©゙doubtnut

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

THE PLANE

Solved Examples And Exercises

1. Find the distance of the point $2 \hat{i}+\hat{j}-\hat{k}$ from the plane $\vec{r} \hat{i}-2 \dot{\hat{j}}+4 \hat{k}=9$.

- Watch Video Solution

2. Find the distance of the point $(21,0)$ from the plane $2 x+y+2 z+5=0$.
3. Show that the points $\hat{i}-\hat{j}+3 \hat{k} \operatorname{and} 3(\hat{i}+\hat{j}+\hat{k})$ are equidistant from the plane $\vec{r} 5 \hat{i}+2 \hat{j}+\hat{k}+9=0$

- Watch Video Solution

4. Find the equations of the planes parallel to the plane $x-2 y+2 z-3=0$ which is at a unit distance from the point $(1,2,3)$.

- Watch Video Solution

5. Find the equation of the plane which contains the line of intersection of the planes $x+2 y+3 z-4=0 a n d 2 x+y-z+5=0$ and which is perpendicular to the plane $5 x+3 y-6 z+8=0$.

- Watch Video Solution

6. Find the equation of the plane passing through the intersection of the planes $2 x+3 y-z+1=0$ and $x+y-2 z+3=0$ and perpendicular to the plane $3 x-y-2 z-4=0$.

- Watch Video Solution

7. Find the equation of the plane passing through the intersection of the planes $\vec{r} \cdot(2 \hat{i}+\hat{j}-3 \hat{k})=7, \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9$ the point $(2,1,3)$.

- Watch Video Solution

8. Find the equation of the plane passing through (a, b, c) and parallel to the plane $\vec{r}(\hat{i}+\hat{j}+\hat{k})=2$.

- Watch Video Solution

9. Two systems of rectangular axes have the same origin. If a plane cuts them at distances a, b, canda $a^{\prime}, b^{\prime}, c^{\prime}$ respectively, prove that $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}$

- Watch Video Solution

10. A variable plane is at a constant distance p from the origin and meets the coordinate axes in A, B, C. Show that the locus of the centroid of the tehrahedron $O A B C i s x^{-2}+y^{-2}+z^{-2}=16 p^{-2}$.

- Watch Video Solution

11. Find the equation of the plane passing through the intersection of the planes $2 x-3 y+z-4=0 a n d x-y+z+1=0$ and perpendicular to the plane $x+2 y-3 z+6=0$.

- Watch Video Solution

12. Find the equation of the plane through the line of intersection of $\vec{r} 2 \hat{i}-3 \hat{j}+4 \hat{k}=1$ and $\vec{r} \hat{i}-\hat{j}+4=0 \quad$ and passing through $(2,-1,1)$

- Watch Video Solution

13. Find the equation of the plane which is perpendicular to the plane $5 x+3 y+6 z+8=0$ adn which contains the line of intersection of the planes $x+2 y+3 z-4=0$ and $2 x+y-z+5=0$.

- Watch Video Solution

14. Find the equation of a plane through the intersection of the planes $\vec{r} \hat{i}+3 \hat{j}-\hat{k}=5 \operatorname{and} \vec{r} 2 \hat{i}-\hat{j}+\hat{k}=3$ and passing through the point $(1,1,1)$.
15. Find the vector equation of the following planes in non-parametric form: (i) $\vec{r}=(2 \hat{i}+2 \hat{j}-\hat{k})+\lambda(\hat{i}+2 \hat{j}+3 \hat{k})+\mu(5 \hat{i}-2 \hat{j}+7 \hat{k})$.

- Watch Video Solution

16. Find the vector equation of the plane $\vec{r}=(1+s-t) \hat{i}+(2-s) \hat{j}+(3-2 s+2 t) \hat{k}$ in non-parametric form.

- Watch Video Solution

17. Find the Cartesian form the equation of the plane $\vec{r}=(s+t) \hat{i}+(2+t) \hat{j}+(3 s+2 t) \hat{k}=15$

- Watch Video Solution

18. Find the vector equation of the following plane in scalar product form:

$$
\vec{r}=(\hat{i}-\hat{j})+\lambda(\hat{i}+\hat{j}+\hat{k})+\mu(-4 \hat{i}-2 \hat{j}+3 \hat{k}) .
$$

19. The plane $x-2 y+3 z=0$ is rotated through a right angle about the line of intersection with the plane $2 x+3 y-4 z=0$, find the equation of the plane in its new position.

- Watch Video Solution

20. The plane $l x+m y=0$ is rotated through an angle α about its line of intersection with the planez $=0$. Prove that the equation of the in its new position if $l x+m y \pm\left(\sqrt{l^{2}+m^{2}} \tan \alpha\right) z=0$.

- Watch Video Solution

21. Find the vector equation of the line passing through the point
$(1,-1,2)$ and perpendicular to the plane $2 x-y+3 z-5=0$.

- Watch Video Solution

22. Find the vector equation of the plane passing through the intersection of the planes $x-2 y+z=1 a n d 2 x+y+z=8$ and parallel to the line with direction ratios proportional to $1,2,1$. Find also the perpendicular distance of $(1,1,1)$ from this plane.

- Watch Video Solution

23. If 30 oxen can plough $\frac{1}{7}$ th of the field in 4 hrs, in how many hour will 18 oxen take to do the remaining work?

- Watch Video Solution

24. Find the equation of the plane through the points $(1,0,-1),(3,2,2)$ and parallel to the line $\frac{x-1}{1}=\frac{y-1}{-2}=\frac{z-2}{3}$.

- Watch Video Solution

25. Find the angle between line $\frac{x+1}{3}=\frac{y-1}{2}=\frac{z-2}{4}$ and the plane $2 x+y-3 z+4=0$.

- Watch Video Solution

26. Show that the line whose vector equation is $\vec{r}=(2 \hat{i}-2 \hat{j}+3)+\lambda(\hat{i}-\hat{j}+4 \hat{k})$ is parallel to the plane whose vector equation $\vec{r} \hat{i}+5 \hat{j}+\hat{k}=5$. Also, find the distance between them.

- Watch Video Solution

27. Show that the line whose vector equation is $\vec{r}=2 \hat{i}+5 \hat{j}-7 \hat{k}+\lambda(\hat{i}+3 \hat{j}+4 \hat{k})$ is parallel to the plane whose vector equation is $\vec{r} \hat{i}+\hat{j}-\hat{k}=7$. Also find the distance between them.

- Watch Video Solution

28. Find the vector equation of the line passing through the point $(1,-1,2)$ and perpendicular to the plane $2 x-y-3 z-5=0$.

- Watch Video Solution

29. State when the line $\vec{r} \vec{a}+\lambda \vec{b}$ is parallel to the plane $\vec{r} \vec{n}=\cdots$ Show that the line $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$ is parallel to the plane $\vec{r}-2 \hat{i}+\hat{k}=5$. Also, find the distance between the line and the plane.

- Watch Video Solution

30. Find the plane passing through $(4,-1,2)$ and parallel to the lines $\frac{x+2}{3}=\frac{y-2}{-1}=\frac{z+1}{2}$ and $\frac{x-2}{1}=\frac{y-3}{2}=\frac{z-4}{3}$

- Watch Video Solution

| 31. Find the angle between the lines | | |
| :--- | :---: | :---: | :---: | :---: |
| $\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}+\hat{j}+\hat{k})$ | and | the plane |

$\vec{r}(2 \hat{i}-\hat{j}+\hat{k})=5$.

