples And Exercises

 $rac{x^2}{a^2+\lambda_2}+rac{y^2}{b^2+\lambda_2}=1$ intersect at right

angles.

Watch Video Solution

2. Find the condition for the following set of

curves to intersect orthogonally:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 and $xy = c^2$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
and $\frac{x^2}{A^2} - \frac{y^2}{B^2} = 1$.

4. Find the angle of intersection of the following curves :

$$(i)y^2 = xandx^2 = y$$

(ii)
$$y = x^2 andx^2 + y^2 = 20$$

(iii) $2y^2 = x^3 andy^2 = 32x$
Watch Video Solution
5. Show that the curves $4x = y^2$ and $4xy = k$
cut at right angles, if $k^2 = 512$.
Watch Video Solution

6. Find the equation of the tangent to the

curve $\sqrt{x}+\sqrt{y}=a,$ at the point

7. Find a point on the curve $y = x^3 - 3x$ where the tangent is parallel to the chord joining (1, -2)and(2, 2).

Watch Video Solution

8. Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of

9. Find the equation of normal line to the curve $y = x^3 + 2x + 6$ which is parallel to the line x + 14y + 4 = 0.

Watch Video Solution

10. Find the slopes of the tangent and the normal to the following curves at the

indicated points:
$$y = \sqrt{x^3} atx = 4$$

 $y = \sqrt{x^3} atx = 9$ $y = x^3 - xatx = 2$
 $y = 2x^2 + 3\sin xatx = 0$
 $x = a(\theta - \sin \theta), y = a(1 + \cos \theta)ah\eta = -\frac{\pi}{2}$
 $x = a\cos^3 \theta, y = a\sin^3 \theta ah\eta = \frac{\pi}{4}$
 $x = a\left(\theta - s\int h\eta\right), y = a(1 - \cos \theta)ah\eta = \frac{\pi}{2}$
 $y = (\sin 2x + \cot x + 2)^2 atx = \frac{\pi}{2}$
 $x^2 + 3y + y^2 = 5at(1, 1) xy = 6at(1, 6)$

12. Find the equation of the tangent to the curve
$$x = \sin 3t, y = \cos 2t$$
 at $t = \frac{\pi}{4}$.

13. Prove that $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$ touches the straight line $\frac{x}{a} + \frac{y}{b} = 2$ for all $\in N$, at the point (a, b).

Watch Video Solution

14. At what point on the circle $x^2+y^2-2x-4y+1=0,$ the tangent is

parallel to x-axis.

15. Find the point on the curve $y = x^2$ where the slope of the tangent is equal to the x – coordinate of the point.

Watch Video Solution

16. At what point will be tangents to the curve $y = 2x^3 - 15x^2 + 36x - 21$ by parallel to x=axis? Also, find the equations of the tangents to the curve at these points.

17. If the straight line $x\coslpha+y\sinlpha=p$ touches the curve $rac{x^2}{a^2}-rac{y^2}{b^2}=1,\,\,$ then prove that $a^2\cos^2lpha-b^2\sin^2lpha=p^2\cdot$

Watch Video Solution

18. Find the point on the curve $y=3x^2+4$ at

which the tangent is perpendicular to the line whose slope is $-\frac{1}{6}$.

19. Find the equation of the normal to $y = 2x^3 - x^2 + 3$ at (1,4).

Watch Video Solution

20. Find the point on the curve $y = 3x^2 - 9x + 8$ at which the tangents are equally inclined with the axes.

21. Find the equation of the tangent to the curve $x = heta + \sin heta, y = 1 + \cos heta$, at $heta = rac{\pi}{4}$

Watch Video Solution

22. Find the equation of the normal to the curve $x^2 + 2y^2 - 4x - 6y + 8 = 0$ at the point whose abscissa is 2.

23. The equation of the tangent at (2,3) on the

curve $y^2 = ax^3 + b$ is y = 4x - 5. Find the

values of a and b

24. Find the equation of the tangent line to the curve $y = x^2 + 4x - 16$ which is parallel to the line 3x - y + 1 = 0.

25. If the straight line $x\coslpha+y\sinlpha=p$ touches the curve $rac{x^2}{a^2}+rac{y^2}{b^2}=1$, then prove that $a^2\cos^2lpha+b^2\sin^2lpha=p^2$.

