©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS
 (HINGLISH)

TANGENTS AND NORMALS

Solved Examples And Exercises

$\frac{x^{2}}{a^{2}+\lambda_{2}}+\frac{y^{2}}{b^{2}+\lambda_{2}}=1$ intersect at right angles.

D Watch Video Solution

2. Find the condition for the following set of curves to intersect orthogonally:
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad$ and $\quad x y=c^{2} \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
and $\frac{x^{2}}{A^{2}}-\frac{y^{2}}{B^{2}}=1$.

D Watch Video Solution

3. Show that the following set of curves intersect orthogonally:
$y=x^{3}$ and $6 y=7-x^{2}$,
$x^{3}-3 x y^{2}=-2$ and $3 x^{2} y-y^{3}=2$.
$x^{2}+4 y^{2}=8$ and $x^{2}-2 y^{2}=4$

D Watch Video Solution

4. Find the angle of intersection of the following curves :
$(i) y^{2}=x a n d x^{2}=y$
$(i i) y=x^{2} a n d x^{2}+y^{2}=20$
$(i i i) 2 y^{2}=x^{3} a n d y^{2}=32 x$

D Watch Video Solution

5. Show that the curves $4 x=y^{2}$ and $4 x y=k$ cut at right angles, if $k^{2}=512$.

- Watch Video Solution

6. Find the equation of the tangent to the
curve $\quad \sqrt{x}+\sqrt{y}=a, \quad$ at the point
$\left(\frac{a^{2}}{4}, \frac{a^{2}}{4}\right)$.

D Watch Video Solution

7. Find a point on the curve $y=x^{3}-3 x$ where the tangent is parallel to the chord joining $(1,-2) \operatorname{and}(2,2)$.

D Watch Video Solution

8. Find the points on the curve $x y+4=0$ at which the tangents are inclined at an angle of
45^{0} with the $x-$ a xis.

- Watch Video Solution

9. Find the equation of normal line to the curve $y=x^{3}+2 x+6$ which is parallel to the line $x+14 y+4=0$.

- Watch Video Solution

10. Find the slopes of the tangent and the normal to the following curves at the
indicated
$y=\sqrt{x^{3}} a t x=4$
$y=\sqrt{x^{3}} a t x=9 \quad y=x^{3}-x a t x=2$
$y=2 x^{2}+3 \sin x a t x=0$
$x=a(\theta-\sin \theta), y=a(1+\cos \theta) a \mathrm{~h} \eta=-\frac{\pi}{2}$
$x=a \cos ^{3} \theta, y=a \sin ^{3} \theta a \mathrm{~h} \eta=\frac{\pi}{4}$
$x=a\left(\theta-s \int h \eta\right), y=a(1-\cos \theta) a \mathrm{~h} \eta=\frac{\pi}{2}$
$y=(\sin 2 x+\cot x+2)^{2} a t x=\frac{\pi}{2}$
$x^{2}+3 y+y^{2}=5 a t(1,1) x y=6 a t(1,6)$

D Watch Video Solution

11. If the tangent to the curve $y=x^{3}+a x+b$ at $(1,-6)$ is parallel to the line $x-y+5=0$, find a and b

D Watch Video Solution

12. Find the equation of the tangent to the
curve $x=\sin 3 t, y=\cos 2 t$ at $t=\frac{\pi}{4}$.

D Watch Video Solution
13. Prove that $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2$ touches
the straight line $\frac{x}{a}+\frac{y}{b}=2$ for all $\in N$, at the point (a, b).

D Watch Video Solution

14. At what point on the circle
$x^{2}+y^{2}-2 x-4 y+1=0$, the tangent is parallel to x-axis.
15. Find the point on the curve $y=x^{2}$ where the slope of the tangent is equal to the $x-$ coordinate of the point.

- Watch Video Solution

16. At what point will be tangents to the curve
$y=2 x^{3}-15 x^{2}+36 x-21$ by parallel to
$\mathrm{x}=\mathrm{axis}$? Also, find the equations of the tangents to the curve at these points.
17. If the straight line $x \cos \alpha+y \sin \alpha=p$ touches the curve $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then prove that $a^{2} \cos ^{2} \alpha-b^{2} \sin ^{2} \alpha=p^{2}$.

- Watch Video Solution

18. Find the point on the curve $y=3 x^{2}+4$ at which the tangent is perpendicular to the line
whose slope is $-\frac{1}{6}$.

- Watch Video Solution

19. Find the equation of the normal to
$y=2 x^{3}-x^{2}+3$ at $(1,4)$.

- Watch Video Solution

20. Find the point on the curve
$y=3 x^{2}-9 x+8$ at which the tangents are
equally inclined with the axes.

- Watch Video Solution

21. Find the equation of the tangent to the
curve $x=\theta+\sin \theta, y=1+\cos \theta$, at $\theta=\frac{\pi}{4}$

D Watch Video Solution

22. Find the equation of the normal to the
curve $x^{2}+2 y^{2}-4 x-6 y+8=0$ at the point whose abscissa is 2 .

D Watch Video Solution

23. The equation of the tangent at $(2,3)$ on the curve $y^{2}=a x^{3}+b$ is $y=4 x-5$. Find the values of a and b

D Watch Video Solution

24. Find the equation of the tangent line to
the curve $y=x^{2}+4 x-16$ which is parallel to the line $3 x-y+1=0$.
25. If the straight line $x \cos \alpha+y \sin \alpha=p$ touches the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then prove that $a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha=p^{2}$.