Watch Video Solution

32. Find the angle between the lines $x-2 y+z=0=x+2 y-2 z a n d x+2 y+z=0=3 x+9 y+5 z$.

- Watch Video Solution

33. Find the distance between the parallel planes, $\vec{r}(2 \hat{i}-3 \hat{j}+6 \hat{k})=5$ and $\vec{r}(6 \hat{i}-9 \hat{j}+18 \hat{k})+20=0$.

- Watch Video Solution

34. Find the distance between the parallel planes
$2 x-y+2 z+3=0 a n d 4 x-2 y+4 z+5=0$.
35. Find the distance between the parallel planes $\vec{r} \hat{i}+2 \hat{j}+3 \hat{k}+7=0$ and $\vec{r} 2 \hat{i}+4 \hat{j}+6 \hat{k}+7=0$.

- Watch Video Solution

36. Find the equation of the plane which passes through the point ($3,4,-1$) and is parallel to the plane $2 x-3 y+5 z+7=0$. Also, find the distance between the two planes.

- Watch Video Solution

37. Find the distance of the point $(33,3)$ from the plane $\vec{r} 5 \hat{i}+2 \dot{\hat{j}}-7 \hat{k}+9=0$

- Watch Video Solution

38. Find the equations of the planes parallel to the plane $x+2 y-2 z+8=0$ which are at distance of 2 units from the point $(2,1,1)$.

- Watch Video Solution

39. Find the distance between the parallel planes $x+y-z+4=0 a n d x+y-z+5=0$.

- Watch Video Solution

40. Find the equation of the plane through the intersection of the planes $3 x-4 y+5 z=10$ and $2 x+2 y-3 z=4$ and parallel to the line $x=2 y=3 z$.

- Watch Video Solution

41. If the line drawn from $(4,-1,2)$ meets a plane at right angles at the point ($-10,5,4$), find the equation of the plane.

- Watch Video Solution

42. If O is the origin and the coordinates of A are (a, b, c). Find the direction cosines of $O A$ and the equation of the plane through A at right angles to OA .

- Watch Video Solution

43. Find the vector equation of a lane passing through a point having position vector $2 i+3 j-4 k$ and perpendicular to the vector $2 i-j+2 k$. Also, reduce it to Cartesian form.

- Watch Video Solution

44. The foot of perpendicular drawn from the origin to the plane is $(4,-2,-5)$. Find the equation of the plane.

- Watch Video Solution

45. If he line drawn from the point $(-2,-1,-3)$ meets a plane at right angle at the point $(1,-3,3)$, find the equation of the plane.

- Watch Video Solution

46. Find the equation of the plane which bisects the line segment joining the points $A(2,3,4)$ and $B(4,5,8)$ at right angles.

- Watch Video Solution

47. Find the equation of the plane passing through the point $(1,-1,2)$ having $2,3,2$ as direction ratios of normal to the plane.
48. Let \vec{n} be a vector of magnitude $2 \sqrt{3}$ such that it makes equal acute angles with the coordinate axes. Find the vector and Cartesian forms of the equation of a plane passing through $(1,-1,2)$ and normal to \vec{n}.

- Watch Video Solution

49. A vector \vec{n} of magnitude 8 units is inclined to x-axis at $45^{0}, y$-axis at 60° and an acute angle with z-axis. If a plane passes through a point $(\sqrt{2},-1,1)$ and is normal to \vec{n}, find its equation in vector form.

- Watch Video Solution

50. A plane passes through the point $(1,-2,5)$ and is perpendicular to the line joining the origin to the point $3 \hat{i}+\hat{j}-\hat{k}$. Find the vector and Cartesian forms of the equation of the plane.
51. Find the vector and Cartesian equations of the plane containing the two lines
$\vec{r}=2 \hat{i}+\hat{j}-3 \hat{k}+\lambda(\hat{i}+2 \hat{j}+5 \hat{k})$ and, $\vec{r}=3 \hat{i}+3 \hat{j}+2 \hat{k}+\mu(3 \hat{i}-2 \hat{j}$

- Watch Video Solution

52. If the lines $\frac{x+4}{3}=\frac{y+6}{5}=\frac{z-1}{-2} \quad$ and $3 x-2 y+z+5=0=2 x+3 y+4 z-k$ are coplanar, then $k=(\mathrm{a})-4$ (2)3(3)2 (4) 4 (5) 1

- Watch Video Solution

53. Equation of plane which passes through the intersection point of the lines $L_{1}: \frac{x-1}{3}=\frac{y-2}{1}=\frac{z-3}{2}$ and $L_{2}: \frac{x-2}{2}=\frac{y-1}{2}=\frac{z-6}{-1}$ and has the largest distance from origin

- Watch Video Solution

54. Find the coordinates of the point where the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2}$ intersect the plane $x-y+z-5=0$. Also, find the angel between the line and the plane.

- Watch Video Solution

55. Find the shortest distance between the skew-line4s $l_{1}: \frac{x-1}{2}=\frac{y+1}{1}=\frac{z-2}{4}$ and $l_{2}: \frac{x+2}{4}=\frac{y-0}{-3}=\frac{z+1}{1}$

- Watch Video Solution

56. Find the distance between the line $\vec{r}=(-\hat{i}+3 \hat{k})+\lambda(\hat{i}-2 \hat{j})$ and the line passing through $(0,-1,2) \operatorname{and}(1,-2,3)$.

- Watch Video Solution

57. Find the image of the point having position vector $\hat{i}+3 \hat{j}+4 \hat{k}$ in the planer. $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})+3=0$

- Watch Video Solution

58. A plane meets the coordinate axes at $A, B a n d C$ respectively such that the centroid of triangle $A B C$ is $(1,-2,3)$. Find the equation of the plane.

- Watch Video Solution

59. Find the equation of a plane which meets the axes in $A, B a n d C$, given that the centroid of the triangle $A B C$ is the point (α, β, γ)

- Watch Video Solution

60. equation of plane containing them.

- Watch Video Solution

61. If from a point $P(a, b, c)$ prpendiculars $P A a n d P B$ are drawn to $y z a n d z x$ - planes, find the eqution of th plane $O A B$.

- Watch Video Solution

62. Find the equation of the plane through the points $A(2,2,-1), B(3,4,2) \operatorname{and} C(7,0,6$.

- Watch Video Solution

63. A variable plane moves in such a way that the sum of the reciprocals of its intercepts on the three coordinate axes is constant. Show that the plane passes through a fixed point.

- Watch Video Solution

64. A plane meets the coordinate axes in A, B, C such that eh centroid of triangle $A B C$ is the point (p, q, r). Show that the equation of the plane is $\frac{x}{p}+\frac{y}{q}+\frac{z}{r}=3$.

- Watch Video Solution

65. Write the equation of the plane whose intercepts on the coordinate axes are $-4,2$ and 3 respectively.

- Watch Video Solution

66. Show that the four point $(0,-1,-1),(4,5,1),(3,9,4) \operatorname{and}(-4,4,4)$ are coplanar and find the equation of the common plane.

- Watch Video Solution

67. Find the image of the point $(1,3,4)$ in the plane $2 x-y+z+3=0$.

- Watch Video Solution

68. Find the image of the point with position vector $3 \hat{i}+\hat{j}+2 \hat{k}$ in the plane $\vec{r} 2 \hat{i}-\hat{j}+\hat{k}=4$. Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through $3 \hat{i}+\hat{j}+2 \hat{k}$.
69. Find the length and the foot of perpendicular from the point $(1,3 / 2,2)$ to the plane $2 x-2 y+4 z+5=0$.

(Watch Video Solution

70. Find the distance between the point with position vector $\hat{i}-5 \hat{j}-10 \hat{k}$ and the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ with the plane $x-y+z=5$.