Watch Video Solution

26. Find the angle of intersection of the following curves: xy = 6 and $x^2y = 12$

$$y^2=4x$$
 and $x^2=4y$

27. Show that the curves $x = y^2 and xy = k$

cut at right angles, if $8k^2=1$

28. The curve $y = ax^3 + bx^2 + cx + 5$ touches the x-axis at P(-2, 0) and cuts the y-axis at the point Q where its gradient is 3. Find the equation of the curve completely.

29. Determine the quadratic curve y = f(x) if

it touches the line y=x at the point x=1

and passes through the point (-1,0).

parallel to the line x + 2y = 0.

32. Find the equation of the tangent to the curve $y = (x^3 - 1)(x - 2)$ at the points

where the curve cuts the x-axis.

Watch Video Solution

33. Show that the line $\frac{x}{a} + \frac{y}{b} = 1$ touches the curve $y = be^{-\frac{x}{a}}$ at the point where it crosses the y-axis.

34. Find the equations of tangent and normal to the ellipse $rac{x^2}{a^2}+rac{y^2}{b^2}=1$ at (x_1,y_1)

Watch Video Solution

35. Find the equation of the normal to the

curve $y = 2x^2 + 3\sin x$ at x = 0.

Watch Video Solution

36. Find the coordinates of the points on the curve $y = x^2 + 3x + 4$, the tangents at which pass through the origin.

37. Find the equations of the tangents drawn to the curve $y^2 - 2x^2 - 4y + 8 = 0$. from point (1, 2)

Watch Video Solution

38. Find the equation(s) of normal(s) to the curve $3x^2 - y^2 = 8$ which is (are) parallel to the line x + 3y = 4.

39. Find the equation of the tangent line to the curve $y = \sqrt{5x - 3} - 2$ which is parallel to the line 4x - 2y + 3 = 0

Watch Video Solution

40. Find the points on the curve $4x^2+9y^2=1$, where the tangents are

perpendicular to the line 2y + x = 0 .

41. Find the points on the curve $9y^2 = x^3$ where normal to the curve makes equal intercepts with the axes.

Watch Video Solution

42. Prove that the curves xy = 4 and

 $x^2 + y^2 = 8$ touch each other.

43. Prove that the curves $y^2 = 4x$ and $x^2 + y^2 - 6x + 1 = 0$ touch each other at the points $(1, \ 2)$.

44. Show that the angle between the tangent at any point P and the line joining P to the origin O is same at all points on the curve $\log(x^2 + y^2) = k \tan^{-1}\left(\frac{y}{x}\right)$

45. Find the slopes of the tangent and the normal to the curve $x^2 + 3yy2 = 5$ at (1, 1)

Watch Video Solution

- 46. Show that the tangents to the curve $y=x^3-3$ at the points where x=2and
- x = -2 are parallel.

47. Prove that the tangents to the curve $y = x^2 - 5 + 6$ at the points (2, 0) and (3, 0) are at right angles.

49. Find the points on the curve $y = x^3 - 2x^2 - x$ at which the tangent lines are parallel to the line y = 3x - 2

parallel to the y - a is?

51. Find the required point be $P(x_1, y_1)$. The tangent to the curve $\sqrt{x} + \sqrt{y} = 4$ at which tangent is equally inclined to the axes.

Watch Video Solution

52. Show that the curves $2x = y^2 and 2xy = k$

cut at right angles, if $k^2 = 8$.

53. Show that the curves $xy = a^2 andx^2 + y^2 = 2a^2$ touch each other Watch Video Solution

54. Find the slopes of the tangent and the normal to the curve $x^2 + 3y + y^2 = 5$ at (1, 1)

are at right angles.

57. The slope of the curve $2y^2 = ax^2 + b$ at (1, -1) is -1. Find a, b. **Vatch Video Solution**

58. Find the slope of the normal to the curve

$$x=1-a\sin heta$$
 , $y=b\cos^2 heta$ at $heta=rac{\pi}{2}$.

