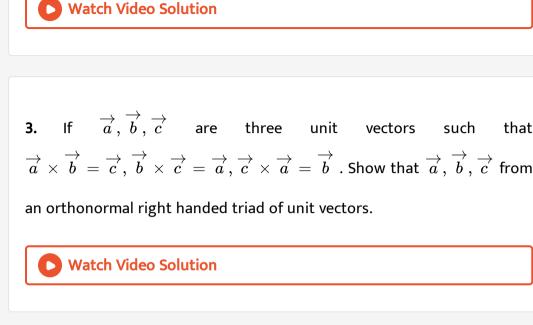


MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

VECTOR OR CROSS PRODUCT


Solved Examples And Exercises

1. If $\overrightarrow{a} = 2\hat{i} - 3\hat{j} + \hat{k}$, $\hat{b} = -\hat{i} + \hat{k}$, $\overrightarrow{c} = 2\hat{j} - \hat{k}$ are three vectors, find the area of the parallelogram having diagonals $(\overrightarrow{a} + \overrightarrow{b})$ and $(\overrightarrow{b} + \overrightarrow{c})$

Watch Video Solution

2. The two adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\hat{i} - 2\hat{j} - 3\hat{k}$. Find the unit vector parallel to one of its diagonals. Also,

find its area.

4. Find a unit vector perpendicular to the plane ABC, where the coordinates of A, B and C are A(3, -1, 2), B(1, -1, -3) and C(4, -3, 1).

Watch Video Solution

5. Find the angle between two vectors \overrightarrow{a} and \overrightarrow{b} , if $\left|\overrightarrow{a}\times\overrightarrow{b}\right| = \overrightarrow{a}.\overrightarrow{b}$.

6. If
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} \neq 0$$
 , then show that $\overrightarrow{a} + \overrightarrow{c} = m \overrightarrow{b}$, where m

is any scalar.

Watch Video Solution

7. If
$$|a| = 2$$
, $|b| = 7$ and $\overrightarrow{a} x \overrightarrow{b} = 3\hat{i} + 2\hat{j} + 6\hat{k}$, find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

8. If
$$\overrightarrow{a} = 2\hat{i} + 5\hat{j} = 7\hat{k}, \ \overrightarrow{b} = -3\hat{j} + \hat{k}$$
and $\overrightarrow{c} = \hat{i} - 2\hat{j} - 3\hat{k},$

compute $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c}$ and $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ and verify that these

are not equal.

$$\textbf{9. If } \left| \overrightarrow{a} \right| = 2, \left| b \right| = 5 \text{ and } \left| \overrightarrow{a} \times \overrightarrow{b} \right| = 8, \text{ find } \overrightarrow{a} . \overrightarrow{b}.$$

Watch Video Solution

10. If
$$\left| \overrightarrow{a} \right| = \sqrt{26}$$
, $\left| \overrightarrow{b} \right| = 7$ and $\left| \overrightarrow{a} \times \overrightarrow{b} \right| = 35$, find $\overrightarrow{a} \overrightarrow{b}$.

Watch Video Solution

11. Define
$$\overrightarrow{a} x \overrightarrow{b}$$
 and prove that $\left| \overrightarrow{a} x \overrightarrow{b} \right| = \left(\overrightarrow{a} \overrightarrow{b} \tan \theta, \text{ where } \theta \text{ is the} \right)$
angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

12. Find the area of the triangle formed by O, A, B when $\overrightarrow{O}A = \hat{i} + 2\hat{j} + 3\hat{k}, \overrightarrow{O}B = -3\hat{i} - 2\hat{j} + \hat{k}$

13. If $\overrightarrow{a} = \hat{i} - 2\hat{j} + 3\hat{k}$, and $\overrightarrow{b} = 2\hat{i} + 3\hat{j} - 5\hat{k}$, then find $\overrightarrow{a} \times \overrightarrow{b}$. Verify that \overrightarrow{a} and $\overrightarrow{a} \times \overrightarrow{b}$ are perpendicular to each other.

Watch Video Solution

14. If a, b, c are the lengths of sides, BC, CA and AB of a triangle ABC, prove that $\overrightarrow{B}C + \overrightarrow{C}A + \overrightarrow{A}B = \overrightarrow{O}$ and deduce that $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.

Watch Video Solution

15. (22) if \overrightarrow{p} and \overrightarrow{q} are unit vectors forming an angle of 30° ; find the area of the parallelogram having $\overrightarrow{a} = \overrightarrow{p} + 2\overrightarrow{q}$ and $\overrightarrow{b} = 2\overrightarrow{p} + \overrightarrow{q}$ as its diagonals. (23) For any two vectors \overrightarrow{a} and \overrightarrow{b} , prove that $\left|\overrightarrow{a} \times \overrightarrow{b}\right|^2 = \left|\overrightarrow{a} \cdot \overrightarrow{a} \quad \overrightarrow{a} \cdot \overrightarrow{b}\right|$.