D Watch Video Solution

26. Find the angle of intersection of the
following curves: $x y=6$ and $x^{2} y=12$
$y^{2}=4 x$ and $x^{2}=4 y$

- Watch Video Solution

27. Show that the curves $x=y^{2} a n d x y=k$ cut at right angles, if $8 k^{2}=1$

D Watch Video Solution

28. The curve $y=a x^{3}+b x^{2}+c x+5$ touches the x-axis at $P(-2,0)$ and cuts the y-axis at the point Q where its gradient is 3 .

Find the equation of the curve completely.

D Watch Video Solution

29. Determine the quadratic curve $y=f(x)$ if
it touches the line $y=x$ at the point $x=1$ and passes through the point $(-1,0)$.

D Watch Video Solution

30. Find all the tangents to the curve
$y=\cos (x+y),-2 \pi \leq x \leq 2 \pi$ that are parallel to the line $x+2 y=0$.
31. Find the equation of the normal to the
curve $\quad y=(1+x)^{y}+\sin ^{-1}\left(\sin ^{2} x\right) \quad$ at $x=0$.

- Watch Video Solution

32. Find the equation of the tangent to the
curve $y=\left(x^{3}-1\right)(x-2)$ at the points where the curve cuts the x-axis.

- Watch Video Solution

33. Show that the line $\frac{x}{a}+\frac{y}{b}=1$ touches the curve $y=b e^{-\frac{x}{a}}$ at the point where it crosses the y-axis.

- Watch Video Solution

34. Find the equations of tangent and normal
to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $\left(x_{1}, y_{1}\right)$

- Watch Video Solution

35. Find the equation of the normal to the curve $y=2 x^{2}+3 \sin x$ at $x=0$.

D Watch Video Solution

36. Find the coordinates of the points on the curve $y=x^{2}+3 x+4$, the tangents at which pass through the origin.

D Watch Video Solution

37. Find the equations of the tangents drawn to the curve $y^{2}-2 x^{2}-4 y+8=0$. from point (1, 2)

D Watch Video Solution

38. Find the equation(s) of normal(s) to the
curve $3 x^{2}-y^{2}=8$ which is (are) parallel to
the line $x+3 y=4$.

D Watch Video Solution
39. Find the equation of the tangent line to
the curve $y=\sqrt{5 x-3}-2$ which is parallel to the line $4 x-2 y+3=0$

D Watch Video Solution

40. Find the points on the curve
$4 x^{2}+9 y^{2}=1$, where the tangents are perpendicular to the line $2 y+x=0$.
41. Find the points on the curve $9 y^{2}=x^{3}$ where normal to the curve makes equal intercepts with the axes.

D Watch Video Solution

42. Prove that the curves $x y=4$ and
$x^{2}+y^{2}=8$ touch each other.

D Watch Video Solution

43. Prove that the curves $y^{2}=4 x$ and $x^{2}+y^{2}-6 x+1=0$ touch each other at the points $(1,2)$.

D Watch Video Solution

44. Show that the angle between the tangent at any point P and the line joining P to the origin O is same at all points on the curve $\log \left(x^{2}+y^{2}\right)=k \tan ^{-1}\left(\frac{y}{x}\right)$
45. Find the slopes of the tangent and the normal to the curve $x^{2}+3 y y 2=5$ at $(1,1)$

- Watch Video Solution

46. Show that the tangents to the curve
$y=x^{3}-3$ at the points where $x=2$ and $x=-2$ are parallel.
47. Prove that the tangents to the curve
$y=x^{2}-5+6$ at the points $(2,0) \operatorname{and}(3,0)$
are at right angles.

D Watch Video Solution
48. The slope of the curve
$2 y^{2}=a x^{2}+b a t(1,-1)$ is -1 Find a, b
(D) Watch Video Solution
49. Find the points on the curve $y=x^{3}-2 x^{2}-x$ at which the tangent lines
are parallel to the line $y=3 x-2$

D Watch Video Solution

50. At what points on the curve $x^{2}+y^{2}-2 x-4 y+1=0$, the tangents are parallel to the $y-a$ is?
51. Find the required point be $P\left(x_{1}, y_{1}\right)$. The tangent to the curve $\sqrt{x}+\sqrt{y}=4$ at which tangent is equally inclined to the axes.

- Watch Video Solution

52. Show that the curves $2 x=y^{2}$ and $2 x y=k$ cut at right angles, if $k^{2}=8$.

- Watch Video Solution

53.

$x y=a^{2} a n d x^{2}+y^{2}=2 a^{2}$ touch each other

D Watch Video Solution

54. Find the slopes of the tangent and the normal to the curve $x^{2}+3 y+y^{2}=5$ at $(1,1)$

D Watch Video Solution
55. Show that the tangents to the curve $y=2 x^{3}-3$ at the points where $x=2$ and $x=-2$ are parallel.

D Watch Video Solution

56. Prove that the tangents to the curve $y=x^{2}-5 x+6$ at the points $(2,0)$ and $(3,0)$ are at right angles.
57. The slope of the curve $2 y^{2}=a x^{2}+b$ at $(1,-1)$ is -1 . Find a, b.