- Watch Video Solution

71. Find the equation of the plane through the intersection of the planes $3 x-4 y+5 z=10$ and $2 x+2 y-3 z=4$ and parallel to the line $x=2 y=3 z$.

- Watch Video Solution

72. Show that the plane whose vector equation is $\vec{r} \hat{i}+2 \hat{j}-\hat{k}=1$. and the line whose vector equation is
$\vec{r}=(-\hat{i}+\hat{j}+\hat{k})+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$ are parallel. Also, find the distance between them.

- Watch Video Solution

73. Prove that the lines
$\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}$ and $\frac{x-2}{1}=\frac{y-4}{4}=\frac{z-6}{7}$ are coplanar .
Also, find the plane containing these two lines.

- Watch Video Solution

74.

Show
that
the
lines
$\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j})$ and $\vec{r}=(4 \hat{i}-\hat{k})+\mu(2 \hat{i}+3 \hat{k})$ are coplanar. Also, find the plane containing these two lines.

- Watch Video Solution

75. Find the distance of the point $P(-1,-5,-10)$ from the point of intersection of the line joining the points $A(2,-1,2) \operatorname{and} B(5,3,4)$ with the plane $x-y+z=5$.

- Watch Video Solution

76. Find the distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the line whose direction cosines are proportional to $2,3,-6$.

- Watch Video Solution

77. Show that the plane whose vector equation is $\vec{r} \cdot(\hat{i}+2 \hat{j}=\hat{k})=3$ contains the line whose vector equation is $\vec{r} \cdot(\hat{i}+\hat{j})+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$.
78. Find the equation of the plane passing through the point $(0,7,-7)$ and containing the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$.

- Watch Video Solution

79. Find the equation of the plane passing through the points $(1,-1,2) \operatorname{and}(2,-2,2)$ and which is perpendicular to the plane $x-2 y+2 z=9$

- Watch Video Solution

80. Find the equation of the plane passing through the point whose coordinates are $(-1,1,1) \operatorname{and}(1,-1,1)$ and perpendicular to the plane $x+2 y+3 z=5$.

- Watch Video Solution

81. Find the equation of the plane passing through the point $(1,1,-1)$ and perpendicular to the planes $x+2 y+3 z-7=0$ and $2 x-3 y+4 z=0$.

- Watch Video Solution

82. Find the equation of the plane passing through the point ($-1,-1,2$)and perpendicular to the planes $3 x+2 y-3 z=1$ and $5 x-4 y+z=5$.

- Watch Video Solution

83. Find the angle between the planes
$x+y+2 z=9 a d n 2 x-y+z=15$.

- Watch Video Solution

84. If the planes Find the angle between the planes $\vec{r} 2 \hat{i}-\dot{\hat{j}}+\lambda \hat{k}=5 \operatorname{and} \vec{r} 3 \hat{i}+2 \hat{j}+2 \hat{k}=4$. are perpendicular. Find the value of λ.

- Watch Video Solution

85. Find the vector equation of the plane passing through the points $3 \hat{i}+4 \hat{j}+2 \hat{k}, 2 \hat{i}-2 \hat{j}-\hat{k} a n d 7 \hat{i}+6 \hat{k}$.

- Watch Video Solution

86. Find the angle between the planes
$\vec{r} 2 \hat{i}-\hat{j}+\hat{k}=6 a n d \vec{r} \hat{i}+\hat{j}+2 \hat{k}=5$.

- Watch Video Solution

87. Find the vector equation of the plane passing through the points $(1,1,0),(1,2,1) \operatorname{and}(-2,2,-1)$.

- Watch Video Solution

88. Find the vector equation of the plane passing through the points $A(a, 0,0), B(0, b, 0) \operatorname{and} C(0,0, c)$. Reduce it to normal form. If plane $A B C$ is at a distance p from the origin, prove that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}$.

- Watch Video Solution

89. Reduce the equation $\vec{r} 3 \hat{i}-4 \dot{\hat{j}}+12 \hat{k}=5$ to normal form and hence find the length of perpendicular from the origin to the plane.

- Watch Video Solution

90. Find the vector equation of a plane which is at a distance of 8 units from the origin and which is normal to the vector $2 \hat{i}+\hat{j}+2 \hat{k}$.

- Watch Video Solution

91. Find the direction cosines of perpendicular from the origin to the plane $\vec{r} 2 \hat{i}-3 \hat{j}-6 \hat{k}+5=0$.

- Watch Video Solution

92. Find the coordinates of the foot of the perpendicular drawn from the origin to the plane $2 x-3 y+4 z-6=0$.

- Watch Video Solution

93. Find the equation of a plane which is at a distance of $3 \sqrt{3}$ units from the origin and the normal to which is equally inclined with the coordinate

D Watch Video Solution

94. Find the equation of the plane passing through the point $(-1,2,1)$ and perpendicular to the line joining the points $(-3,1,2)$ and $(2,3,4)$. Find also the perpendicular distance of the origin from this plane.

(Watch Video Solution

95. Find the vector equation of the plane passing through the points $A(2,2,-1), B(3,4,1)$ and $C(7,0,6)$. Also, find the Cartesian equation of the plane.

- Watch Video Solution

96. Find the equation of the plane passing through the point $(1,2,1)$ and perpendicular to the line joining the points $(1,4,2) \operatorname{and}(2,3,5)$. find
also the perpendicular distance of the origin from this plane.

- Watch Video Solution

97. If from a point $P(a, b, c)$ perpendiculars $P A a n d P B$ are drawn to $Y Z a n d Z X$ - planes find the vectors equation of the plane $O A B$.

- Watch Video Solution

98. Find the vector equation of the plane passing through the points having position vectors $\hat{i}+\hat{j}-2 \hat{k}, 2 i-\hat{j}+\hat{k} a n d \hat{i}+2 \hat{j}+\hat{k}$.

- Watch Video Solution

99. Find the equation of the plane through the points $P(1,1,0), Q(1,2,1)$ and $R(-2,2,-1)$.

- Watch Video Solution

100. Find the equation of the plane passing through the following points:
$(2,1,0),(3,-2,-2)$ and $(3,1,7)$.

- Watch Video Solution

101. Find the equation of the plane passing through the following points:
$(-5,0,-6),(-3,10,-9)$ and $(-2,6,-6)$.

- Watch Video Solution

102. Find the equation of the plane passing through the following points:
$(1,1,1),(1,-1,2)$ and $(-2,-2,2)$.

- Watch Video Solution

103. Find the equation of the plane passing through the following points:
$(2,3,4),(-3,5,1)$ and $(4,-1,2)$.
104. Find the equation of the plane passing through the following points: $(0,-1,0),(3,3,0)$ and $(1,1,1)$.

- Watch Video Solution

105. Show that the following points are coplanar: $(0,-1,0),(2,1,-1),(1,1,1)$ and $(3,, 30)$.

- Watch Video Solution

106. Show that the following points are coplanar: $(0,4,3),(-1,-5,-3),(-2,-2,1)$ and $(1,1,-1)$.

- Watch Video Solution

107. Show that the point $(0,-1,-1),(45,1),(3,9,4)$ and $(-4,4,4)$ are coplanar and find the equation of the common plane.

Watch Video Solution

108. Reduce the equation of the plane $2 x+3 y-z=6$ to intercept form and find its intercepts on the coordinate axes.

- Watch Video Solution

109. Write the equation of the plane whose intercepts on the coordinate axes are $2,-3$ and 4 .

- Watch Video Solution

110. Reduce the equations of the following planes in intercept form and find its intercepts on the coordinate axes: $4 x+3 y-6 z-12=0$
111. Reduce the equation of the plane $2 x+3 y-4=12$ to intercept form and find its intercepts on the coordinate axes.