16. If \overrightarrow{p} and \overrightarrow{q} are unit vectors forming an angle of 30^0 ; find the area of the parallelogram having $\overrightarrow{a} = \overrightarrow{p} + 2\overrightarrow{q}$ and $\overrightarrow{b} = 2\overrightarrow{p} + \overrightarrow{q}$ is its diagonals.

Watch Video Solution

17. Find a unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$.

Watch Video Solution

18. Find the area of the parallelogram whose diagonals are $:4\hat{i}-\hat{j}-3\hat{k}$

and $-2\hat{i}+\hat{j}-2\hat{k}$

19. Find the area of the parallelogram determined by the vectors: $2\hat{i}and\hat{j}$ $2\hat{i} + \hat{j} + 3\hat{k}and\hat{i} - \hat{j}$ $3\hat{i} + \hat{j} - 2\hat{k}and\hat{i} - 3\hat{j} + 4\hat{k}$ $\hat{i} - 3\hat{j} + \hat{k}and\hat{i} + \hat{j} + \hat{k}$

Watch Video Solution

20. Find a vector of magnitude 49, which is perpendicular to both the vectors $2\hat{i} + 3\hat{j} + 6\hat{k}$ and $3\hat{i} - 6\hat{j} + 2\hat{k}$. Find a vector whose length is 3 and which is perpendicular to the vector $\vec{a} = 3\hat{i} + \hat{j} - 4\hat{k}$ and $\vec{b} = 6\hat{i} + 5\hat{j} - 2\hat{k}$.

Watch Video Solution

21. If
$$\overrightarrow{a} = 3\hat{i} - \hat{j} - 2\hat{k}$$
 and $\overrightarrow{b} = 2\hat{i} + 3\hat{j} + \hat{k}$, find $\left(\overrightarrow{a} + 2\overrightarrow{b}\right) \times \left(2\overrightarrow{a} - \overrightarrow{b}\right)$.

22. If
$$\overrightarrow{a} = 3\hat{i} - 2\hat{k}$$
 and $\overrightarrow{b} = -\hat{i} + 3\hat{k}$, find $\left|\overrightarrow{a} \times \overrightarrow{b}\right|$

Watch Video Solution

23. Using vectors: Prove that if a,b,care the lengths of three sides of a triangle then its area Δ is given by $\Delta=\sqrt{s(s-a)(s-b)(s-c)}$ where

2s=a+b+c

Watch Video Solution

24. Prove by vector method that the parallelogram on the same base and

between the same parallels are equal in area.

25. If D, E, F are the mid-points of the sides BC, CA and ABrespectively of a triangle ABC, prove by vector method that $AreaofDEF = \frac{1}{4}(areaofABC)$. **26.** Let $\overrightarrow{O}A = \overrightarrow{a}, \overrightarrow{O}B = 10\overrightarrow{a} + 2\overrightarrow{b}, and \overrightarrow{O}C = bwhereO$ is origin. Let p denote the area of th quadrilateral OABCandq denote the area of teh parallelogram with OAandOC as adjacent sides. Prove that p = 6q.

Watch Video Solution

27.
$$ABCD$$
 is quadrilateral such that
 $\overrightarrow{A}B = \overrightarrow{b}, \overrightarrow{A}D = \overrightarrow{d}, \overrightarrow{A}C = m\overrightarrow{b} + p\overrightarrow{\cdot}$ Show that he area of the
quadrilateral $ABCDis\frac{1}{2}|m+p|\left|\overrightarrow{b}\times\overrightarrow{d}\right|$.

Watch Video Solution

28. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, then prove that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$

29. Prove that the normal to the plane containing three points whose position vectors are $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ lies in the direction $\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b}$.

Watch Video Solution

30. If
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c}$$
, $\overrightarrow{a} \neq \overrightarrow{0}$ and $\overrightarrow{b} \neq \overrightarrow{c}$, show that $\overrightarrow{b} = \overrightarrow{c} + t \overrightarrow{a}$ for some scalar t .

Watch Video Solution

31. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are the position vectors of the vertices A, B, C of a triangle ABC, show that the area triangle $ABCis\frac{1}{2}\left|\overrightarrow{a}\times\overrightarrow{b}+\overrightarrow{b}\times\overrightarrow{c}+\overrightarrow{c}\times\overrightarrow{a}\right|$. Deduce the condition for points \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} to be collinear.

32. For any three vectors
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 show that
 $\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} + \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} + \overrightarrow{b}) = \overrightarrow{0}$
Watch Video Solution

33. Show that distance of the point \overrightarrow{c} from the line joining \overrightarrow{a} and \overrightarrow{b} is

$$\left| \overrightarrow{b} imes \overrightarrow{c} + \overrightarrow{c} imes \overrightarrow{a} + \overrightarrow{a} imes \overrightarrow{b}
ight| \ \left| \overrightarrow{b} - \overrightarrow{a}
ight|$$

Watch Video Solution

34. Prove that the points A, BandC with position vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} respectively are collinear if and only if

$$\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} = \overrightarrow{0}$$

35. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three non-zero vectors such that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} and \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a};$ prove that $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are mutually at righ angles such that $\left| \overrightarrow{b} \right| = 1 and \left| \overrightarrow{c} \right| = \left| \overrightarrow{a} \right|$.