- Watch Video Solution

58. Find the slope of the normal to the curve

$$
x=1-a \sin \theta, y=b \cos ^{2} \theta \text { at } \theta=\frac{\pi}{2}
$$

- Watch Video Solution

59. Find the slope of the normal to the curve $x=a \cos ^{3} \theta, y=a s \in^{3} \theta$ at $\theta=\frac{\pi}{4}$.

D Watch Video Solution

60. Find the points on the curve $y=x^{3}-2 x^{2}-x$ at which the tangent lines are parallel to the line $y=3 x-2$.

D Watch Video Solution

61. Find the point on the curve $y=2 x^{2}-6 x-4$ at which the tangent is parallel to the x-axis.

- Watch Video Solution

62. At what points on the curve
$x^{2}+y^{2}-2 x-4 y+1=0$, the tangents are
parallel to the $y-a$ is?

D Watch Video Solution

63. For which value of m is the line $y=m x+1 a$ tangent to the curve $y^{2}=4 x$
A. $1 / 2$
B. 1
C. 2
D. 3

Answer: Option 2
(Watch Video Solution
64. Find points on the curve $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ at which the tangents are parallel to the y-axis.
A. $(0,4) \&(0,-4)$
B. $(4,0) \&(-4,0)$
C. $(3,0) \&(-3,0)$
D. $(0,3) \&(0,-3)$

Answer: Option C Points are $(3,0)$ and $(-3,0)$.
65. Find a point on the curve $y=(x-3)^{2}$, where the tangent is parallel to the line joining $(4,1)$ and $(3,0)$.

- Watch Video Solution

66. Find the required point be $P\left(x_{1}, y_{1}\right)$. The tangent to the curve $\sqrt{x}+\sqrt{y}=4$ at which tangent is equally inclined to the axes.

- Watch Video Solution

67. Find the points on the curve
$4 x^{2}+9 y^{2}=1$, where the tangents are perpendicular to the line $2 y+x=0$

- Watch Video Solution

68. Find the point on the curve
$y=x^{3}-11 x+5$ at which the tangent has
the equation $y=x-11$

- Watch Video Solution

69. Find the points on the curve $9 y^{2}=x^{3}$ where normal to the curve makes equal intercepts with the axes.

D Watch Video Solution

70. Find the slopes of the tangent and the normal to the curve $y=\sqrt{x^{3}}$ at $x=4$
71. Find the slopes of the tangent and the normal to the curve $y=\sqrt{x}$ at $x=9$

- Watch Video Solution

72. Find the slopes of the tangent and the normal to the curve $y=x^{3}-x$ at $x=2$

- Watch Video Solution

73. Find the slopes of the tangent and the normal to the curve $y=2 x^{2}+3 \sin x$ at $x=0$

D Watch Video Solution

74. Find the slopes of the tangent and the normal to the curve $x=a(\theta-\sin \theta)$,

$$
y=a(1+\cos \theta) \text { at } \theta=-\pi / 2
$$

75. Find the slopes of the tangent and the normal to the curve $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ at $\theta=\pi / 4$

D Watch Video Solution

76. Find the slopes of the tangent and the

$$
\begin{aligned}
& \text { normal to curve } \\
& \begin{array}{l}
x=a(\theta-\sin \theta), y=a(1-\cos \theta)
\end{array} \\
& \theta=\pi / 2
\end{aligned}
$$

77. Find the slopes of the tangent and the normal to the curve $y=(\sin 2 x+\cot x+2)^{2}$ at $x=\pi / 2$

D Watch Video Solution

78. Find the slopes of the tangent and the normal to the curve $x^{2}+3 y+y^{2}=5$ at $(1,1)$

D Watch Video Solution

79. Find the slopes of the tangent and the normal to the curve $x y=6$ at $(1,6)$

D Watch Video Solution
80. Find the values of a and b if the slope of
the tangent to the curve $x y+a x+b y=2$ at
$(1,1)$ is 2.

D Watch Video Solution
81. If the tangent to the curve $y=x^{3}+a x+b$ at $(1,-6)$ is parallel to the line $x-y+5=0$, find a and b.

D Watch Video Solution

82. Find a point on the curve $y=x^{3}-3 x$
where the tangent is parallel to the chord
joining $(1,-2)$ and (2, 2).

D Watch Video Solution

83. Find the points on the curve $x^{3}-2 x^{2}-2 x$ at which the tangent lines are parallel to the line $y=2 x-3$.
(Watch Video Solution
84. Find the points on the curve $y^{2}=2 x^{3}$ at which the slope of the tangent is 3 .

- Watch Video Solution

85 . Find the points on the curve $x y+4=0$ at which the tangents are inclined at an angle of $45 o$ with the x-axis.

D Watch Video Solution

86. Find the point on the curve $y=x^{2}$ where
the slope of the tangent is equal to the x coordinate of the point.
87. At what points on the circle $x^{2}+y^{2}-2 x-4 y+1=0$, the tangent is parallel to the x-axis.

- Watch Video Solution

88. At what point of the curve $y=x^{2}$ does the tangent make an angle of $45 o$ with the x-axis?

D Watch Video Solution

89. Find the points on the curve $y=3 x^{2}-9 x+8$ at which the tangents are equally inclined with the axes.

- Watch Video Solution

90. At what points on the curve
$y=2 x^{2}-x+1$ is the tangent parallel to the
line $y=3 x+4$?

- Watch Video Solution

91. Find the point on the curve $y=3 x^{2}+4$ at which the tangent is perpendicular to the line whose slope is $-\frac{1}{6}$.