59. Find the slope of the normal to the curve

$$x=a\cos^3 heta$$
 , $y=a\ s\in^3 heta$ at $heta=rac{\pi}{4}$.

Watch Video Solution

61. Find the point on the curve $y = 2x^2 - 6x - 4$ at which the tangent is parallel to the x-axis.

parallel to the y - a is?

63. For which value of m is the line y = mx + 1 a tangent to the curve $y^2 = 4x$

- A. 1/2
- B. 1
- C. 2
- D. 3

Answer: Option 2

64. Find points on the curve $rac{x^2}{9}+rac{y^2}{16}=1$ at

which the tangents are parallel to the y-axis.

A. (0,4) & (0,-4)

B. (4,0) & (-4,0)

C. (3,0) & (-3,0)

D. (0,3) & (0,-3)

Answer: Option C

Points are (3, 0) and (-3, 0).

65. Find a point on the curve $y = (x - 3)^2$, where the tangent is parallel to the line joining (4, 1) and (3, 0).

66. Find the required point be $P(x_1, y_1)$. The tangent to the curve $\sqrt{x} + \sqrt{y} = 4$ at which

tangent is equally inclined to the axes.

67. Find the points on the curve $4x^2 + 9y^2 = 1$, where the tangents are perpendicular to the line 2y + x = 0

Watch Video Solution

68. Find the point on the curve $y = x^3 - 11x + 5$ at which the tangent has

the equation y = x - 11

69. Find the points on the curve $9y^2 = x^3$ where normal to the curve makes equal intercepts with the axes.

Watch Video Solution

70. Find the slopes of the tangent and the normal to the curve $y = \sqrt{x^3}$ at x = 4

71. Find the slopes of the tangent and the

normal to the curve $y=\sqrt{x}$ at x=9

Watch Video Solution

72. Find the slopes of the tangent and the normal to the curve $y = x^3 - x$ at x = 2

73. Find the slopes of the tangent and the normal to the curve $y = 2x^2 + 3\sin x$ at x = 0

74. Find the slopes of the tangent and the normal to the curve $x=a(heta-\sin heta)$, $y=a(1+\cos heta)$ at $heta=-\pi/2$

75. Find the slopes of the tangent and the normal to the curve $x=a\cos^3 heta,y=a\sin^3 heta$ at $heta=\pi/4$

76. Find the slopes of the tangent and the normal to the curve $x=a(heta-\sin heta), \ y=a(1-\cos heta)$ at $heta=\pi/2$

Watch Video Solution

77. Find the slopes of the tangent and the normal to the curve $y = (\sin 2x + \cot x + 2)^2$ at $x = \pi/2$

78. Find the slopes of the tangent and the normal to the curve $x^2 + 3y + y^2 = 5$ at (1, 1)

79. Find the slopes of the tangent and the

normal to the curve xy=6 at $(1,\;6)$

Watch Video Solution

80. Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2.

82. Find a point on the curve $y = x^3 - 3x$ where the tangent is parallel to the chord joining (1, -2) and (2, 2).

84. Find the points on the curve $y^2=2x^3$ at

which the slope of the tangent is 3.

85. Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of

45o with the x-axis.

86. Find the point on the curve $y = x^2$ where the slope of the tangent is equal to the xcoordinate of the point.

87. At what points on the circle $x^2 + y^2 - 2x - 4y + 1 = 0$, the tangent is parallel to the x-axis.

88. At what point of the curve $y=x^2$ does the

tangent make an angle of 45o with the x-axis?

89. Find the points on the curve $y = 3x^2 - 9x + 8$ at which the tangents are equally inclined with the axes.

91. Find the point on the curve $y = 3x^2 + 4$ at

which the tangent is perpendicular to the line

whose slope is $-rac{1}{6}$.

Watch Video Solution

92. Find the points on the curve $x^2 + y^2 = 13$, the tangent at each one of which is parallel to

the line 2x + 3y = 7.

93. Find the points on the curve $2a^2y = x^3 - 3ax^2$ where the tangent is parallel to x-axis.

95. Find the points on the curve $\frac{x^2}{4} + \frac{y^2}{25} = 1$ at which the tangents are

parallel to the x-axis and y-axis.

are parallel to the x-axis and y-axis.