Watch Video Solution

36. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three vectors such that $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{c}$ and $\overrightarrow{a} x \overrightarrow{b} = \overrightarrow{a} x \overrightarrow{c}, \ \overrightarrow{a} \neq 0$, then show that $\overrightarrow{b} = \overrightarrow{c}$.

Watch Video Solution

37. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are three vectors such that $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right| = 1, \overrightarrow{c} = \lambda \left(\overrightarrow{a} \times \overrightarrow{b}\right) and \left|\overrightarrow{a}\right| = \frac{1}{\sqrt{2}}, \left|\overrightarrow{b}\right| = \frac{1}{\sqrt{3}}, \left|\overrightarrow{c}\right| = 1$

e between $\ a \ and$

38. Let $\overrightarrow{a} = 2\hat{i} + \hat{k}$, $\overrightarrow{b} = \hat{i} + \hat{j} + \hat{k}$ and $\overrightarrow{c} = 4\hat{i} - 3\hat{j} + 7\hat{k}$ be three vectors. Find vector \overrightarrow{r} which satisfies $\overrightarrow{r} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{b}$ and $\overrightarrow{r} \overset{\cdot}{\overrightarrow{a}} = 0$.

Watch Video Solution

39. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three non coplanar vectors, then prove that $\overrightarrow{d} = \frac{\overrightarrow{a} \overrightarrow{d}}{\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]} \left(\overrightarrow{b} \times \overrightarrow{c}\right) + \frac{\overrightarrow{b} \overrightarrow{d}}{\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]} \left(\overrightarrow{c} \times \overrightarrow{a}\right) + \frac{\overrightarrow{c} \overrightarrow{d}}{\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]} \left(\overrightarrow{a} \times \overrightarrow{b}\right)$

Watch Video Solution

40. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be unit vectors such that $\overrightarrow{a} \overrightarrow{b} = \overrightarrow{a} \overrightarrow{c} = 0$ and the angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{6}$, that $\overrightarrow{a} = \pm 2\left(\overrightarrow{b} \times \overrightarrow{c}\right)$.

41. Prove by vector method that $\sin(A - B) = \sin A \cos B - \cos A \sin B$

and $\sin(A + B) = \sin A \cos B + \cos A \sin B$

Watch Video Solution

42. Show that
$$\left(\overrightarrow{a} \times \overrightarrow{b}\right)^2 = \left|\overrightarrow{a}\right|^2 \left|\overrightarrow{b}\right|^2 - \left(\overrightarrow{a} \overrightarrow{b}\right)^2 = \left|\overrightarrow{a} \cdot \overrightarrow{a} \quad \overrightarrow{a} \cdot \overrightarrow{b}\right|$$

Watch Video Solution

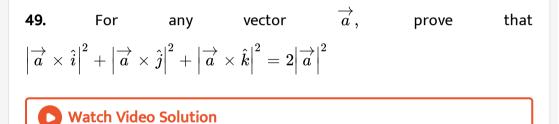
43. Given
$$\left|\overrightarrow{a}\right| = 10$$
, $\left|\overrightarrow{b}\right| = 2$ and $\overrightarrow{a}, \overrightarrow{b} = 12$, find $\left|\overrightarrow{a} \times \overrightarrow{b}\right|$.

Watch Video Solution

44. If A(0, 1, 1), B(2, 3, -2), C(22, 19, -5) and D(1, -12, 1) are the vertices of a quadrailateral ABCD, find its area.

45. Find the area of the parallelogram determined by the vectors $\hat{i} + 2\hat{j} + 3\hat{k}and3\hat{i} - 2\hat{j} + \hat{k}$

46. Find a unit vector perpendicular to the plane ABC, where the coordinates of A, B and C are A(3, -1, 2), B(1, -1, -3) and C(4, -3, 1).


Watch Video Solution

47. Find a vector of magnitude 9, which is perpendicular to both vectors

$$4\hat{i}-\hat{j}+3\hat{k}and-2\hat{i}+\hat{j}-2\hat{k}$$
 .

48. Find a unit vector perpendicular to both the vectors $\hat{i} - 2\hat{j} + 3\hat{k}and\hat{i} + 2\hat{j} - \hat{k}$

Watch Video Solution

50. Find the magnitude of \overrightarrow{a} give $\overrightarrow{a}=\left(\hat{i}+2\hat{j}-2\hat{k}
ight) imes\left(-\hat{i}+3\hat{k}
ight)$

by

Watch Video Solution

51. Find
$$\overrightarrow{a} \times \overrightarrow{b}$$
, if $\overrightarrow{a} = 2\hat{i} + \hat{k}$ and $\overrightarrow{b} = \hat{i} + \hat{j} + \hat{k}$.