D Watch Video Solution

92. Find the points on the curve $x^{2}+y^{2}=13$,
the tangent at each one of which is parallel to
the line $2 x+3 y=7$.

- Watch Video Solution

93. Find the points on the curve
$2 a^{2} y=x^{3}-3 a x^{2}$ where the tangent is parallel to x-axis.

D Watch Video Solution

94. At what points on the curve
$y=x^{2}-4 x+5$ is the tangent perpendicular to the line $2 y+x=7$?

D Watch Video Solution
95. Find the points on the curve $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ at which the tangents are parallel to the x-axis and y-axis.

- Watch Video Solution

96. Find the points on the curve $x^{2}+y^{2}-2 x-3=0$ at which the tangents are parallel to the x-axis and y-axis.
97. Find the points on the curve $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ at which the tangents are parallel to the x-axis and y-axis.

D Watch Video Solution

98. Show that the tangents to the curve $y=7 x^{3}+11$ at the points $x=2$ and $x=-2$ are parallel.
99. Find the points on the curve $y=x^{3}$ where
the slope of the tangent is equal to x coordinate of the point.

D Watch Video Solution

100. Find the equation of the tangent to the
curve $y=-5 x^{2}+6 x+7$ at the point
$(1 / 2,35 / 4)$.
101. Find the equation of the tangent and normal to the parabola $y^{2}=4 a x$ at the point $\left(a t^{2}, 2 a t\right)$.

D Watch Video Solution

102. Find the equation of the normal to the
curve $y=2 x^{2}+3 \sin x a t x=0$.

D Watch Video Solution
103. Find the equations of the tangent and the normal to $16 x^{2}+9 y^{2}=144$ at $\left(x_{1}, y_{1}\right)$
where $x_{1}=2$ and $y_{1}>0$.

- Watch Video Solution

104. Find the equations of tangent and normal
to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $\left(x_{1}, y_{1}\right)$

- Watch Video Solution

105. Find the equation of the tangent line to
the curve $x=1-\cos \theta, y=\theta-\sin \theta$ at
$\theta=\pi / 4$.

D Watch Video Solution

106. Find the equations of the tangent and the normal at the point ' t ' on the curve $x=a s \in^{3} t, y=b \cos ^{3} t$.
107. Show that the line $\frac{x}{a}+\frac{y}{b}=1$ touches the curve $y=b e^{-\frac{x}{a}}$ at the point where it crosses the y-axis.

D Watch Video Solution

108. Find the equation of the tangent to the
curve $y=\frac{x-7}{(x-2(x-3)}$ at the point where it cuts the x-axis.
109. Find the equation of the tangent to the curve $y=\left(x^{3}-1\right)(x-2)$ at the points where the curve cuts the x-axis.

D Watch Video Solution

110. Find the equation of the tangent line to
the curve $y=\sqrt{5 x-3}-2$ which is parallel to the line $4 x-2 y+3=0$.
111. Find the equation of tangent line to $y=2 x^{2}+7$ which is parallel to the line $4 x-y+3=0$.

D Watch Video Solution

112. Find the equation(s) of normal(s) to the
curve $3 x^{2}-y^{2}=8$ which is (are) parallel to
the line $x+3 y=4$.

D Watch Video Solution
113. Find the equation of normal line to the curve $y=x^{3}+2 x+6$ which is parallel to the
line $x+14 y+4=0$.

- Watch Video Solution

114. Find the equations of the tangents drawn to the curve $y^{2}-2 x^{3}-4 y+8=0$.

- Watch Video Solution

115. Find the equation of the normal to the curve $x^{2}=4 y$ which passes through the point (1, 2).

D Watch Video Solution

116. Find the coordinates of the points on the curve $y=x^{2}+3 x+4$, the tangents at which pass through the origin.
117. For the curve $y=4 x^{3}-2 x^{5}$ find all points at which the tangent passes through the origin.
(Watch Video Solution
118. Find the equation of all lines having slope

1that are tangents to the curve
$y=\frac{1}{x-1}, x \neq 1$.
119. Prove that all normals to the curve $x=a \cos t+a t \sin t, \quad y=a \sin t-a t \cos t$ are at a distance a from the origin.

D Watch Video Solution

120. Find the equation of the normal to the curve $y=(1+x)^{y}+\sin ^{-1}\left(\sin ^{2} x\right)$ at $x=0$.
121. Find all the tangents to the curve $y=\cos (x+y),-2 \pi \leq x \leq 2 \pi$ that are parallel to the line $x+2 y=0$. xyz

D Watch Video Solution

122. The curve $y=a x^{3}+b x^{2}+c x+5$ touches the x-axis at $P(-2,0)$ and cuts the y-axis at the point Q where its gradient is 3 .

Find the equation of the curve completely.
123. Determine the quadratic curve $y=f(x)$ if
it touches the line $y=x$ at the point $x=1$ and passes through the point $(-1,0)$.

- Watch Video Solution

124. Find the equation of the tangent to the
curve $\sqrt{x}+\sqrt{y}=a$, at the point $\left(a^{2} / 4, a^{2} / 4\right)$.
125. Find the equation of the normal to $y=2 x^{3}-x^{2}+3$ at $(1,4)$.