97. Find the points on the curve $\frac{x^2}{9} + \frac{y^2}{16} = 1$ at which the tangents are

parallel to the x-axis and y-axis.

- 98. Show that the tangents to the curve $y = 7x^3 + 11$ at the points x = 2 and
- x = -2 are parallel.

99. Find the points on the curve $y = x^3$ where the slope of the tangent is equal to xcoordinate of the point.

Watch Video Solution

100. Find the equation of the tangent to the curve $y = -5x^2 + 6x + 7$ at the point $(1/2, \ 35/4)$.

101. Find the equation of the tangent and normal to the parabola $y^2 = 4ax$ at the point $(at^2, \ 2at)$.

103. Find the equations of the tangent and the normal to $16x^2 + 9y^2 = 144$ at (x_1, y_1) where $x_1 = 2$ and $y_1 > 0$.

to the ellipse
$$\displaystyle rac{x^2}{a^2} + \displaystyle rac{y^2}{b^2} = 1$$
 at (x_1,y_1)

105. Find the equation of the tangent line to the curve $x = 1 - \cos \theta$, $y = \theta - \sin \theta$ at $\theta = \pi/4$.

106. Find the equations of the tangent and the normal at the point 't' on the curve $x = a \ s \in^3 t$, $y = b \cos^3 t$.

Watch Video Solution

107. Show that the line $\frac{x}{a} + \frac{y}{b} = 1$ touches the curve $y = be^{-\frac{x}{a}}$ at the point where it crosses the y-axis.

Watch Video Solution

108. Find the equation of the tangent to the

curve $y = rac{x-7}{(x-2(x-3))}$ at the point where

it cuts the x-axis.

109. Find the equation of the tangent to the curve $y = (x^3 - 1)(x - 2)$ at the points

where the curve cuts the x-axis.

110. Find the equation of the tangent line to the curve $y = \sqrt{5x - 3} - 2$ which is parallel to the line 4x - 2y + 3 = 0.

111. Find the equation of tangent line to $y = 2x^2 + 7$ which is parallel to the line 4x - y + 3 = 0.

112. Find the equation(s) of normal(s) to the curve $3x^2 - y^2 = 8$ which is (are) parallel to the line x + 3y = 4.

113. Find the equation of normal line to the curve $y = x^3 + 2x + 6$ which is parallel to the line x + 14y + 4 = 0.

Watch Video Solution

114. Find the equations of the tangents drawn to the curve $y^2 - 2x^3 - 4y + 8 = 0.$

115. Find the equation of the normal to the curve $x^2 = 4y$ which passes through the point (1, 2).

116. Find the coordinates of the points on the curve $y = x^2 + 3x + 4$, the tangents at

which pass through the origin.

117. For the curve $y = 4x^3 - 2x^5$ find all points at which the tangent passes through the origin.

118. Find the equation of all lines having slope

1that are tangents to the curve $y=rac{1}{x-1}, x
eq 1.$

119. Prove that all normals to the curve $x = a \cos t + at \sin t$, $y = a \sin t - at \cos t$ are at a distance a from the origin.

120. Find the equation of the normal to the curve $y = (1+x)^y + \sin^{-1} (\sin^2 x) at x = 0.$

121. Find all the tangents to the curve $y = \cos(x+y), \ -2\pi \le x \le 2\pi$ that are parallel to the line x+2y=0. xyz

Watch Video Solution

122. The curve $y = ax^3 + bx^2 + cx + 5$ touches the x-axis at P(-2, 0) and cuts the y-axis at the point Q where its gradient is 3. Find the equation of the curve completely. 123. Determine the quadratic curve y = f(x) if it touches the line y = x at the point x = 1and passes through the point (-1, 0).