52. Find
$$\lambda$$
 and μ if $\left(2\hat{i}+6\hat{j}+27\hat{k}
ight) imes\left(\hat{i}+\lambda\hat{j}+\mu\hat{k}
ight)=\hat{0}$.

Watch Video Solution

53. If
$$\overrightarrow{r} = x\hat{i} + y\hat{j} + z\hat{i}, ext{ find the value of } \left(\overrightarrow{r} imes \hat{i}
ight)\overrightarrow{r} imes \hat{j} + xy$$

Watch Video Solution

54. Find a unit vector perpendicular to each of the vectors

$$(\rightarrow a + \rightarrow b)$$
 and $(\rightarrow a - \rightarrow b)$, where
 $\rightarrow a = \hat{i} + \hat{j} + \hat{k}, \rightarrow b = \hat{i} + 2\hat{j} + 3\hat{k}$.

Watch Video Solution

55. Let $\overrightarrow{a} = \hat{i} - \hat{j}$, $\overrightarrow{b} = 3\hat{j} - \hat{k}$ and $\overrightarrow{c} = 7\hat{i} - \hat{k}$. Find a vector \overrightarrow{d} which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} , and $\overrightarrow{\cdot} \overrightarrow{d} = 1$.

56. Show that the area of a parallelogram having diagonals $3\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} - 3\hat{j} + 4\hat{k}$ is $5\sqrt{3}$ square units.

Watch Video Solution

57. Find the area of the triangle whose vertices are A(3, -1, 2), B(1, -1, -3) and C(4, -3, 1).

Watch Video Solution

58. If
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$$
 and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$, show that $\overrightarrow{a} - \overrightarrow{d}$ is parallel to $\overrightarrow{b} - \overrightarrow{c}$, where $\overrightarrow{a} \neq \overrightarrow{d}$ and $\overrightarrow{b} \neq \overrightarrow{c}$

59. Prove that
$$\left(\overrightarrow{a} - \overrightarrow{b}\right) \times \left(\overrightarrow{a} + \overrightarrow{b}\right) = 2\left(\overrightarrow{a} \times \overrightarrow{b}\right)$$
 and interpret it

geometrically.

Watch Video Solution

60. If $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}, \ \overrightarrow{c} = \hat{j} - \hat{k}$ are given vectors, then find \overrightarrow{a} vector

 \overrightarrow{b} satisying the equation $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$ and $\overrightarrow{a} \overrightarrow{b} = 3$.

Watch Video Solution

61. If
$$\overrightarrow{a} = \hat{i} + 3\hat{j} - 2\hat{k}$$
 and $\overrightarrow{b} = -\hat{i} + 3\hat{k}$, find $\left|\overrightarrow{a} \times \overrightarrow{b}\right|$.

Watch Video Solution

62. If
$$\overrightarrow{a} = 3\hat{i} + 4\hat{j}$$
 and $\overrightarrow{b} = \hat{i} + \hat{j} + \hat{k}$, find the value of $\left|\overrightarrow{a} \times \overrightarrow{b}\right|$.

63. If
$$\overrightarrow{a} = 2\hat{i} + \hat{k}$$
, $\overrightarrow{b} = \hat{i} + \hat{j} + \hat{k}$, find the magnitude of $\overrightarrow{a} \times \overrightarrow{b}$.

64. Find a unit vector perpendicular to both the vectors $4\hat{i} - \hat{j} + 3\hat{k}$ and $-2\hat{i} + \hat{j} - 2\hat{k}$.

Watch Video Solution

65. Find a unit vector perpendicular to the lane containing the vectors $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$.

Watch Video Solution

66. Find the magnitude of vector $\overrightarrow{a} = \left(3\hat{k}+4\hat{j}
ight) imes\left(\hat{i}+\hat{j}-\hat{k}
ight)$.

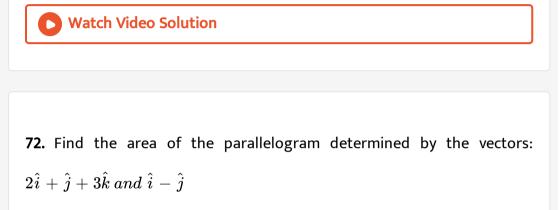
67. If
$$\overrightarrow{a} = 4\hat{i} + 3\hat{j} + \hat{k}$$
 and $\overrightarrow{b} = \hat{i} - 2\hat{k}$ then $f \in d \left| 2\overrightarrow{b} \times \overrightarrow{a} \right|$

Watch Video Solution

68.