- Watch Video Solution

112. Reduce the equations of the following planes in intercept form and find its intercepts on the coordinate axes: $2 x-y+z=5$

- Watch Video Solution

113. Find the equation of the plane passing through the point $(2,4,6)$ and making equal intercepts on the coordinate axes.

- Watch Video Solution

114. Find the equation in Cartesian form of the plane passing through the point ($3,-3,1$) and normal to the line joining the points ($3,4,-1$) and (2, -1, 5).

- Watch Video Solution

115. Find the vector equation of the plane whose Cartesian form of equals $3 x-4 y+2 z=5$.

- Watch Video Solution

116. Find a normal vector to the plane $2 x-y+2 z=5$. Also, find a unit vector normal to the plane.

- Watch Video Solution

117. Find the angle between the normal to the planes $2 x-y+z=6$ and $x+y+2 z=7$.

- Watch Video Solution

118. Find the angles at which the normal vector to the plane $4 x+8 y+z=5$ is inclined to the coordinate axes.

- Watch Video Solution

119. Find the vector equation of a plane passing through a point having position vector $2 \hat{i}-\hat{j}+\hat{k}$ and perpendicular to the vector $4 \hat{i}+2 \hat{j}-3 \hat{k}$.

- Watch Video Solution

120. Find the Cartesian form of equation of a plane whose vector equation is : $\vec{r}(12 \hat{i}-3 \hat{j}+4 \hat{k})+5=0$
121. Find the Cartesian form of equation of a plane whose vector equation is : $\vec{r}(-\hat{i}+\hat{j}+2 \hat{k})=9$

- Watch Video Solution

122. Find the vector equations of the coordinates planes.

- Watch Video Solution

123. Find the vector equation of each one of following plane: $2 x-y+2 z=8$

- Watch Video Solution

124. Find the vector equation of each one of following plane: $x+y-z=5$

- Watch Video Solution

125. Find the vector equation of each one of following plane: $x+y=3$

- Watch Video Solution

126. Find the vector and Cartesian equations of a plane passing through the point $(1,-1,1)$ and normal to theline joining the point $(1,2,5)$ and ($-1,3,1)$.

- Watch Video Solution

127. If \vec{n} is a vector of magnitude $\sqrt{3}$ and is equally inclined with an acute angle with the coordinate axes. Find the vector and Cartesian forms of
the equation of a plane which passes through $(2,1,-1)$ and is normal to \vec{n}

- Watch Video Solution

128. The coordinate of the foot of the perpendicular drawn from the origin to a plane are $(12,-4,3)$. Find the equation of the plane.

- Watch Video Solution

129. Find the equation of the plane passing through the point $(2,3,1)$ having $(5,3,2)$ as the direction ratio is of the normal to the plane.

- Watch Video Solution

130. If the axes are rectangular and P is the point ($2,3,-1$), find the equation of the plane through P at right angle to $O P$.
131. Find the intercepts made on the coordinate axes by the plane $2 x+y-2 z=3$ and find also the direction cosines of the normal to the plane.

- Watch Video Solution

132. Find the equation of the plane that bisects the line segment joining points $(1,2,3)$ and $(3,4,5)$ and is at right angle to it.

- Watch Video Solution

133. Show that the normal to the following planes are perpendicular to each other. $x-y+z-2=0$ and $3 x+2 y-z+4=0$

- Watch Video Solution

134. Show that the normal to the following planes are perpendicular to each other. $\vec{r}(2 \hat{i}-\hat{j}+3 \hat{k})=5 \& \vec{r}(2 \hat{i}-2 \hat{j}-2 \hat{k})=5$

- Watch Video Solution

135. Show that the equation of the planes are perpendicular to each other. $\rightarrow r 2 \hat{i}-\hat{j}+3 \hat{k}=5$

- Watch Video Solution

136. Show that the normal vector to the plane $2 x+2 y+2 z=3$ is equally inclined with the coordinate axes.

- Watch Video Solution

137. Find a vector of magnitude 26 units normal to the plane $12 x-3 y+4 z=1$.
138. Find the equation of the plane which bisects the line segment joining the points $(-1,2,3)$ and $(3,-5,6)$ at right angles.

- Watch Video Solution

139. Find the vector and the Cartesian equation of the plane which pases through the point ($5,2,-4$) and perpendicular to the line with direction ratios (2,3,-1).

- Watch Video Solution

140. If O be the origin and the coordinates of P be $(1,2, \quad 3)$, then find the equation of the plane passing through P and perpendicular to OP.
141. Find the vector equation of a plane at a distance of 5 units from the origin and has \hat{i} as the unit vector normal to it.

- Watch Video Solution

142. Reduce the equation of the plane $x-2 y-2 z=12$ to normal form and hence find the length of the perpendicular for the origin to the plane. Also, find the direction cosines of the normal to the plane.

- Watch Video Solution

143. Find the vector equation of a plane which is at a distance of 6 units from the origin and has $2,-1,2$ as the direction ratios of a normal to it. Also, find the coordinates of the foot of the normal drawn from the origin.

- Watch Video Solution

144. Find the vector equation of a plane which is at a distance of 3 units from the origin and has \hat{k} as the unit vector normal to it.

- Watch Video Solution

145. Find the vector equation of a plane which is at a distance of 5 units from the origin and which is normal to vector $\hat{i}-2 \hat{j}-2 \hat{k}$.

- Watch Video Solution

146. Reduce the equation $2 x-3 y-6 z=14$ to the normal form and hence fine the length of perpendicular from the origin to the plane. Also, find the direction cosines of the normal to the plane.

- Watch Video Solution

147. Write the normal form of the equation of the plane $2 x-3 y+6 z+14=0$.
148. The direction ratios of the perpendicular from the origin to a plane are $12,-3,4$ and the length of the perpendicular is 5 . Find the equation of the plane.

- Watch Video Solution

149. Find a normal vector to the plane $x+2 y+3 z-6=0$

- Watch Video Solution

150. Find the vector equation of the plane which is at a distance of $\frac{6}{\sqrt{29}}$ from the origin and its normal vector from the origin is $2 \hat{i}-3 \hat{j}+4 \hat{k}$.

Also find its cartesian form.

- Watch Video Solution

151. Find the distance of the plane $2 x-3 y+4 z-6=0$ from the origin.

- Watch Video Solution

152. Find the vector equation of the plane passing thrugh the points $(2,5,-3),(-2,-3,5),(5,3,-3)$.

- Watch Video Solution

153. Find the vector equation of the plane passing through the points (1 , $1,-1),(6,4,-5)$ and $(-4,-2,3)$.

- Watch Video Solution

154. Show that the planes $2 x+6 y-6 z=7$ and $3 x+4 y+5 z=8$ are at right angles.

- Watch Video Solution

155. Find the equation of the plane through the points $(2,1,-1)$ and $(-1,3$,
4) and perpendicular to the plane $x-2 y+4 z=1$. Also show that the plain thus obtained contains the line
$\vec{r}=-\hat{i}+3 \hat{j}+4 \hat{k}+\lambda(3 \hat{i}-2 \hat{j}-5 \hat{k})$.

- Watch Video Solution

156. Find the angle between the plane:
$\vec{r}(2 \hat{i}-3 \hat{j}+4 \hat{k})=1$ and $\vec{r}(-\hat{i}+\hat{j})=4$.

- Watch Video Solution

157. Find the angle between the plane:
$\vec{r}(2 \hat{i}-\hat{j}+2 \hat{k})=6$ and $\vec{r}(3 \hat{i}+6 \hat{j}-2 \hat{k})=9$.