Watch Video Solution

124. Find the equation of the tangent to the

curve $\sqrt{x}+\sqrt{y}=a$, at the point $\left(a^{2}/4,\;a^{2}/4
ight) .$

125. Find the equation of the normal to $y=2x^3-x^2+3$ at $(1,\ 4)$.

Watch Video Solution

126. Find the equations of the tangent and the normal to the curve $y = x^4 - bx^3 + 13x^2 - 10x + 5$ at (0, 5) at

the indicated points

normal to the curve $y = x^4 - 6x^3 + 13x^2 - 10x + 5$ at x = 1 at the indicated points

normal to the curve $y=x^2$ at $(0,\ 0)$ at the

128. Find the equations of the tangent and the

indicated points

Watch Video Solution

normal to the curve $y=2x^2-3x-1$ at

 $(1,\ -2)$ at the indicated points

Watch Video Solution

130. Find the equations of the tangent and the

normal to the curve $y^2=rac{x^3}{4-x}$ at (2,~-2)

at the indicated points

131. Find the equations of the tangent and the normal to the curve $y = x^2 + 4x + 1$ at x = 3 at the indicated points

132. Find the equations of the tangent and the normal to the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at $(a\cos\theta, \ b\sin\theta)$ at the indicated points

Watch Video Solution

normal to the curve $rac{x^2}{a^2}-rac{y^2}{b^2}=1$ at

 $(a \sec \theta, b \tan \theta)$ at the indicated points.

Watch Video Solution

134. Find the equations of the tangent and the normal to the curve $y^2 = 4a \ x$ at $\left(a/m^2, \ 2a/m ight)$ at the indicated points

normal to the curve $c^2(x^2 + y^2) = x^2 y^2$ at $\left(\frac{c}{\cos \theta}, \frac{c}{\sin \theta}\right)$ at the indicated points Watch Video Solution

136. Find the equations of the tangent and the normal to the curve $xy = c^2$ at $(ct, \ c/t)$ at

the indicated points.

normal to the curve $rac{x^2}{a^2}+rac{y^2}{b^2}=1$ at $(x_1,\;y_1)$

at the indicated points.

139. Find the equations of the tangent and the normal to the curve $x^{2/3} + y^{2/3} = 2$ at (1, 1) at indicated points.

140. Find the equations of the tangent and the normal to the curve $x^2 = 4y$ at (2, 1) at

indicated points.

141. Find the equations of the tangent and the normal to the curve $y^2 = 4x$ at (1, 2) at indicated points.

Watch Video Solution

142. Find the equations of the tangent and the normal to the curve $4x^2 + 9y^2 = 36$ at $(3\cos\theta, 2\sin\theta)$ at indicated points.

143. Find the equations of the tangent and the normal to the curve $y^2 = 4ax$ at (x_1, y_1) at indicated points.

144. Find the equations of the tangent and the normal to the curve $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at $(\sqrt{2}a, b)$ at indicated points.

147. Find the equation of tangent and normal

to the curve
$$x=rac{2at^2}{(1+t^2)}, y=rac{2at^3}{(1+t^2)}$$
 at the point for which $t=rac{1}{2}.$

Watch Video Solution

148. Find the equations of the tangent and the normal to the curve $x = at^2$, y = 2at at t = 1.

149. Find the equations of the tangent and the normal to the curve $x = a \sec t$, $y = b \tan t$ at t at indicated points.

Watch Video Solution

indicated points.

151. Find the equations of the tangent and the

152. Find the equation of the normal to the curve $x^2 + 2y^2 - 4x - 6y + 8 = 0$ at the point whose abscissa is 2.

153. Find the equation of the normal to the curve $ay^2 = x^3$ at the point $\left(am^2, \ am^3\right)$.

Watch Video Solution

154. The equation of the tangent at (2, 3) on the curve $y^2 = ax^3 + b$ is y = 4x - 5 . Find the values of a and b .

155. Find the equation of the tangent line to

the curve $y = x^2 + 4x - 16$ which is parallel

to the line 3x - y + 1 = 0 .

Watch Video Solution

156. Find the equation of normal line to the curve $y = x^3 + 2x + 6$ which is parallel to the line x + 14y + 4 = 0.

157. Determine the equation(s) of tangent(s) line to the curve $y = 4x^3 - 3x + 5$ which are perpendicular to the line 9y + x + 3 = 0

Watch Video Solution

158. Find the equation of a normal to the curve $y = x(\log)_e x$ which is parallel to the line 2x - 2y + 3 = 0.

159. Find the equation of the tangent line to the curve $y = x^2 - 2x + 7$ which is parallel to the line 2x - y + 9 = 0

Watch Video Solution

160. Find the equation of the tangent line to the curve $y = x^2 - 2x + 7$ which is perpendicular to the line 5y - 15x = 13.