$$\stackrel{
ightarrow}{a}=3\hat{i}-\hat{j}-2\hat{k} \ and \ \stackrel{
ightarrow}{b}=2\hat{i}+3\hat{j}+\hat{k}, \ f\in d\left(\stackrel{
ightarrow}{a}+2\stackrel{
ightarrow}{b}
ight) imes\left(2\stackrel{
ightarrow}{a}-\stackrel{
ightarrow}{b}$$

If

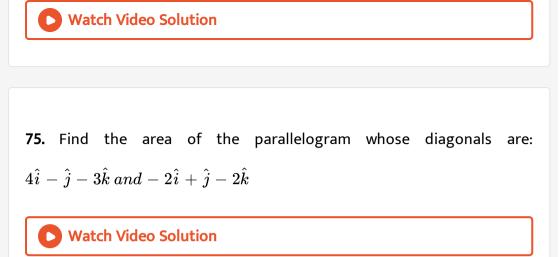

Watch Video Solution

69. Find a vector of magnitude 49, which is perpendicular to both the vectors $2\hat{i} + 3\hat{j} + 6\hat{k}$ and $3\hat{i} - 6\hat{j} + 2\hat{k}$.

Watch Video Solution

70. Find a vector whose length is 3 and which is perpendicular to the vector $\vec{a} = 3\hat{i} + \hat{j} - 4\hat{k}$ and $\vec{b} = 6\hat{i} + 5\hat{j} - 2\hat{k}$.

71. Find the area of the parallelogram determined by the vectors: $2\hat{i}$ and $3\hat{j}$



Watch Video Solution

73. Find the area of the parallelogram determined by the vectors: $3\hat{i}+\hat{j}-2\hat{k}~and~\hat{i}-3\hat{j}+4\hat{k}$

Watch Video Solution

74. Find the area of the parallelogram determined by the vectors: $\hat{i} - 3\hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$.

Watch Video Solution

77. Find the area of the parallelogram whose diagonals are: $3\hat{i} + 4\hat{j} \ and \ \hat{i} + \hat{j} + \hat{k}$

78. If a = 2i + 5j - 7k, b = -3i + 4j + k and c = i - 2j - 3k, compute $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c}$ and $a \times (b \times c)$ and verify that these are not equal.

Watch Video Solution

79. If
$$\left|\overrightarrow{a}\right| = 2$$
, $\left|\overrightarrow{b}\right| = 5$ and $\left|\overrightarrow{a} \times \overrightarrow{b}\right| = 8$, find $\overrightarrow{a} \cdot \overrightarrow{b}$

Watch Video Solution

80.

Given

$$a=rac{1}{7}ig(2\hat{i}+3\hat{j}+6\hat{k}ig), ec{b}=rac{1}{7}ig(3\hat{i}-6\hat{j}+2\hat{k}ig), ec{c}=rac{1}{7}ig(6\hat{i}+2\hat{j}-3\hat{k}ig),$$

being a right handed orthogonal system of unit vectors in space, show that $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} is also another system.

81. If
$$\left| \overrightarrow{a} \right| = 13$$
, $\left| \overrightarrow{b} \right| = 5$ and $\overrightarrow{a} \overrightarrow{b} = 60$, then find $\left| \overrightarrow{a} \times \overrightarrow{b} \right|$

Watch Video Solution

82. If
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} \neq 0$$
, then show that $\overrightarrow{a} + \overrightarrow{c} = m \overrightarrow{b}$, where m is any scalar.
(Vatch Video Solution)

83. Find the angle between two vectors \overrightarrow{a} and \overrightarrow{b} , if $\left|\overrightarrow{a} \times \overrightarrow{b}\right| = \overrightarrow{a} \overrightarrow{b}$.

Watch Video Solution

84. If $\left|\overrightarrow{a}\right| = 2$, $\left|\overrightarrow{b}\right| = 7$ and $\overrightarrow{a} \times \overrightarrow{b} = 3\hat{i} + 2\hat{j} + 6\hat{k}$, find the angle between \overrightarrow{a} and \overrightarrow{b} .

85. What inference can you draw if $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$ and $\overrightarrow{a} \overrightarrow{b} = 0$.

86. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three unit vecrtors such that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$, $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$, $\overrightarrow{c} \times \overrightarrow{a} = \overrightarrow{b}$ Show that \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c}

form an orthonormal right handed triad of unit vectors.

Watch Video Solution

87. Find a unit vector perpendicular to the plane ABC, where the coordinates of A, B, and C are A(3, -1, 2), B(1, -1, -3) and C(4, -3, 1).

88. If a, b, c are the lengths of sides, BC, CA and AB of a triangle ABC, prove that $\overrightarrow{B}C + \overrightarrow{C}A + \overrightarrow{A}B = \overrightarrow{O}$ and deduce that $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.

Watch Video Solution

89. If
$$\overrightarrow{a} = \hat{i} - 2\hat{j} + 3\hat{k}$$
, and $\overrightarrow{b} = 2\hat{i} + 3\hat{j} - 5\hat{k}$, then find $\overrightarrow{a} \times \overrightarrow{b}$.
verify that \overrightarrow{a} and $\overrightarrow{a} \times \overrightarrow{b}$ are perpendicular to each other.