- Watch Video Solution

158.

Find
the angle
between
the
plane:
$\vec{r}(2 \hat{i}+3 \hat{j}-6 \hat{k})=5$ and $\vec{r}(\hat{i}-2 \hat{j}+2 \hat{k})=9$.

- Watch Video Solution

159. Find the angle between the plane:
$2 x-y+z=4$ and $x+y+2 z=3$

Watch Video Solution

160.

Find
the
angle
between
the
plane:
$x-y+z=5$ and $x+2 y+z=9$

- Watch Video Solution

161. Find the angle between the two planes $2 x+y 2 z=5$ and $3 x 6 y 2 z=7$ using vector method.
162. Find the angle between the plane: $x+y-2 z=3$ and $2 x-2 y+z=5$.

- Watch Video Solution

163.

Find
the angle
between
the
plane:
$2 x-3 y+4 z=1$ and $-x+y=4$.

- Watch Video Solution

164. Show that the following planes are at right angle:
$\vec{r}(2 \hat{i}-\hat{j}+\hat{k})=5$ and $\vec{r}(-\hat{i}-\hat{j}+\hat{k})=3$.

- Watch Video Solution

165. Show that the following planes are at right angle: $x-2 y+4 z=10$ and $18 x+17 y+4 z=49$.

- Watch Video Solution

166. Determine the value of λ for which the following plane are perpendicular to each other.
$\vec{r}(\hat{i}+2 \hat{j}+3 \hat{k})=7$ and $\vec{r}(\lambda \hat{i}+2 \hat{j}-7 \hat{k})=26$.

- Watch Video Solution

167. Determine the value of λ for which the following plane are perpendicular to each other. $2 x-4 y+3 z=5$ and $x+2 y+\lambda z=5$

- Watch Video Solution

168. Determine the value of λ for which the following plane are perpendicular to each other. $3 x-6 y-2 z=7$ and $2 x+y-\lambda z=5$

Watch Video Solution

169. Obtain the equation of the plane passing through the point $(1,-3,-2)$ and perpendicular to the planes $x+2 y+2 z=5$ and $3 x+3 y+2 z=8$.

- Watch Video Solution

170. Find the equation of the plane through the points $(2,2,1)$ and $(9,3,6)$ and perpendicular to the plane $2 x+6 y+6 z=1$

- Watch Video Solution

171. Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.

Watch Video Solution

172. Find the equation of the plane that contains the point $(1,1,2)$ and is perpendicular to each of the planes $2 x+3 y 2 z=5$ and $x+2 y 3 z=8$.

- Watch Video Solution

173. Find the equation of the plane passing through (a, b, c) and parallel to the plane $\vec{r} \hat{i}+\dot{\hat{j}}+\hat{k}=2$.

- Watch Video Solution

174. Find the equation of the plane passing through the point $(-1,3,2)$ and
$x+2 y+3 z=5$ and $3 x+3 y+z=0$

- Watch Video Solution

175. Find the vector equation of the plane through the points ($2,1,-1$) and $(-1,3,4)$ and perpendicular to the plane $x-y+4 z=10$.

- Watch Video Solution

176. Find the vector equation of the following planes in scalar product
form $(\vec{r} \vec{n}=d): \vec{r}=(2 \hat{i}-\hat{k})+\lambda \hat{i}+\mu(\hat{i}-2 \hat{j}-\hat{k})$.

- Watch Video Solution

177. Find the vector equation of the plane $\vec{r}=(1+s-t) \hat{i}+(2-s) \hat{j}+(3-2 s+2 t) \hat{k}$ in non-parametric form.
178. Find the vector equation of the following planes in scalar product form
$(\vec{r} \vec{n}=d): \vec{r}=(\hat{i}+\hat{j})+\lambda(\hat{i}+2 \hat{j}-\hat{k})+\mu(-\hat{i}+\hat{j}-2 \hat{k})$

- Watch Video Solution

179. Find the vector equation of the following planes in scalar product form
$(\rightarrow r \xrightarrow{\dot{\longrightarrow}} n=d): \rightarrow r=\hat{i}-\hat{j}+\lambda(\hat{i}+\hat{j}+\hat{k})+\mu(4 \hat{i}-2 \hat{j}+3 \hat{k})$.

- Watch Video Solution

180. Find the Cartesian form of the equation of the following plane:
$\vec{r}=(\hat{i}-\hat{j})+s(-\hat{i}+\hat{j}+2 \hat{k})+t(\hat{i}+2 \hat{j}+\hat{k})$.

- Watch Video Solution

181. Find the vector equation of the following planes in non parametric form: $\rightarrow r=(\lambda-2 \mu) \hat{i}+(3-\mu) \hat{j}+(2 \lambda+\mu) \hat{k}$

- Watch Video Solution

182. Find the vector equation of the following planes in non parametric form: $\rightarrow r=(2 \hat{i}+2 \hat{j}-\hat{k})+\lambda(\hat{i}+2 \hat{j}+3 \hat{k})+\mu(5 \hat{i}-2 \hat{j}+7 \hat{k})$.

- Watch Video Solution

183. Find the equation of lane passing through the point $\hat{i}+\hat{j}+\hat{k}$ and parallel to the point $\rightarrow r 2 \hat{i}-\hat{j}+2 \hat{k}=5$.

- Watch Video Solution

184. Find the equation of a plane containing the line of intersection of the planes $x+y+z-6=0 a n d 2 x+3 y+4 z+5=0 \quad$ passing
through $(1,1,1)$.

- Watch Video Solution

185. Direction ratios of the normal to the plane passing through the points $(2,1,3)$ and the line of intersectionof the planes $x+2 y+z=3$ and $2 x-y-z=5$ are (A) 13, 6, 1 (B) $4,3,2$ (C) $4,3,2$ (D) none

- Watch Video Solution

186. Find the Cartesian as well as vector equations of the planes through the intersection of the planes
$\vec{r}(2 \hat{i}+6 \hat{j})+12=0$ and $\vec{r}(3 \hat{i}-\hat{j}-4 \hat{k})=0$ which are at a unit distance from the origin.

- Watch Video Solution

187. Find the equation of the plane which is parallel to $2 x-3 y+z=0$ and which passes through $(1,-1,2)$.

Watch Video Solution

188. Find the equation of the plane through ($3,4,-1$) which is parallel to the plane $\rightarrow r(2 \hat{i}-3 \hat{j}+5 \hat{k})+2=0$.

- Watch Video Solution

189. Find the equation of the plane passing through the line of intersection of the planes
$2 x-7 y+4 z-3=0,3 x-5 y+4 z+11=0 \quad$ and \quad the point $(-2,1,3)$.

- Watch Video Solution

190. Find the equation of the plane through the point $2 \hat{i}+\hat{j}-\hat{k}$ and passing through the line of intersection of the plane
$\vec{r}(\hat{i}+3 \hat{j}-\hat{k})=0$ and $\vec{r}(\hat{j}+2 \hat{\hat{k}})=0$.

- Watch Video Solution

191. Find the equation of the plane passing through the line intersection of the plane: $\overrightarrow{2} x-y=0$ and $3 z-y=0$ and perpendicular to the plane $4 x+5 y-3 z=8$

- Watch Video Solution

192. Find the equation of the plane through the line of intersection of the planes $\quad x+2 y+3 z+4=0$ and $x-y+z+3=0 \quad$ and \quad passing through the origin.