161. Find the equations of all lines having slope

2 and that are tangent to the curve
$$y=rac{1}{x-3}, \ x
eq 3$$
 .

Watch Video Solution

163. Find the equation of the tangent to the curve $y = \sqrt{3x - 2}$ which is parallel to the line 4x - 2y + 5 = 0

Watch Video Solution

164. Find the equation of the tangent to the curve $x^2 + 3y - 3 = 0$, which is parallel to

the line y = 4x - 5.

165. Find the value of $n \in N$ such that the curve $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$ touches the straight line $\frac{x}{a} + \frac{y}{b} = 2$ at the point (a, b).

Watch Video Solution

166. Find the equation of the tangent to the curve $x = \sin 3t$, $y = \cos 2t$ at $t = \frac{\pi}{4}$.

167. At what points will be tangents to the curve $y = 2x^3 - 15x^2 + 36x - 21$ be parallel to x-axis? Also, find the equations of the tangents to the curve at these points.

168. Find the equation of the tangents to the curve $3x^2 - y^2 = 8$, which passes through the point $\left(\frac{4}{3}, 0\right)$.

169. Find the angle of intersection of xy=6and $x^2y=12$

170. Find the angle of intersection of $y^2 = 4x$ and $x^2 = 4y$

171. Find the angle between the parabolas $y^2 = 4ax$ and $x^2 = 4by$ at their point of intersection other than the origin.

173. Find the value of p for which curves $x^2 = 9p(9 - y)$ and $x^2 = p(y + 1)$ cut each other at right angles.

174. Show that the curves
$$xy = a^2$$
 and $x^2 + y^2 = 2a^2$ touch each other.

175. Show the condition that the curves $ax^2 + by^2 = 1$ and $a' x^2 + b' y^2 = 1$ Should intersect orthogonally

Watch Video Solution

177. Show that the angle between the tangent at any point P and the line joining P to the origin O is the same at all points on the curve $\log(x^2 + y^2) = k \tan^{-1}\left(\frac{y}{x}\right).$

Watch Video Solution

178. Find the angle of intersection of the

curves $y^2 = x$ and $x^2 = y$

179. Find the angle of intersection of curve $y = x^2$ and $x^2 + y^2 = 20$

Watch Video Solution

180. Find the angle of intersection of curve

$$2y^2=x^3$$
 and $y^2=32x$

Watch Video Solution

181. Find the angle of intersection of curve

$$x^2 + y^2 - 4x - 1 = 0$$

and

$$x^2 + y^2 - 2y - 9 = 0$$

Watch Video Solution

182. Find the angle of intersection of curve $rac{x^2}{a^2}+rac{y^2}{b^2}=1$ and $x^2+y^2=ab$

Watch Video Solution

183. Find the angle of intersection of curve

$$x^2+4y^2=8$$
 and $x^2-2y^2=2$

184. Find the angle of intersection of curve

$$x^2=27y$$
 and $y^2=8x$

Watch Video Solution

185. Find the angle of intersection of curve

$$x^2+y^2=2x$$
 and $y^2=x$

186. Find the angle of intersection of curve

$$y=4-x^2$$
 and $y=x^2$

Watch Video Solution

187. Show that $y=x^3$ and $6y=7-x^2$

intersect orthogonally:

188. Show that $x^3 - 3xy^2 = -2$ and $3x^2 y - y^3 = 2$ intersect orthogonally: Watch Video Solution 189. Show that $x^2 + 4y^2 = 8$ and $x^2 - 2y^2 = 4$ intersect orthogonally Watch Video Solution

190. Show that $x^2 = 4y$ and $4y + x^2 = 8$ intersect orthogonally at (2, 1)

Watch Video Solution

191. Show that $x^2=y$ and $x^3+6y=7$

intersect orthogonally at (1, 1)

192. Show that $y^2 = 8x$ and $2x^2 + y^2 = 10$ at $(1, 2\sqrt{2})$ Watch Video Solution

193. Show that the curves $4x = y^2$ and

4xy = k cut at right angles, if $k^2 = 512$.