Watch Video Solution

90. For any two vectors
$$\overrightarrow{a} and \overrightarrow{b}$$
 prove that $\left|\overrightarrow{a} \times \overrightarrow{b}\right|^2 = \left|\begin{array}{ccc} \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{b} \\ \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{b} \\ \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{b} \end{array}\right|$

91. prove that
$$\left| \overrightarrow{a} \times \overrightarrow{b} \right| = \left(\overrightarrow{a} \overrightarrow{b} \right) tan\theta$$
, where θ is the angle between $\overrightarrow{a} and \overrightarrow{b}$.

Watch Video Solution

92. If
$$\left|\overrightarrow{a}\right| = \sqrt{26}$$
, $\left|\overrightarrow{b}\right| = 7$ and $\left|\overrightarrow{a} \times \overrightarrow{b}\right| = 35$, $f \in d \overrightarrow{a \ b}$.

Watch Video Solution

93. Find the area of the triangle formed by $O, A, B when OA = \hat{i} + 2\hat{j} + 3\hat{k}, OB = -3\hat{i} - 2\hat{j} + \hat{k}$.

Watch Video Solution

94. Let $\overrightarrow{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\overrightarrow{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. find a vector \overrightarrow{d} which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} and $\overrightarrow{c} = d\hat{i} + d\hat{k}$. **95.** Find a unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$.

Watch Video Solution

96. Using vectors, find the area of triangle with vertices A(2, 3, 5), B(3, 5, 8) and C(2, 7, 8).

Watch Video Solution

97. If
$$\overrightarrow{a} = 2\hat{i} - 3\hat{j} + \hat{k}$$
, $\overrightarrow{b} = -\hat{i} + \hat{k}$, $\overrightarrow{c} = 2\hat{j} - \hat{k}$ are three vectors find the area of the parallelogram having diagonals $\left(\overrightarrow{a} + \overrightarrow{b}\right) and \left(\overrightarrow{b} + \overrightarrow{c}\right)$.

98. The two adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\hat{i} - 2\hat{j} - 3\hat{k}$. Find the unit vector parallel to one of its diagonals. Also, find its area.

99. If either ightarrow a =
ightarrow 0 and ightarrow b =
ightarrow 0 then ightarrow a imes
ightarrow b =
ightarrow 0

. Is Is the converse true? Justify your answer with an example.

Watch Video Solution

lf

$$ec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \ \overrightarrow{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k} \ and \ \overrightarrow{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k},$$

then verify that $ec{a} imes \left(ec{b} + ec{c}
ight) = ec{a} imes ec{b} + ec{c} + ec{c}$

101. Using vectors, find the area of the triangle with vertices A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5)

102. Find all vectors of magnitude $10\sqrt{3}$ that are perpendicular to the plane $\hat{i} + 2\hat{j} + \hat{k}$ and $-\hat{i} + 3\hat{j} + 4\hat{k}$.

Watch Video Solution

103. Define vector product of two vectors.

Watch Video Solution

104. Write the value
$$ig(\hat{i} imes \hat{j} ig) \dot{\hat{k}} + \hat{i} \dot{\hat{j}}$$

105. Write the value of $\hat{i}\hat{j} imes\hat{k}+\hat{j}\hat{k} imes\hat{i}+\hat{k}\hat{j} imes\hat{i}$

Watch Video Solution

106. Write the value of $\hat{i}\hat{j} imes\hat{k}+\hat{j}\hat{k} imes\hat{i}+\hat{k}\hat{i} imes\hat{j}$

Watch Video Solution

107. Write the value of
$$\hat{i} imes\left(\hat{j}+\hat{k}
ight)+\hat{j} imes\left(\hat{k}+\hat{i}
ight)+\hat{k} imes\left(\hat{i}+\hat{j}
ight)$$
 .

Watch Video Solution

108. Write the expression for the area of the parallelogram having \overrightarrow{a} and \overrightarrow{b} as its diagonals.

109. If \overrightarrow{a} and \overrightarrow{b} are unit vectors then write the value of $\left|\overrightarrow{a} \times \overrightarrow{b}\right|^2 + \left(\overrightarrow{a} \overrightarrow{b}\right)^2$.

Watch Video Solution

110. If \overrightarrow{a} and \overrightarrow{b} are two vectors of magnitudes 3 and $\frac{\sqrt{2}}{3}$ respectively such that $\overrightarrow{a} \times \overrightarrow{b}$ is a unit vector. Write the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

111. If
$$\left|\overrightarrow{a}\right| = 10$$
, $\left|\overrightarrow{b}\right| = 2$ and $\left|\overrightarrow{a} \times \overrightarrow{b}\right| = 16$ find $\overrightarrow{a} \overleftarrow{b}$.