D Watch Video Solution

126. Find the equations of the tangent and the normal to the curve
$y=x^{4}-b x^{3}+13 x^{2}-10 x+5$ at $(0,5)$ at the indicated points
127. Find the equations of the tangent and the

$$
\begin{aligned}
& \text { normal to } \quad \text { the } \\
& y=x^{4}-6 x^{3}+13 x^{2}-10 x+5 \text { at } x=1 \text { at }
\end{aligned}
$$

the indicated points

- Watch Video Solution

128. Find the equations of the tangent and the normal to the curve $y=x^{2}$ at $(0,0)$ at the indicated points
129. Find the equations of the tangent and the normal to the curve $y=2 x^{2}-3 x-1$ at
$(1,-2)$ at the indicated points

D Watch Video Solution

130. Find the equations of the tangent and the
normal to the curve $y^{2}=\frac{x^{3}}{4-x}$ at $(2,-2)$ at the indicated points

D Watch Video Solution

131. Find the equations of the tangent and the normal to the curve $y=x^{2}+4 x+1$ at $x=3$ at the indicated points

D Watch Video Solution

132. Find the equations of the tangent and the
normal to the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $(a \cos \theta, b \sin \theta)$ at the indicated points
133. Find the equations of the tangent and the normal to the curve $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $(a \sec \theta, b \tan \theta)$ at the indicated points.

- Watch Video Solution

134. Find the equations of the tangent and the normal to the curve $y^{2}=4 a x$ at $\left(a / m^{2}, 2 a / m\right)$ at the indicated points

D Watch Video Solution

135. Find the equations of the tangent and the normal to the curve $c^{2}\left(x^{2}+y^{2}\right)=x^{2} y^{2}$ at $\left(\frac{c}{\cos \theta}, \frac{c}{\sin \theta}\right)$ at the indicated points

- Watch Video Solution

136. Find the equations of the tangent and the normal to the curve $x y=c^{2}$ at $(c t, c / t)$ at the indicated points.
137. Find the equations of the tangent and the normal to the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $\left(x_{1}, y_{1}\right)$ at the indicated points.

- Watch Video Solution

138. Find the equation of the normal to the
curve $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at (x_{0}, y_{0})
139. Find the equations of the tangent and the normal to the curve $x^{2 / 3}+y^{2 / 3}=2$ at $(1,1)$ at indicated points.

D Watch Video Solution

140. Find the equations of the tangent and the normal to the curve $x^{2}=4 y$ at $(2,1)$ at indicated points.
141. Find the equations of the tangent and the normal to the curve $y^{2}=4 x$ at $(1,2)$ at indicated points.

D Watch Video Solution

142. Find the equations of the tangent and the normal to the curve $4 x^{2}+9 y^{2}=36$ at $(3 \cos \theta, 2 \sin \theta)$ at indicated points.
143. Find the equations of the tangent and the normal to the curve $y^{2}=4 a x$ at $\left(x_{1}, y_{1}\right)$ at indicated points.

D Watch Video Solution

144. Find the equations of the tangent and the normal to the curve $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $(\sqrt{2} a, b)$ at indicated points.
145. Find the equation of the tangent to the curve $x=\theta+\sin \theta \quad, \quad y=1+\cos \theta \quad$ at $\theta=\pi / 4$.

- Watch Video Solution

146. Find the equations of the tangent and the normal to the curve $x=\theta+\sin \theta$, $y=1+\cos \theta$ at $\theta=\pi / 2$ at indicated points.
147. Find the equation of tangent and normal
to the curve $x=\frac{2 a t^{2}}{\left(1+t^{2}\right)}, y=\frac{2 a t^{3}}{\left(1+t^{2}\right)}$ at
the point for which $t=\frac{1}{2}$.

D Watch Video Solution

148. Find the equations of the tangent and the normal to the curve $x=a t^{2}, y=2 a t$ at $t=1$.

D Watch Video Solution
149. Find the equations of the tangent and the normal to the curve $x=a \sec t, \quad y=b \tan t$ at t at indicated points.

D Watch Video Solution

150. Find the equations of the tangent and the
$x=a(\theta+\sin \theta), \quad y=a(1-\cos \theta)$ at θ at indicated points.
151. Find the equations of the tangent and the normal to the curve
$x=3 \cos \theta-\cos ^{3} \theta, \quad y=3 \sin \theta-s \in^{3} \theta$

D Watch Video Solution

152. Find the equation of the normal to the
curve $x^{2}+2 y^{2}-4 x-6 y+8=0$ at the point whose abscissa is 2 .

D Watch Video Solution
153. Find the equation of the normal to the curve $a y^{2}=x^{3}$ at the point $\left(a m^{2}, a m^{3}\right)$.

D Watch Video Solution

154. The equation of the tangent at $(2,3)$ on
the curve $y^{2}=a x^{3}+b$ is $y=4 x-5$. Find the values of a and b.

D Watch Video Solution

155. Find the equation of the tangent line to
the curve $y=x^{2}+4 x-16$ which is parallel to the line $3 x-y+1=0$.

D Watch Video Solution

156. Find the equation of normal line to the
curve $y=x^{3}+2 x+6$ which is parallel to the
line $x+14 y+4=0$.

D Watch Video Solution
157. Determine the equation(s) of tangent(s)
line to the curve $y=4 x^{3}-3 x+5$ which are perpendicular to the line $9 y+x+3=0$

D Watch Video Solution

158. Find the equation of a normal to the curve
$y=x(\log)_{e} x$ which is parallel to the line
$2 x-2 y+3=0$.

- Watch Video Solution

159. Find the equation of the tangent line to
the curve $y=x^{2}-2 x+7$ which is parallel to
the line $2 x-y+9=0$

D Watch Video Solution

160. Find the equation of the tangent line to
the curve $y=x^{2}-2 x+7$ which is perpendicular to the line $5 y-15 x=13$.