194. Show that the curves $2x = y^2$ and 2xy = k cut at right angles, if $k^2 = 8$.

 $x^2 + y^2 = 8$ touch each other.

196. Prove that the curves $y^2=4x$ and $x^2+y^2-6x+1=0$ touch each other at the points $(1,\ 2)$.

197. Find the condition for the following set of

curves to intersect orthogonally: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $xy = c^2$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and $\frac{x^2}{A^2} - \frac{y^2}{B^2} = 1$.

198. Find the condition for the two concentric ellipses

 $a_1x^2 + \ b_1y^2 = 1 \ and \ a_2x^2 + \ b_2y^2 = 1$ to

intersect orthogonally.

Watch Video Solution

199. If the straight line $x\coslpha+y\sinlpha=p$ touches the curve $rac{x^2}{a^2}+rac{y^2}{b^2}=1$, then prove that $a^2\cos^2lpha+b^2\sin^2lpha=p^2.$

200. Find the point on the curve $y = x^2 - 2x + 3$, where the tangent is parallel to x-axis.

Watch Video Solution

201. Find the slope of the tangent to the curve

$$x=t^2+3t-8$$
 , $y=2t^2-2t-5$ at $t=2$.

202. If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of $\frac{dy}{dx}$.

Watch Video Solution

203. Write the value of $rac{dy}{dx}$, if the normal to the curve y=f(x) at $(x,\ y)$ is parallel to y-

axis.

204. If the tangent to a curve at a point (x, y)

is equally inclined to the coordinate axes, then

write the value of $\frac{dy}{dx}$.

Watch Video Solution

205. If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of $\frac{dx}{dy}$.

206. Find the slope of the normal at the point

'
$$t$$
 ' on the curve $x=rac{1}{t}, \;\; y=t$.

207. Write the coordinates of the point on the

curve $y^2 = x$ where the tangent line makes an angle $rac{\pi}{4}$ with x-axis.

208. Write the angle made by the tangent to the curve $x = e^t \cot t$, $y = e^t \sin t$ at $t = \frac{\pi}{4}$ with the x-axis.

210. Find the coordinates of the point on the

curve $y^2 = 3 - 4x$ where tangent is parallel

to the line 2x + y - 2 = 0 .

211. Write the equation of the tangent to the curve $y = x^2 - x + 2$ at the point where it crosses the y-axis.

212. Write the angle between the curves $y^2 = 4x$ and $x^2 = 2y - 3$ at the point (1, 2). Watch Video Solution

213. Write the angle between the curves $y = e^{-x}$ and $y = e^x$ at their point of intersection.

214. Write the slope of the normal to the curve

$$y=rac{1}{x}$$
 at the point $\left(3,rac{1}{3}
ight)$

Watch Video Solution

216. Write the equation of the normal to the

curve $y = \cos x$ at (0, 1) .

Watch Video Solution

217. The equation to the normal to the curve $y = \sin x$ at (0, 0) is x = 0 (b) y = 0 (c) x + y = 0 (d) x - y = 0

218. Find the equation of the tangent to the

curve $y = x - \sin x \cos x$ at $x = rac{\pi}{2}$

Watch Video Solution

219. The equation of the normal to the curve y=x(2-x) at the point (2, 0) is x-2y=2 (b) x-2y+2=0 (c) 2x+y=4 (d) 2x+y-4=0

220. The point on the curve $y^2 = x$ where tangent makes 45o angle with x-axis is (1/2, 1/4) (b) (1/4, 1/2) (c) (4, 2) (d) (1, 1)

221. If the tangent to the curve $x = a t^2$, y = 2at is perpendicular to x-axis, then its point of contact is (a, a) (b) (0, a) (c) (0, 0) (d) (a, 0)

222. The point on the curve $y = x^2 - 3x + 2$ where tangent is perpendicular to y = x is (0,2) (b) (1, 0) (c) (-1, 6) (d) (2, -2)

Watch Video Solution

223. The point on the curve $y = 12x - x^2$ where the slope of the tangent is zero will be (0, 0) (b) (2, 16) (c) (3, 9) (d) (6, 36)