- Watch Video Solution

193. Find the vector equation (in scalar product form) of the plane containing the line of intersection of the planes $x-3 y+2 z-5=0$ and $2 x-y+3 z-1=0$ and passing through (1, $-2,3)$.

- Watch Video Solution

194. Find the equation of the plane which is perpendicular to the plane $5 x+3 y+6 z+8=0$ adn which contailns the line of intersedtion of the planes $x+2 y+3 z-4=0 a n d 2 x+y-z+5=0$.

- Watch Video Solution

195. Find the equation of the plane through the line of intersection of the
planes $\vec{r}(\hat{i}+3 \hat{j})-6=0$ and $\vec{r}(3 \hat{i}-\hat{j}-4 \hat{k})=0$, which is at a unit distance from the origin.
196. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point $(2,2,1)$.

- Watch Video Solution

197. Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$

- Watch Video Solution

198. Prove that if a plane has the intercepts a, b, c and is at a distance of p units from the origin, then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$.

- Watch Video Solution

199. If the points $(1,1, \lambda)$ and $(-3,0,1)$ be equidistant from the plant $\vec{r}(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$ find the value of λ.

- Watch Video Solution

200. Find the distance between the point $P(6,5,9)$ and the plane determined by the points $A(3,-1,2), B(5,2,4)$ and $C(-1,-1,6)$.

- Watch Video Solution

201. Find the equation of a plane passing through the pint $P(6,5,9)$ and parallel to the plane determined by the points $A(3,-1,2) B(5,2,4)$ and $C(-1,-1,6)$. Also find the distance of this plane from the point A.

- Watch Video Solution

202. A variable plane is at a constant distance p from the origin and meets the coordinate axes in A, B, C. Show that the locus of the centroid of the tehrahedron $O A B C i s x^{-2}+y^{-2}+z^{-2}=16 p^{-2}$.

- Watch Video Solution

203. A variable plane at a constant distance p from the origin meets the coordinate axes in points A, B and C respectively.Through these points, planes are drawn parallel to the coordinate planes, show that locus of the point of intersection is $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{p^{2}}$

- Watch Video Solution

204. Find the distance of the point $2 \hat{i}-\hat{j}-4 \hat{k}$ from the plane $\vec{r}(3 \hat{i}-4 \hat{j}+12 \hat{k})-9=0$.

- Watch Video Solution

205. Find the distance of the point $(2,3,-5)$ from the plane $x+2 y-2 z-9=0$.

- Watch Video Solution

206. Show that the points ($1,1,1$) and $(-3,0,1)$ are equidistant from the plane $3 x+4 y-12 z+13=0$.

- Watch Video Solution

207. Find the equations of the plane parallel to the plane $x-2 y+2 z-3=0$ and which are at a unit distance from the point (1, 1, 1).

- Watch Video Solution

208. Find the distance of the point $(2,3,5)$ from the $x y$-plane.
209. If the product of distances of the point $(1,1,1)$ from the origin and plane $x-y+z+\lambda=0$ be 5 then $\lambda=$

- Watch Video Solution

210. Find the distance between the point $(7,2,4)$ and the plane determined by the points $a(2,5,-3), B(-2,-3,5)$ and $C(5,3,-3)$.

- Watch Video Solution

211. Find the distance between the planes
$2 x-y+2 z=4$ and $6 x-3 y+6 z=2$.

- Watch Video Solution

212. Prove that the four points having position vectors are non-coplanar: $\hat{i}+2 \hat{j}+3 \hat{k}, 2 \hat{i}+\hat{j}+3 \hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

213. Find the equation of the plane mid parallel to the planes
$2 x-2 y+z+3=0$ and $2 x-2 y+z+9=0$.

- Watch Video Solution

214. Reduce the equation of line $x-y+2 z=5 a d n 3 x+y+z=6$ in symmetrical form. Or Find the line of intersection of planes $x-y+2 z=5 a n d 3 x+y+z=6$.

- Watch Video Solution

215. Find the equation of the plane passing through the line of intersection of the planes $2 x+y-Z=3,5 x-3 y+4 z+9=0$ and parallel to the line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{5}$

- Watch Video Solution

216. Find the equation of the plane passing through the intersection of
the planes $\vec{r}(\hat{i}+\hat{j}+\hat{k})=1$ and $\vec{r}(2 \hat{i}+3 \hat{j}-\hat{k})+4=0 \quad$ and parallel to x-axis.

- Watch Video Solution

217. Find the equation of the plane passing through the intersection of the planes $4 x-y+z=0$ and $x+y-z=4$ and parallel to the line with direction ratios proportional to $2,1,1$.

- Watch Video Solution

218. Find the equation of the plane passing through the point $A(1,2,1)$ and perpendicular to the in joining the points $P(1,4,2)$ and $Q(2,3,5)$.

- Watch Video Solution

219. Find an equation or the line that passes through the point $P(2,3,1)$ and is parallel to the line of intersection o the planes $x+2 y-3 z=4$ and $x-2 y+z=0$.

- Watch Video Solution

220. Find the angle between the line $\rightarrow r=(2 \hat{i}+3 \hat{j}+9 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+4 \hat{k}) \quad$ and the plane $\rightarrow r(\hat{i}+\dot{\hat{j}}+\hat{k})=5$.

- Watch Video Solution

221. Find the angle between the line $\frac{x-1}{1}=\frac{y-2}{-1}=\frac{z+1}{1}$ and the plane $2 x+y-z=4$.

- Watch Video Solution

222. Find the angle between the line joining the points $(3,-4,-2)$ and $(12,2,0)$ and the plane $3 x-y+z=1$.

- Watch Video Solution

223. The line $\vec{r}=\hat{i}+\lambda(2 \hat{i}-m \hat{j}-3 \hat{k})$ is parallel to the plane $\vec{r}(m \hat{i}+3 \hat{j}+\hat{k})=4$. Find m.

- Watch Video Solution

224. Find the vector equation of the line through the origin which is perpendicular to the plane $\vec{r}(\hat{i}+2 \hat{j}+3 \hat{k})=3$.
225. Find the equation of the plane passes through the point $(2,3,-4)$ and ($1,-1,3$) and parallel to x-axis.

- Watch Video Solution

226. Find the Cartesian equation of the plane passing through the points $A(0,0,0)$ and $b(3,-1,2)$ and parallel to the line $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$

- Watch Video Solution

227. Find the vector and Cartesian equations of the line passing through
(1, 2, 3) and parallel to the planes
$\vec{r}(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r}(3 \hat{i}+\hat{j}+\hat{k})=6$.
228. Prove that the line of section of the planes $5 x+2 y-4 z+2=0$ and $2 x+8 y+2 z-1=0$ is parallel to the plane $4 x-2 y-5 z-2=0$.

- Watch Video Solution

229. Find the equation of the plane passing through the points $(2,2,-1)$ and $(3,4,2)$ and parallel to the line whose direction ratios are $(7,0,6)$

- Watch Video Solution

230. Find the coordinates of the point, where the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2}$ intersects the plane $x-y+z-5=0$. Also find the angle between the line and the plane.
231. Find the vector and Cartesian forms of the equation of the plane passing through the point $(1,2,-4)$ and parallel to the lines $\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$ and $\vec{r}=(\hat{i}-3 \hat{j}+5 \hat{k})+\mu(\hat{i}+$ Also find the distance of the point ($9,-8,-10$) from the plane thus obtained.