D Watch Video Solution
161. Find the equations of all lines having slope

2 and that are tangent to the curve
$y=\frac{1}{x-3}, \quad x \neq 3$.

D Watch Video Solution

162. Find the equations of all lines of slope zero and that are tangent to the curve
$y=\frac{1}{x^{2}-2 x+3}$.
163. Find the equation of the tangent to the curve $y=\sqrt{3 x-2}$ which is parallel to the line $4 x-2 y+5=0$

- Watch Video Solution

164. Find the equation of the tangent to the
curve $x^{2}+3 y-3=0$, which is parallel to
the line $y=4 x-5$.

- Watch Video Solution

165. Find the value of $n \in N$ such that the curve $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2$ touches the straight line $\frac{x}{a}+\frac{y}{b}=2$ at the point (a, b).

D Watch Video Solution

166. Find the equation of the tangent to the
curve $x=\sin 3 t, y=\cos 2 t$ at $t=\frac{\pi}{4}$.

D Watch Video Solution
167. At what points will be tangents to the
curve $y=2 x^{3}-15 x^{2}+36 x-21$ be parallel
to x-axis? Also, find the equations of the tangents to the curve at these points.

- Watch Video Solution

168. Find the equation of the tangents to the
curve $3 x^{2}-y^{2}=8$, which passes through the point $\left(\frac{4}{3}, 0\right)$.
169. Find the angle of intersection of $x y=6$ and $x^{2} y=12$

D Watch Video Solution

170. Find the angle of intersection of $y^{2}=4 x$ and $x^{2}=4 y$

D Watch Video Solution
171. Find the angle between the parabolas
$y^{2}=4 a x$ and $x^{2}=4 b y$ at their point of intersection other than the origin.

- Watch Video Solution

172. Show that the curves $x=y^{2}$ and $x y=k$ cut at right angles, if $8 k^{2}=1$.

- Watch Video Solution

173. Find the value of p for which curves
$x^{2}=9 p(9-y)$ and $x^{2}=p(y+1)$ cut each
other at right angles.

D Watch Video Solution

174. Show that the curves $x y=a^{2}$ and $x^{2}+y^{2}=2 a^{2}$ touch each other.

D Watch Video Solution

175. Show the condition that the curves $a x^{2}+b y^{2}=1$ and $a^{\prime} x^{2}+b^{\prime} y^{2}=1$ Should intersect orthogonally

D Watch Video Solution

176. If the straight line $x \cos \alpha+y \sin \alpha=p$ touches the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then prove that $a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha=p^{2}$.
177. Show that the angle between the tangent
at any point P and the line joining P to the origin O is the same at all points on the curve $\log \left(x^{2}+y^{2}\right)=k \tan ^{-1}\left(\frac{y}{x}\right)$.

- Watch Video Solution

178. Find the angle of intersection of the curves $y^{2}=x$ and $x^{2}=y$

- Watch Video Solution

179. Find the angle of intersection of curve $y=x^{2}$ and $x^{2}+y^{2}=20$

D Watch Video Solution

180. Find the angle of intersection of curve

$$
2 y^{2}=x^{3} \text { and } y^{2}=32 x
$$

D Watch Video Solution

181. Find the angle of intersection of curve

$$
x^{2}+y^{2}-4 x-1=0
$$

$x^{2}+y^{2}-2 y-9=0$

- Watch Video Solution

182. Find the angle of intersection of curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $x^{2}+y^{2}=a b$

- Watch Video Solution

183. Find the angle of intersection of curve $x^{2}+4 y^{2}=8$ and $x^{2}-2 y^{2}=2$
184. Find the angle of intersection of curve $x^{2}=27 y$ and $y^{2}=8 x$

D Watch Video Solution

185. Find the angle of intersection of curve
$x^{2}+y^{2}=2 x$ and $y^{2}=x$

D Watch Video Solution

186. Find the angle of intersection of curve
$y=4-x^{2}$ and $y=x^{2}$

D Watch Video Solution
187. Show that $y=x^{3}$ and $6 y=7-x^{2}$ intersect orthogonally:

- Watch Video Solution

188. Show that $x^{3}-3 x y^{2}=-2$ and $3 x^{2} y-y^{3}=2$ intersect orthogonally:

D Watch Video Solution

189. Show that $x^{2}+4 y^{2}=8$ and
$x^{2}-2 y^{2}=4$ intersect orthogonally

D Watch Video Solution
190. Show that $x^{2}=4 y$ and $4 y+x^{2}=8$ intersect orthogonally at $(2,1)$

D Watch Video Solution

191. Show that $x^{2}=y$ and $x^{3}+6 y=7$ intersect orthogonally at $(1,1)$

- Watch Video Solution

192. Show that $y^{2}=8 x$ and $2 x^{2}+y^{2}=10$ at
$(1,2 \sqrt{2})$

D Watch Video Solution

193. Show that the curves $4 x=y^{2}$ and $4 x y=k$ cut at right angles, if $k^{2}=512$.

D Watch Video Solution

194. Show that the curves $2 x=y^{2}$ and $2 x y=k$ cut at right angles, if $k^{2}=8$.

D Watch Video Solution

195. Prove that the curves $x y=4$ and $x^{2}+y^{2}=8$ touch each other.

- Watch Video Solution

196. Prove that the curves $y^{2}=4 x$ and $x^{2}+y^{2}-6 x+1=0$ touch each other at the points $(1,2)$.

D Watch Video Solution

197. Find the condition for the following set of

$$
\begin{aligned}
& \text { curves to intersect } \quad \text { orthogonally: } \\
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad \text { and } x y=c^{2} \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \text { and } \frac{x^{2}}{A^{2}}-\frac{y^{2}}{B^{2}}=1
\end{aligned}
$$

198. Find the condition for the two concentric ellipses
$a_{1} x^{2}+b_{1} y^{2}=1$ and $a_{2} x^{2}+b_{2} y^{2}=1 \quad$ to
intersect orthogonally.