224. The angle between the curves $y^2=x$ and $x^2=y$ at $(1,\ 1)$ is $rac{ anumber ext{tan}^{-1} ext{4}}{3}$ (b) $rac{ anumber ext{tan}^{-1} ext{3}}{4}$ (c) 90o (d) 45o

Watch Video Solution

225. The equation of the normal to the curve $3x^2 - y^2 = 8$ which is parallel to x + 3y = 8is x - 3y = 8 (b) x - 3y + 8 = 0 (c) $x + 3y \pm 8 = 0$ (d) x + 3y = 0

226. The equation of tangent at those points where the curve $y = x^2 - 3x + 2$ meets x-axis are x - y + 2 = 0 = x - y - 1 (b) x + y - 1 = 0 = x - y - 2 (c) x - y - 1 = 0 = x - y (d) x - y = 0 = x + y

228. At what points the slope of the tangent to the curve $x^2 + y^2 - 2x - 3 = 0$ is zero (3, 0), (-1, 0) (b) (3, 0), (1, 2) (c) (-1, 0), (1, 2) (d) (1, 2), (1, -2)

229. The angle of intersection of the curves $xy = a^2$ and $x^2 - y^2 = 2a^2$ is zero 0o (b) 45o (c) 90o (d) 30o

Watch Video Solution

230. If the curve $ay + x^2 = 7$ and $x^3 = y$ cut

orthogonally at (1, 1) , then a is equal to (a) 1 (b) -6 (c) 6 (d) 0

Watch Video Solution

232. The slope of the tangent to the curve $x=3t^2+1$, $y=t^3-1$ at x=1 is 1/2 (b) 0 (c) -2 (d) ∞

233. The curves $y = ae^x$ and $y = be^{-x}$ cut orthogonally, if a = b (b) a = -b (c) ab = 1(d) ab = 2

Watch Video Solution

234. The equation of the normal to the curve

$$x=a\cos^3 heta, \,\,y=a\,s\in^3 heta$$
 at the point

$$heta=\pi/4$$
 is $x=0$ (b) $y=0$ (c) $x=y$ (d)

x + y = a

235. If the curves $y = 2 e^x$ and $y = a e^{-x}$ intersect orthogonally, then a = -1/2 (b) -1/2 (c) 2 (d) $2e^2$

Watch Video Solution

236. The point on the curve $y = 6x - x^2$ at which the tangent to the curve is inclined at $\pi/4$ to the line x + y = 0 is (-3, -27) (b) (3, 9) (c) 7/2, 35/4) (d) (0, 0)

237. The angle of intersection of the parabola $y^2 = 4 \ ax$ and $x^2 = 4 ay$ at the origin is $\pi/6$ (b) $\pi/3$ (c) $\pi/2$ (d) $\pi/4$

Watch Video Solution

238. The angle of intersection of the curves $y=2\,s\in^2 x$ and $y=\cos 2\,x$ at $x=rac{\pi}{6}$ is $\pi/4$ (b) $\pi/2$ (c) $\pi/3$ (d) $\pi/6$

239. Any tangent to the curve $y = 2x^7 + 3x + 5$ (a) is parallel to x-axis (b) is parallel to y-axis (c) makes an acute angle with x-axis (d) makes an obtuse angle with x-axis.

240. The point on the curve $9y^2=x^3$, where

the normal to the curve makes equal

intercepts with the axes is $(4,\ \pm 8/3)$ (b) $(-4,\ 8/3)$ (c) $(-4,\ -8/3)$ (d) $(8/3,\ 4)$

Watch Video Solution

241. The slope of the tangent to the curve $x=t^2+3t-8,\ y=2t^2-2t-5$ at the point $(2,\ -1)$ is 22/7 (b) 6/7 (c) 7/6 (d) -6/7

242. The line y = mx + 1 is a tangent to the curve $y^2 = 4x$, if the value of m is (a) 1 (b) 2 (c) 3 (d) 1/2

$$2y+x^2=3$$
is(A) $x+y=0$ (B) $xy=0$ (C)

x+y+1=0(D) xy=0

$$rac{x^2}{a^2+\lambda_2}+rac{y^2}{b^2+\lambda_2}=1$$
 intersect at right

angles.

View Text Solution