- Watch Video Solution

232. Find the equation of the plane passing through the point $(3,4,1)$ and
$(0,1,0)$ and parallel to the line $\frac{x+3}{2}=\frac{y-3}{7}=\frac{z-2}{5}$

- Watch Video Solution

233. Find the coordinates of the point, where the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2}$ intersects the plane $x-y+z-5=0$. Also find the angle between the line and the plane.
234. Find the vector equation of the line passing through ($1,2,3$) and perpendicular to the plane $\rightarrow r(\hat{i}+2 \dot{\hat{j}}-5 \hat{k})=9$.

- Watch Video Solution

235. Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes $\vec{r}(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r}(3 \hat{i}+\hat{j}+\hat{k})=6$.

- Watch Video Solution

236. Find the value of λ such that the lines $\frac{x-2}{6}=\frac{y-1}{\lambda}=\frac{z+5}{-4}$ is perpendicular to the plane $3 x-y-2 z=7$.

- Watch Video Solution

237. Find the equation of the plane passing through the points
$(-1,2,0),(2,2,-1)$ and parallel to line $\frac{x-1}{1}=\frac{2 y+1}{2}=\frac{z+1}{-1}$
238. Find the coordinates of the point where the line through the points $A(3,4,1)$ and $B(5,1,6)$ crosses the $X Y$-plane.

- Watch Video Solution

239. Find the coordinate of the point where the line through $(5,1,6)$ and $(3,4,1)$ crosses the i. yz-plane ii. zx-plane.

- Watch Video Solution

240. Find the coordinates of the point where the line through $(3,4,5)$ and $(2,3,1)$ crosses the plane $2 x+y+z=7$.

- Watch Video Solution

241. Find the distance of the point $P(3,4,4)$ from the point where the line joining the points $A(3,-4,-5)$ and $B(2,-3,1)$ intersects the plane $2 x+y+z=7$.

- Watch Video Solution

242. Show that the lines $\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta}$ and $\frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}$ are coplanar.

- Watch Video Solution

243. If $4 x+4 y-\lambda z=0$ is the equations of the plane through the origin that contains the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z}{4}$, find the value of λ.

- Watch Video Solution

244. If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then find the value of k.

- Watch Video Solution

245.

Show
that
the
lines
$\vec{r}=(2 \hat{j}-3 \hat{k})+\lambda(\hat{i}+2 \hat{j}+3 \hat{k})$ and $\vec{r}=(2 \hat{i}+6 \hat{j}+3 \hat{k})+\mu(2 \hat{i}+3 \hat{j}$
are coplanar. Also, find the equation of the plane containing them.

- Watch Video Solution

246.

Show
that
the
lines
$\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and $\frac{x}{1}=\frac{y-7}{-3}=\frac{z+7}{2} \quad$ are \quad coplanar.
Also, find the equation of the plane containing them.

- Watch Video Solution

247. Find the equation of the plane which contains two parallel to lines $\frac{x-4}{1}=\frac{y-3}{-4}=\frac{z-2}{5}$ and $\frac{x-3}{1}=\frac{y+2}{-4}=\frac{z}{5}$.

- Watch Video Solution

248. Show that the plane whose vector equation is $\vec{r} \hat{i}+2 \hat{j}=\hat{k}=3$ contains the line whose vector equation is $\vec{r} \hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$.

- Watch Video Solution

249. Find the vector equation of the plane passing through the points (3 , $4,2)$ and $(7,0,6)$ and perpendicular to the plane $2 x-5 y-15=0$. Also, show that the plane thus obtained contains the line $\vec{r}=\hat{i}+3 \hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}+\hat{k})$.

- Watch Video Solution

250. If the lines $\frac{x-1}{-3}=\frac{y-2}{-2 y}=\frac{z-3}{2} \quad$ and $\frac{x-1}{k}=\frac{y-2}{1}-\frac{z-3}{5}$ are perpendicular, find the value of k and hence find the equation of plane containing these lines.

- Watch Video Solution

251. Find the vector equation of the plane passing through three points with position vectors $\hat{i}+\hat{j}-2 \hat{k}, \hat{i}-\hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$. Also find the coordinates of the point of intersection of this plane and the line $\vec{r}=3 \hat{i}-\hat{j}-\hat{k}+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$.

- Watch Video Solution

252. Show
that
the
lines
$\frac{x 5}{4}, \frac{y-7}{4}=\frac{z+3}{-5}$ and $) x-8 \frac{)}{7}=\frac{y-4}{1}=\frac{z-5}{3}$ intersect each other
253. Find the equation of a plane which passes through the point $(3,2,0)$ and contains the line $\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}$.

- Watch Video Solution

254. Find the shortest distance between the lines
$\frac{x-2}{-1}=\frac{y-5}{2}=\frac{z-0}{3}$ and $\frac{x-0}{2}=\frac{y+1}{-1}=\frac{z-1}{2}$.

- Watch Video Solution

255. Find the shortest distance between the lines , $\frac{x-1}{2}=\frac{y-3}{4}=\frac{x+2}{1}$ and $3 x-y-2 z+4=0=2 x+y+z+1$

- Watch Video Solution

256. Find the length and the foot of the perpendicular from the point ($7,14,5$) to the plane $2 x+4 y-z=2$. Also, the find image of the point P in the plane.

- Watch Video Solution

257. Find the image of point $(0,0,0)$ in the plnae $3 x+4-6 z+1=0$.

- Watch Video Solution

258. Find the reflection of the point $(1,2,-1)$ in the plane $3 x-5 y+4 z=5$.

- Watch Video Solution

259. Find the coordinates of the foot of the perpendicular drawn from the point $(5,4,2)$ to the line $\frac{x+1}{2}=\frac{y-3}{3}=\frac{z-1}{-1}$. Hence or
otherwise deduce the length of the perpendicular.

- Watch Video Solution

260. Find the coordinates of the foot of the perpendicular from the point $(1,1,2)$ to the plane $2 x-2 y+4 z+5=0$. Also the find the length of the perpendicular.

- Watch Video Solution

261. The distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$, is

- Watch Video Solution

262. Find a vector in the direction of $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$, which has magnitude of 6 units.
263. Find the co-ordinates of the foot of perpendicular and the length of perpendicular drawn from the point $(2,3,7)$ to the plane $3 x-y-z=7$.

- Watch Video Solution

264. Find the distance of the point with position vector $-\hat{i}-5 \hat{j}-10 \hat{k}$ from the point of intersection of the line $\vec{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+12 \hat{k}) \quad$ with the plane $\vec{r}(\hat{i}-\hat{j}+\hat{k})=5$.

- Watch Video Solution

265. Find the length and the foot of the perpendicular from the point (1,1 ,
2) to the plane $\vec{r}(\hat{i}-2 \hat{j}+4 \hat{k})+5=0$.
266. Find the coordinates of the foot of the perpendicular and the perpendicular distance from the point $\mathrm{P}(3,2,1)$ to the plane $2 x-y+z+1=0$ Find also the image of the point P in the plane.

- Watch Video Solution

267. Find the direction cosines of the unit vector perpendicular to the plane $\vec{r}(6 \hat{i}-3 \hat{j}-2 \hat{k})+1=0$ passing through the origin.

- Watch Video Solution

268. Find the coordinates of the foot of perpendicular drawn from origin to the planes: $2 x-3 y+4 z-6=0$

- Watch Video Solution

269. Write the equation of the plane parallel to XOY-plane and passing through the point $(2,-3,5)$.

- Watch Video Solution

270. Write the equation of the plane parallel to YOZ-plane and passing through $(-4,1,0)$.

- Watch Video Solution

271. Write the equation of the plane passing through points $(a, 0,0),(0, b, 0)$ and $(0,0, c)$.

- Watch Video Solution

272. Write the general equation of a plane parallel to X-axis.
273. Write the intercepts made by the plane $2 x-3 y+4 z=12$ on the coordinate axes.