D Watch Video Solution

199. If the straight line $x \cos \alpha+y \sin \alpha=p$ touches the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then prove that $a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha=p^{2}$.
200. Find the point on the curve $y=x^{2}-2 x+3$, where the tangent is parallel to x-axis.

D Watch Video Solution

201. Find the slope of the tangent to the curve $x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$ at $t=2$.

D Watch Video Solution

202. If the tangent line at a point (x, y) on
the curve $y=f(x)$ is parallel to x-axis, then write the value of $\frac{d y}{d x}$.

D Watch Video Solution

203. Write the value of $\frac{d y}{d x}$, if the normal to the curve $y=f(x)$ at (x, y) is parallel to y axis.

D Watch Video Solution

204. If the tangent to a curve at a point (x, y)
is equally inclined to the coordinate axes, then
write the value of $\frac{d y}{d x}$.

- Watch Video Solution

205. If the tangent line at a point (x, y) on
the curve $y=f(x)$ is parallel to y -axis, find
the value of $\frac{d x}{d y}$.

- Watch Video Solution

206. Find the slope of the normal at the point
' t ' on the curve $x=\frac{1}{t}, y=t$.

- Watch Video Solution

207. Write the coordinates of the point on the
curve $y^{2}=x$ where the tangent line makes an
angle $\frac{\pi}{4}$ with x-axis.

- Watch Video Solution

208. Write the angle made by the tangent to
the curve $x=e^{t} \cot t, y=e^{t} \sin t$ at $t=\frac{\pi}{4}$ with the x-axis.

- Watch Video Solution

209. Write the equation of the normal to the
curve $y=x+\sin x \cos x$ at $x=\frac{\pi}{2}$.

- Watch Video Solution

210. Find the coordinates of the point on the
curve $y^{2}=3-4 x$ where tangent is parallel to the line $2 x+y-2=0$.

D Watch Video Solution

211. Write the equation of the tangent to the
curve $y=x^{2}-x+2$ at the point where it crosses the y-axis.
212. Write the angle between the curves $y^{2}=4 x$ and $x^{2}=2 y-3$ at the point $(1,2)$.

- Watch Video Solution

213. Write the angle between the curves
$y=e^{-x}$ and $y=e^{x}$ at their point of
intersection.

- Watch Video Solution

214. Write the slope of the normal to the curve
$y=\frac{1}{x}$ at the point $\left(3, \frac{1}{3}\right)$

D Watch Video Solution
215. Write the coordinates of the point at which the tangent to the curve
$y=2 x^{2}-x+1$ is parallel to the line $y=3 x+9$.
216. Write the equation of the normal to the curve $y=\cos x$ at $(0,1)$.

- Watch Video Solution

217. The equation to the normal to the curve

$$
\begin{aligned}
& y=\sin x \text { at }(0,0) \text { is } x=0 \text { (b) } y=0 \text { (c) } \\
& x+y=0 \text { (d) } x-y=0
\end{aligned}
$$

- Watch Video Solution

218. Find the equation of the tangent to the
curve $y=x-\sin x \cos x$ at $x=\frac{\pi}{2}$

- Watch Video Solution

219. The equation of the normal to the curve
$y=x(2-x) \quad$ at the point $(2,0)$ is
$x-2 y=2 \quad$ (b) $\quad x-2 y+2=0$
$2 x+y=4$ (d) $2 x+y-4=0$

- Watch Video Solution

220. The point on the curve $y^{2}=x$ where tangent makes 450 angle with x-axis is
(1/2, 1/4)
(b) $(1 / 4,1 / 2)$
(c) $(4,2)$
(d)
$(1,1)$

- Watch Video Solution

221. If the tangent to the curve
$x=a t^{2}, y=2 a t$ is perpendicular to x-axis,
then its point of contact is (a, a) (b) $(0, a)$
(c) $(0,0)(\mathrm{d})(a, 0)$
222. The point on the curve $y=x^{2}-3 x+2$ where tangent is perpendicular to $y=x$ is
$(0,2)$
(b) $(1,0)$
(c) $(-1$,
6) (d) $(2,-2)$

D Watch Video Solution

223. The point on the curve $y=12 x-x^{2}$ where the slope of the tangent is zero will be

$$
(0,0)(b)(2,16)(c)(3,9)(d)(6,36)
$$

224. The angle between the curves $y^{2}=x$ and $x^{2}=y$ at $(1,1)$ is $\frac{\tan ^{-1} 4}{3}$ (b) $\frac{\tan ^{-1} 3}{4}$