Watch Video Solution

112. For any two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} , find \overrightarrow{a} . $\left(\overrightarrow{b} \times \overrightarrow{a}\right)$.

113. If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $\left|\overrightarrow{a} \times \overrightarrow{b}\right| = 3$ and $\overrightarrow{a} \overset{\cdot}{\overrightarrow{b}} = 1$, find the angle between.

Watch Video Solution

114. For any three vectors
$$\overrightarrow{ab} \ and \ c$$
 write the value of $\overrightarrow{a} \times \left(\overrightarrow{b} + \overrightarrow{c}\right) + \overrightarrow{b} \times \left(\overrightarrow{c} + \overrightarrow{a}\right) + \overrightarrow{c} \times \left(\overrightarrow{a} + \overrightarrow{b}\right)$.

Watch Video Solution

115. For any two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} , fin d\ $\left(\overrightarrow{a} \times \overrightarrow{b}\right)$. \overrightarrow{b} .

116. Write the value of $\hat{i}ig(\hat{j} imes\hat{k}ig)$.

117. If
$$\overrightarrow{a} = 3\hat{i} - \hat{j} + 2\hat{k}$$
 and $\overrightarrow{b} = 2\hat{i} + \hat{j} - \hat{k}$ then find $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \overrightarrow{a}$.

118. Write a unit vector perpendicular to $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$.

Watch Video Solution

119. If
$$\left| \overrightarrow{a} \times \overrightarrow{b} \right|^2 = \left(\overrightarrow{a} \overrightarrow{b} \right)^2 = 144 \text{ and } \left| \overrightarrow{a} \right| = 4$$
, find \overrightarrow{b} .

Watch Video Solution

120. If
$$\overrightarrow{r} = x \hat{i} + y \hat{j} + z \hat{k}, ext{ then write the value of } \left| \overrightarrow{r} imes \hat{i} \right|^2.$$

121. If \overrightarrow{a} and \overrightarrow{b} are unit vectors such that $\overrightarrow{a} \times \overrightarrow{b}$ is also a unit vector, find the angle between \overrightarrow{a} and \overrightarrow{b} .

122. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are unit vectors then write the value of $\left|\overrightarrow{a} \times \overrightarrow{b}\right|^2 + \left(\overrightarrow{a} \overrightarrow{b}\right)^2$.

Watch Video Solution

123. If a is a unit vector such that $\overrightarrow{a} \times \hat{i} = \hat{j}$ find \overrightarrow{a} . \hat{i} .

Watch Video Solution

124. If \overrightarrow{c} is a unit vector perpendicular to the vectors \overrightarrow{a} and \overrightarrow{b} write another unit vector perpendicular \overrightarrow{a} and \overrightarrow{b} .

125. Find the angle between two vectors \overrightarrow{a} and \overrightarrow{b} with magnitudes 1 and 2 respectively and when $\left|\overrightarrow{a} \times \overrightarrow{b}\right| = \sqrt{3}$.

Watch Video Solution

126. Vectors \overrightarrow{a} and \overrightarrow{b} are such that $\left|\overrightarrow{a}\right| = 3$, $\left|\overrightarrow{b}\right| = \frac{2}{3}$ and $\left(\overrightarrow{a} \times \overrightarrow{b}\right)$ is a unit vector. Write the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

127. Write the value of
$$ig(\hat{i} imes\hat{j}ig)\dot{\hat{k}}+ig(\hat{j} imes\hat{k}ig)\dot{\hat{j}}$$
.

Watch Video Solution

128. Find a vector of magnitude $\sqrt{171}$ which is perpendicular to both of the vectors $\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{b} = 3\hat{i} - \hat{j} + 2\hat{k}$.

129. If
$$\overrightarrow{a}$$
 is any vector, then $\left(\overrightarrow{a} \times \hat{i}\right)^2 + \left(\overrightarrow{a} \times \hat{j}\right)^2 + \left(\overrightarrow{a} \times \hat{k}\right)^2 = \overrightarrow{a}^2$ b. $2\overrightarrow{a}^2$ c. $3\overrightarrow{a}^2$ d. $4\overrightarrow{a}^2$

Watch Video Solution

130. If
$$\overrightarrow{a} \overrightarrow{b} = \overrightarrow{a} \overrightarrow{c}$$
 and $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c}$, $\overrightarrow{a} \neq 0$, then $\overrightarrow{b} = \overrightarrow{c}$ b.
 $\overrightarrow{b} = 0$ c. $\overrightarrow{b} + \overrightarrow{c} = 0$ d. none of these

Watch Video Solution

131. The vector $\overrightarrow{b} = 3\hat{i} + 4\hat{k}$ is to be written as the sum of a vector $\overrightarrow{\alpha}$ parallel to $\overrightarrow{a} = \hat{i} + \hat{j}$ and a vector $\overrightarrow{\beta}$ perpendicular to \overrightarrow{a} . Then $\overrightarrow{\alpha} = \frac{3}{2}(\hat{i} + \hat{j})$ b. $\frac{2}{3}(\hat{i} + \hat{j})$ c. $\frac{1}{2}(\hat{i} + \hat{j})$ d. $\frac{1}{3}(\hat{i} + \hat{j})$