- Watch Video Solution

274. Write the ratio in which the plane $4 x+5 y-3 z=4$ divides the line segment joining points $(-2,1,5) \&(3,3,2)$

- Watch Video Solution

275. Write the plane $\vec{r}(2 \hat{i}+3 \hat{j}-6 \hat{k})=14$ in normal form.

- Watch Video Solution

276. Write the equation of the plane $\vec{r}=\vec{a}+\lambda \vec{b}+\mu \vec{c}$ in scalar product form.
277. Write a vector normal to the plane $\vec{r}=l \vec{b}+m \vec{c}$

- Watch Video Solution

278. Write the equation of the plane passing through $(2,-1,1)$ and parallel to the plane $3 x+2 y-z=7$.

- Watch Video Solution

279. Write the equation of the plane containing the lines $\vec{r}=\vec{a}+\lambda \vec{b}$ and $\vec{r}=\vec{a}+\mu \vec{c}$

- Watch Video Solution

280. Write the position vector of the point where the line $\vec{r}=\vec{a}+\lambda \vec{b}$ meets the plane $\vec{r} \vec{n}=0$.

- Watch Video Solution

281. Write the value of k for which the line $\frac{x-1}{2}=\frac{y-1}{3}=\frac{z-1}{k}$ is perpendicular to the normal to the plane $\vec{r}(2 \hat{i}+3 \hat{j}+4 \hat{k})=4$.

- Watch Video Solution

282. Write the intercept cut off by the plane $2 x+y-z=5$ on x-axis.

- Watch Video Solution

283. Find the length of the perpendicular drawn from the origin to the plane $2 \times 3 y+6 z+21=0$.
284. Write the vector equation of the line passing through the point $(1,-2$,
$-3)$ and normal to the plane $\vec{r}(2 \hat{i}+\hat{j}+2 \hat{k})=5$.

- Watch Video Solution

285. Write the vector equation of the plane passing through the point (a, b, c) and parallel to the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$.

- Watch Video Solution

286. The acute angle between the planes $2 x-y+z=6$ and $x+y+2 z=3$ is 45^{0} b. 60° c. 30^{0} d. 75^{0}

- Watch Video Solution

287. The equation of the plane thrugh the ointersection of lane $x+2 y+3 z=4$ and $2 \mathrm{x}+\mathrm{y}-\mathrm{z}-5$ and perpendicar \rightarrow thepla \neq $5 \mathrm{x}+3 \mathrm{y}+6 \mathrm{z}+8=0 i s(A) 7 \mathrm{x}-2 \mathrm{y}+3 \mathrm{z}+81=0(B) 23 \mathrm{x}+14 \mathrm{y}-9 \mathrm{z}+48=0(C)$
$51 x+15 y+50 z+173=0^{`}(D)$ none of these

- Watch Video Solution

288. The distance between the planes
$2 x+2 y-z+2=0$ and $4 x+4 y-2 z+5=0$ is $a . \frac{1}{2}$ b. $\frac{1}{4}$, c. $\frac{1}{6}$ d. none of these

- Watch Video Solution

289. The image of the point $(1,3,4)$ in the plane $2 x-y+z+3=0$ is
$(3,5,2)$ b. $(-3,5,2)$ c. $(3,5,-2)$ d. $(3,-5,2)$

- Watch Video Solution

290. Find the vector equation of the following plane in scalar product form: $\vec{r}=(\hat{i}-\hat{j})+\lambda(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}-2 \hat{j}+3 \hat{k})$.

- Watch Video Solution

291. The distance of the line $\vec{r}=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+4 \hat{k})$ from the plane $\vec{r}(\hat{i}+5 \hat{j}+\hat{k})=5$, is $\frac{5}{3 \sqrt{3}}$ b. $\frac{10}{3 \sqrt{3}}$ c. $\frac{25}{3 \sqrt{3}}$ d. none of these

- Watch Video Solution

292. The equation of the plane through the line $x+y+z+3=0=2 x-y+3 z+1$ and parallel to the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3} \quad$ is $\quad a . x-5 y+3=7 \quad$ b. $\quad x-5 y+3 z=7$
$x+5 y=3 z=7$ d. $x+5 y+3 z=-7$

- Watch Video Solution

293. The vector equation of the plane containing the line $\vec{r}=(-2 \hat{i}-3 \hat{j}+4 \hat{k})+\lambda(3 \hat{i}-2 \hat{j}-\hat{k})$ and the point $\hat{i}+2 \hat{j}+3 \hat{k}$ is $a . \vec{r}(\hat{i}+3 \hat{k})=10$ b. $\vec{r}(\hat{i}-3 \hat{k})=10$ c. $\vec{r}(3 \hat{i}+\hat{k})=10 \mathrm{~d}$. none of these

- Watch Video Solution

294. A plane meets the coordinate axes at A, B, C such that the centroid of $\triangle A B C$ is the point (a, b, c). If the equation of the plane is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=k$, then $k=1 \mathrm{~b} .2 \mathrm{c} .3 \mathrm{~d}$. none of these

- Watch Video Solution

295. The distance between the point $(3,4,5)$ and the point where the line $\frac{x-3}{1}=\frac{y-4}{2}=\frac{z-5}{2}$ meets the plane $x+y+z=17$, is 1 b .2 c .

3 d . none of these
296. A vector parallel to the line of intersection of the planes $\vec{r}=3 \hat{i}-\hat{j}+\hat{k}=1$ and $\vec{r}(\hat{i}+4 \hat{j}-2 \hat{k})=2$ is $a .-2 \hat{i}+7 \hat{j}+13 \hat{k}$ b. $2 \hat{i}+7 \hat{j}-13 \hat{k}$ c. $-2 i-7 j+13 k$ d. $2 i+7 j+13 k$

- Watch Video Solution

297. If plane passes through the point $(1,1,1)$ and is perpendicular to the line, $\frac{x-1}{3}=\frac{y-1}{0}=\frac{z-1}{4}$, then its perpendicular distance from the origin is

- Watch Video Solution

298. The equation of the plane parallel to the lines $x-1=2 y-5=2 z$ and $3 x=4 y-11=3 z-4$ and passing through the point $(2,3,3)$ is

- Watch Video Solution

299. The distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+12 \hat{k})$ and the plane $\vec{r}(\hat{i}-\hat{j}+\hat{k})=5$ is $a .9 \mathrm{~b} .17 \mathrm{c} .13 \mathrm{~d}$. none of these

- Watch Video Solution

300. The equation of the plane through the intersection of the plane $a x+b y+c z+d=0$ and $l x+m y+n+p=0$ and parallel to the line $y=0, z=0$.
$(A)(b l-a m) y+(c l-a n) z+d l-a p=0$
$(B)(a m-b l) x+(m c-b n) z+m d-b p=0$
$(c)(n a-c l) d+(b n-c m) y+n d-c p=0$ (D) None of these

- Watch Video Solution

301. The equation of the plane which cuts equal intersects of unit length on the coordinate axes is $x+y+z=1$ b. $x+y+z=0$ c. $x+y-z=1$ d. $x+y+z=2$

Others

1. Reduce in symmetrical form the equations of et line $x=a y+b, z s=c y+d$.

- View Text Solution

2. If the line $\rightarrow r=(\hat{i}-2 \hat{j}+\hat{k})+\lambda(2 \hat{i}+\hat{j}+2 \hat{k})$ is parallel to the plane $\rightarrow r 3 \hat{i}-2 \dot{\hat{j}}+m \hat{k}=14$, find the value of m.

- View Text Solution