900 (d) 450

D Watch Video Solution

225. The equation of the normal to the curve
$3 x^{2}-y^{2}=8$ which is parallel to $x+3 y=8$
is $\quad x-3 y=8 \quad$ (b) $\quad x-3 y+8=0$
$x+3 y \pm 8=0$ (d) $x+3 y=0$
226. The equation of tangent at those points
where the curve $y=x^{2}-3 x+2$ meets x-axis
are

$$
\begin{equation*}
x-y+2=0=x-y-1 \tag{b}
\end{equation*}
$$

$x+y-1=0=x-y-2$
$x-y-1=0=x-y$
$x-y=0=x+y$

- Watch Video Solution

227. The slope of the tangent to the curve $x=t^{2}+3 t-8, \quad y=2 t^{2}-2 t-5$ at point $(2,-1)$ is $22 / 7$ (b) $6 / 7$ (c) -6 (d) $7 / 6$

D Watch Video Solution

228. At what points the slope of the tangent to the curve $x^{2}+y^{2}-2 x-3=0$ is zero
$(3,0),(-1,0)$
(b) $(3,0),(1,2)$
$(-1,0),(1,2)(\mathrm{d})(1,2),(1,-2)$
229. The angle of intersection of the curves
$x y=a^{2}$ and $x^{2}-y^{2}=2 a^{2}$ is zero $0 o$ (b) $45 o$
(c) $90 o$ (d) $30 o$

- Watch Video Solution

230. If the curve $a y+x^{2}=7$ and $x^{3}=y$ cut orthogonally at (1,1), then a is equal to (a) 1
(b) -6 (c) 6 (d) 0
231. If the line $y=x$ touches the curve $y=x^{2}+b x+c$ at a point $(1,1)$ then
$b=1, c=2 \quad$ (b) $\quad b=-1, c=1$
$b=2, c=1(\mathrm{~d}) b=-2, c=1$

D Watch Video Solution

232. The slope of the tangent to the curve
$x=3 t^{2}+1, y=t^{3}-1$ at $x=1$ is $1 / 2$ (b) 0
(c) $-2(\mathrm{~d}) \infty$
233. The curves $y=a e^{x}$ and $y=b e^{-x}$ cut orthogonally, if $a=b$ (b) $a=-b$ (c) $a b=1$
(d) $a b=2$

D Watch Video Solution

234. The equation of the normal to the curve
$x=a \cos ^{3} \theta, \quad y=a s \in^{3} \theta \quad$ at the point
$\theta=\pi / 4$ is $x=0$ (b) $y=0$ (c) $x=y$ (d)
$x+y=a$
235. If the curves $y=2 e^{x}$ and $y=a e^{-x}$ intersect orthogonally, then $a=1 / 2$ (b)
$-1 / 2$ (c) 2 (d) $2 e^{2}$

- Watch Video Solution

236. The point on the curve $y=6 x-x^{2}$ at which the tangent to the curve is inclined at
$\pi / 4$ to the line $x+y=0$ is $(-3,-27)$ (b)
$(3,9)(\mathrm{c}) 7 / 2,35 / 4)(\mathrm{d})(0,0)$
237. The angle of intersection of the parabola $y^{2}=4 a x$ and $x^{2}=4 a y$ at the origin is $\pi / 6$ (b) $\pi / 3$ (c) $\pi / 2$ (d) $\pi / 4$

- Watch Video Solution

238. The angle of intersection of the curves
$y=2 s \in^{2} x$ and $y=\cos 2 x$ at $x=\frac{\pi}{6}$ is
$\pi / 4$ (b) $\pi / 2$ (c) $\pi / 3$ (d) $\pi / 6$
239. Any tangent to the curve
$y=2 x^{7}+3 x+5(\mathrm{a})$ is parallel to x -axis (b) is
parallel to y-axis (c) makes an acute angle with
x-axis (d) makes an obtuse angle with x-axis.

D Watch Video Solution

240. The point on the curve $9 y^{2}=x^{3}$, where
the normal to the curve makes equal
intercepts with the axes is $(4, \pm 8 / 3)$ (b)
$(-4,8 / 3)(\mathrm{c})(-4,-8 / 3)(\mathrm{d})(8 / 3,4)$

D Watch Video Solution

241. The slope of the tangent to the curve $x=t^{2}+3 t-8, \quad y=2 t^{2}-2 t-5 \quad$ at the point $(2,-1)$ is $22 / 7$ (b) $6 / 7$ (c) $7 / 6$ (d) $-6 / 7$
242. The line $y=m x+1$ is a tangent to the
curve $y^{2}=4 x$, if the value of m is (a) 1 (b) 2
(c) 3 (d) $1 / 2$

- Watch Video Solution

243. The normal at the point $(1,1)$ on the curve
$2 y+x^{2}=3$ is(A) $x+y=0$ (B) $x y=0$ (C)
$x+y+1=0$ (D) $x y=0$
244. The normal to the curve $x^{2}=4 y$ passing
(1,2) is(A) $x+y=3$ (B) $x y=3$ (C) $x+y=1$
(D) $x y=1$

- Watch Video Solution

Others

$\begin{array}{lr}\text { 1. Show that the curves } \\ \frac{x^{2}}{a^{2}+\lambda_{1}}+\frac{y^{2}}{b^{2}+\lambda_{1}}=1 & \text { and }\end{array}$
$\frac{x^{2}}{a^{2}+\lambda_{2}}+\frac{y^{2}}{b^{2}+\lambda_{2}}=1$ intersect at right angles.

D View Text Solution