132. The unit vector perpendicular to the plane passing through point $P(\hat{i} - \hat{j} + 2\hat{k}), \ Q(2\hat{i} - \hat{k}) and \ R(2\hat{j} + \hat{k}) is$ a) $2\hat{i} + \hat{j} + \hat{k} \setminus$ b. $\sqrt{6}(2\hat{i} + \hat{j} + \hat{k})$ c. $\frac{1}{\sqrt{6}}(2\hat{i} + \hat{j} + \hat{k})$ d. $\frac{1}{6}(2\hat{i} + \hat{j} + \hat{k})$

 $\int (2i + j + k) c. \frac{1}{\sqrt{6}} (2i + j + k) d. \frac{1}{6} (2i)$

Watch Video Solution

133. If a, b represent the diagonals of a rhombus, then $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$ b.

$$\overrightarrow{a}\overrightarrow{b}=0$$
 c. $\overrightarrow{a}\overrightarrow{b}=1$ d. $\overrightarrow{a} imes\overrightarrow{b}=\overrightarrow{a}$

Watch Video Solution

134. Vectors $\overrightarrow{a} and \overrightarrow{b}$ are inclined at angel $\theta = 120^{0}$. If $\left|\overrightarrow{a}\right| = 1$, $\left|\overrightarrow{b}\right| = 2$, then $\left[\left(\overrightarrow{a} + 3\overrightarrow{b}\right) \times \left(3\overrightarrow{a} - \overrightarrow{b}\right)\right]^{2}$ is equal to 300

b. 235 c. 275 d. 225

135. If $\overrightarrow{a} = \hat{i} + \hat{j} - \hat{k}$, $\overrightarrow{b} = -\hat{i} + 2\hat{j} + 2\hat{k}$ and $\overrightarrow{c} = -\hat{i} + 2\hat{j} - \hat{k}$, then a unit vector normal to the vectors a + b and b - c is \hat{i} b. \hat{j} c. \hat{k} d. none of these

Watch Video Solution

136. A unit vector perpendicular to both $\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$ is $\hat{i}-\hat{j}+\hat{k}$ b.

$$\hat{i}+\hat{j}+\hat{k}$$
 c. $rac{1}{\sqrt{3}}ig(\hat{i}+\hat{j}+\hat{k}ig)$ d. $rac{1}{\sqrt{3}}ig(\hat{i}-\hat{j}+\hat{k}ig)$

Watch Video Solution

137. If
$$\vec{a} = 2\hat{i} - 3\hat{j} - \hat{k}$$
 and $b = \hat{i} + 4\hat{j} - 2\hat{k}$, then $\vec{a} \times \vec{b} = a \cdot 10\hat{i} + 2\hat{j} + 11\hat{k}$ b. $10\hat{i} + 3\hat{j} + 11\hat{k}$ c. $10\hat{i} - 3\hat{j} + 11\hat{k}$ d. $10\hat{i} - 2\hat{j} - 10\hat{k}$

138. If $\hat{i},\ \hat{j},\ \hat{k}$ are unit vectors, then $\hat{i}\dot{\hat{j}}=1$ b. $\hat{i}\dot{\hat{i}}=1$ c. $\hat{i} imes\hat{j}=1$ d. $\hat{i} imes(\hat{j} imes\hat{k})=1$

Watch Video Solution

139. If heta is the angle between the vectors $2\hat{i}-2\hat{j}+4\hat{k}$ and $3\hat{i}+\hat{j}+2\hat{k},$

then
$$\sin heta = rac{2}{3}$$
 b. $rac{2}{\sqrt{7}}$ c. $rac{\sqrt{2}}{7}$ d. $\sqrt{rac{2}{7}}$

Watch Video Solution

140. If
$$\left| \overrightarrow{a} \times \overrightarrow{b} \right| = 4$$
, $\left| \overrightarrow{a} \overrightarrow{b} \right| = 2$, then $\left| \overrightarrow{a} \right|^2 \left| \overrightarrow{b} \right|^2 = 6$ b. 2 c. 20 d. 8

Watch Video Solution

141. The value of $\hat{i}\hat{j} imes\hat{k}+\hat{j}\hat{i}+\hat{k}+\hat{k}\hat{i} imes\hat{j}$ is(A) O (B) 1 (C) 1 (D) 3

142. If is the angle between any two vectors $\rightarrow a$ and $\rightarrow b$, then $\left| \rightarrow a \xrightarrow{\cdot} b \right| = \left| \rightarrow a \times \rightarrow b \right| \text{ when } \theta \text{ is equal to (a) 0 (B) } \frac{\pi}{4} \text{ (C) } \frac{\pi}{2} \text{ (d)}$ π